
Data Analysis Guide

Version 11.1, Document Number: HERSCHEL-HSC-DOC-1199
07 December 2016

Build 15.0.3244

Data Analysis Guide

Build 15.0.3244

Table of Contents
Preface .. xxvi

1. Conventions used in this manual .. xxvi
1. Data input/output ... 1

1.1. Components of an observation ... 1
1.2. Typical workflow .. 3
1.3. How data are stored on your disk .. 4

1.3.1. Managing storages and pools .. 5
1.4. Getting observations from the Herschel Science Archive .. 7

1.4.1. Logging into the HSA ... 8
1.4.2. Finding observations in the HSA ... 10
1.4.3. Inspecting the query results of an observation .. 11
1.4.4. Finding observation IDs outside the HUI ... 12
1.4.5. Downloading one entire observation ... 13
1.4.6. Browsing an observation in the HSA with known OBSID 14
1.4.7. Downloading multiple observations .. 17

1.5. Loading observations downloaded from the HSA into HIPE 19
1.6. Managing your HSA downloads ... 21

1.6.1. Advanced configuration ... 23
1.7. Retrieving an observation from disk ... 24
1.8. Customising the Product Browser results ... 27
1.9. How to use the Quick Analysis perspective .. 28
1.10. Saving data (products and observations) to disk ... 30
1.11. Migrating pools across incompatible versions of HIPE .. 32
1.12. Exporting an observation to a colleague ... 34
1.13. Retrieving products from disk .. 35
1.14. Removing data from disk .. 35
1.15. On-demand reprocessing of observations .. 35
1.16. Exchanging data with FITS files ... 36

1.16.1. Saving a product to a FITS file .. 36
1.16.2. Retrieving a Herschel product from a FITS file 38
1.16.3. Translation of Herschel metadata to FITS keywords 39
1.16.4. Structure of Herschel products when saved as FITS 41
1.16.5. Troubleshooting FITS import/export ... 46
1.16.6. Importing a non-Herschel FITS file into HIPE .. 46
1.16.7. Importing a Herschel FITS file into external applications 48

1.17. Working with the VO (External Tools) .. 52
1.17.1. Sending products from HIPE to external tools .. 52
1.17.2. Sending products from external tools to HIPE .. 54
1.17.3. Opening VO Tables from HIPE ... 54
1.17.4. Writing tables to files in VO-table XML format 55

2. Saving data as text files .. 56
2.1. Considerations and concepts for working with text files .. 56
2.2. Worked example: Saving a Spectrum product as a text file 58
2.3. Worked example: Saving a SourceListProduct as a text file 60
2.4. Worked example: Reading a Spitzer spectrum into a table dataset 62
2.5. Worked example: Reading a VizieR catalogue into a table dataset 64
2.6. Reading a comma-separated-value (CSV) file into a table dataset 67
2.7. Reading a space-separated file into a table dataset ... 68
2.8. Reading an IPAC, SExtractor or Topcat file into a table dataset 70
2.9. Reading a generic ASCII table file into a table dataset ... 71
2.10. Writing a table dataset to a comma-separated-values (CSV) file 71
2.11. Writing a table dataset into a space-separated-value file 73
2.12. Writing a spectrum to an ASCII table file .. 74
2.13. Writing a table dataset to a generic ASCII table file ... 79
2.14. Reading column names from a file ... 80

iii

Data Analysis Guide Build 15.0.3244

2.15. Defining which lines to ignore when reading a file .. 80
2.16. Specifying the data types when reading a file .. 82
2.17. Specifying how data values are separated when reading a file 83
2.18. Saving and loading a configuration for reading from file 84
2.19. Adding a header to an ASCII table file .. 85
2.20. Adding table dataset metadata to an ASCII table file .. 85
2.21. Defining a custom prefix for commented lines .. 86
2.22. Choosing how to separate data values .. 86
2.23. Saving and loading options for writing to file ... 86
2.24. Parsers, formatters and templates .. 87
2.25. Creating and configuring table templates .. 88
2.26. Creating and configuring parsers for reading in data ... 89
2.27. Creating and configuring formatters for writing data .. 90
2.28. Regular expressions .. 92

3. Plotting .. 94
3.1. Getting started .. 94
3.2. Creating a plot .. 94
3.3. Customising title and subtitle ... 95
3.4. Managing layers .. 97
3.5. Showing and customising a legend ... 100
3.6. Customising plot properties ... 100

3.6.1. Command line equivalents .. 101
3.7. Setting margins ... 102
3.8. Saving and printing .. 102
3.9. Setting line and symbol styles .. 102
3.10. Customising axes ... 104
3.11. Drawing grid lines .. 110
3.12. Managing annotations ... 110
3.13. Drawing filled areas ... 113

3.13.1. Drawing filled areas between curves ... 114
3.14. Drawing a straight line .. 115

3.14.1. Drawing an arbitrarily-positioned straight line 116
3.15. Customising auxiliary axes .. 116
3.16. Changing the thickness of axes ... 118
3.17. Adding error bars ... 118
3.18. Switching to histogram mode ... 119
3.19. Adding subplots ... 120
3.20. Embedding monochromatic images in plots .. 121
3.21. Embedding RGB images in plots .. 122
3.22. Inserting math and special symbols ... 124
3.23. Creating a plot in batch mode .. 125
3.24. Drawing multiple plots per window ... 125
3.25. Colours in plots ... 126
3.26. Methods for colours, fonts and visibility ... 126
3.27. Invisible plots .. 127
3.28. Getting mouse coordinates on plots ... 128
3.29. More on plot methods ... 128
3.30. Worked example: Plot with an image .. 129
3.31. Worked example: Initial plot of this chapter .. 138
3.32. Worked example: Multi-panel plot .. 139
3.33. Worked example: Error bars .. 141
3.34. Worked example: Auxiliary axes .. 142
3.35. Worked example: Histograms ... 143
3.36. Worked example: Styles .. 146
3.37. Worked example: Two plots in one ... 149
3.38. Worked example: Coloured band .. 153
3.39. Worked example: Plot with PACS and SPIRE spectra 155
3.40. The TablePlotter .. 156

iv

Data Analysis Guide Build 15.0.3244

3.40.1. Invoking TablePlotter ... 157
3.40.2. Layout of the TablePlotter ... 158
3.40.3. Controls and functions .. 158

3.41. The Over Plotter .. 164
3.41.1. Invoke Over Plotter .. 164
3.41.2. Layout of Over Plotter .. 164
3.41.3. Controls and Functions ... 166

3.42. The Power Spectrum Generator .. 168
4. Working with images .. 170

4.1. Summary .. 170
4.2. Running image manipulation and analysis tasks .. 170
4.3. Importing and exporting images ... 171

4.3.1. Importing ... 171
4.3.2. Exporting ... 172

4.4. Viewing an image .. 173
4.5. Measuring angular distances .. 174
4.6. Creating masks .. 175
4.7. Viewing metadata and array data associated to an image 175
4.8. Saving an image .. 176
4.9. SimpleImage editing .. 177
4.10. Manipulating the axes (cropping, rotating, scaling...) .. 181
4.11. Manipulating fluxes .. 183

4.11.1. Image arithmetics .. 183
4.11.2. Smoothing images ... 187
4.11.3. Converting image units ... 187
4.11.4. Convolving images .. 188

4.12. Flagging saturated pixels ... 188
4.13. Getting cut levels ... 188
4.14. Combining images (stitching, RGB) .. 189

4.14.1. Stitching ... 189
4.14.2. Creating RGB images ... 189

4.15. Defining and using the World Coordinates System (WCS) 190
4.16. Creating intensity profiles .. 192
4.17. Creating contour plots ... 194
4.18. Creating histograms .. 196

4.18.1. Histograms via the command line ... 197
4.19. Finding and extracting sources ... 203
4.20. Fitting sources ... 210
4.21. Aperture photometry ... 211

4.21.1. Centroiding ... 211
4.21.2. Units and aperture photometry ... 212
4.21.3. Point sources .. 212

4.22. Comparing PSFs to point source profiles .. 221
4.22.1. Setting up and getting the data ... 223
4.22.2. Rotate the PSF and match it to the astronomical source 224
4.22.3. EEF Curves .. 228
4.22.4. Measuring the sky background scatter on PACS and SPIRE maps 230
4.22.5. Fitting the PACS PSF (for SPIRE it will be similar) 240

5. Spectral analysis .. 243
5.1. Summary .. 243
5.2. Spectra in HIPE .. 243
5.3. How to display spectra ... 243

5.3.1. Showing and Hiding spectra .. 244
5.3.2. Overplotting spectra ... 245
5.3.3. Viewing multiple plots ... 246
5.3.4. Zooming and Panning .. 247
5.3.5. Changing Display Axes .. 247
5.3.6. Changing Plot Properties .. 248

v

Data Analysis Guide Build 15.0.3244

5.3.7. Viewing large datasets ... 249
5.3.8. Filtering and sorting what is viewed ... 251
5.3.9. Viewing Flags/masks and plot information ... 251
5.3.10. Viewing SpectralLineLists ... 252
5.3.11. Printing and saving .. 252
5.3.12. Plotting from the command line ... 252

5.4. Working on Spectra ... 252
5.4.1. Using the Spectrum Toolbox ... 253
5.4.2. Spectral Selection: extraction, and flagging .. 253
5.4.3. Spectrum Arithmetics ... 255
5.4.4. Spectral Averaging and Statistics ... 255
5.4.5. Spectral Manipulation: resampling, smoothing, replacing, gridding, stitch-
ing, and folding ... 257
5.4.6. Spectral Unit Conversion .. 257
5.4.7. Finding the integral under a line .. 257
5.4.8. Weight/error and flag/mask propagation .. 258

5.5. Dealing with baseline issues .. 259
5.5.1. General Standing Wave Removal Tool .. 260
5.5.2. Baseline Smoothing and Line Masking Tool .. 265

6. Spectral analysis for cubes ... 269
6.1. Summary .. 269
6.2. Cubes and the Spectrum Explorer ... 270
6.3. A message about cube coordinates and the WCS ... 271
6.4. A message about errors, weights, flags .. 272
6.5. A quick cube viewer: the Standard Cube Viewer ... 273
6.6. Using the Spectrum Explorer to look at cubes ... 274

6.6.1. Opening the Spectrum Explorer on a cube ... 274
6.6.2. Showing and hiding cube spectra; clearing stubborn spectra 276
6.6.3. Zooming and panning .. 277
6.6.4. Real-time spectrum display: preview panel ... 277
6.6.5. (Over)plotting spectra from multiple cubes ... 277
6.6.6. Linking the display of spectra from multiple cubes 278
6.6.7. A grid layout of the spectra in a cube ... 278
6.6.8. Viewing in subplots (multiple spectrum plots) .. 279
6.6.9. Standalone plot panel ... 280
6.6.10. Changing display axes .. 280
6.6.11. Changing plot properties and behaviour ... 280
6.6.12. A table of the plot—mouse interactions ... 282
6.6.13. Changing your Spectrum Explorer preferences 283
6.6.14. Viewing plot information .. 283
6.6.15. Viewing datapoint flags .. 283
6.6.16. Printing and saving .. 283
6.6.17. Creating a new variable from a plotted spectrum 284
6.6.18. A meta data list: and how to relate spaxel coordinates to index coordinates .. 284
6.6.19. Filtering what is viewed: not useful for cubes 285
6.6.20. Plotting from the command line ... 285

6.7. Working on cubes: the Spectrum and Cube Toolboxes .. 285
6.7.1. How to open the Toolboxes; getting extra help 286
6.7.2. Defining the input, looking at the output .. 286
6.7.3. Spectrum extraction and cube cropping ... 290
6.7.4. Spectrum arithmetics .. 293
6.7.5. Spectrum averaging/summing and statistics .. 293
6.7.6. Spectrum manipulation: resampling, smoothing, replacing, gridding, stitch-
ing, and folding ... 296
6.7.7. Spectrum flagging ... 298
6.7.8. Spectrum wave unit conversion .. 300
6.7.9. Weight/error and flag propagation .. 301
6.7.10. Making 2d flux maps from cubes ... 301

vi

Data Analysis Guide Build 15.0.3244

6.7.11. Velocity maps ... 303
6.7.12. Position-velocity maps .. 305
6.7.13. Removing the continuum from cubes .. 305
6.7.14. Dealing with baseline issues .. 306
6.7.15. Exporting to ASCII or FITS .. 306
6.7.16. Converting units for Cube Toolbox flux maps 306

6.8. Combining the PACS and SPIRE full SED for point sources 307
7. Spectral Fitting .. 309

7.1. Spectrum fitting ... 309
7.1.1. Using the Spectrum Fitter GUI: an overview .. 309
7.1.2. Using the Spectrum Fitter (command-line fitting): an overview 314
7.1.3. Fitting tips ... 315

7.2. Worked Example: Fitting a polynomial to the baseline/continuum 316
7.2.1. Worked Example: Fitting a polynomial to the baseline/continuum in the
command line .. 322

7.3. Worked Example: Fitting a polynomial to a spectral cube (or any multi-spectrum
dataset) ... 323

7.3.1. Worked Example: Fitting a polynomial to a spectral cube (or any mul-
ti-spectrum dataset) in the command line ... 325

7.4. Worked Example: Fitting Gaussians and a polynomial to a spectrum 326
7.4.1. Worked Example: Fitting Gaussians and a polynomial to a spectrum in the
command line .. 331

7.5. Worked Example: Fitting multiple lines (Gaussians) and a Polynomial baseline to a
cube and making maps of the results ... 333

7.5.1. With the GUI ... 333
7.5.2. On the command line ... 338
7.5.3. Making 2d maps from the fit results ... 339

7.6. Adding and Initialising Models .. 341
7.7. Configuring the Spectrum Fitter GUI to automatically apply a fit upon opening 342
7.8. Setting weights .. 342
7.9. Setting limits to model parameters .. 344
7.10. Fixing model parameters ... 345
7.11. Modifying Models .. 345
7.12. Applying a fit .. 346
7.13. Inspecting fit parameter results ... 346
7.14. Deleting models and excluding models from a fit ... 348
7.15. Resetting and restarting fitting .. 348
7.16. Saving a script ... 349
7.17. Saving the residual and models ... 350
7.18. Saving a SpectralLineList .. 353
7.19. Obtaining a line integral .. 353
7.20. Using Saved models ... 354
7.21. Automatic fitting of multiple datasets .. 355
7.22. Continuing work on the residual outside of the Spectrum Fitter GUI 358
7.23. Using the Combo Model ... 358
7.24. Models available to the fitter .. 359
7.25. How to add your own model .. 360
7.26. Selecting the best fitter engine .. 362
7.27. NaNs and the Spectrum Fitter .. 362
7.28. Making images from fitting results to cubes: the ParameterCube 362

7.28.1. After fitting with the MultiFitter tab of the Spectrum Fitter GUI 362
7.28.2. After fitting with the MultiFitter on the command line 363
7.28.3. Manipulating the images taken from the ParameterCube. 364

7.29. Calculating uncertainty and error after fitting .. 365
7.29.1. Introduction to errors or fitting and confidence 365
7.29.2. Practical information for getting the fitting errors in HIPE 367
7.29.3. Advanced practical information .. 367

7.30. Troubleshooting and limitations of the fitter .. 385

vii

Data Analysis Guide Build 15.0.3244

8. Unit Conversion ... 388
8.1. Units in HIPE ... 388
8.2. Built-in units and how to define new ones .. 389

8.2.1. Defining new units .. 393
8.3. How to convert data products units ... 393

8.3.1. Worked Example: Converting the units of an instance of a subclass of Spec-
trum1d ... 394
8.3.2. Worked Example: Converting the units of an instance of a subclass of Spec-
trum2d ... 394
8.3.3. Worked Example: Converting the units of an instance of a subclass of Sim-
pleCube .. 395
8.3.4. Worked Example: Converting the units of an instance of SimpleImage 396

Index ... 397

viii

Build 15.0.3244

List of Figures
1.1. Typical workflow for downloading, reprocessing and saving an observation. 3
1.2. Pools and storages ... 5
1.3. Preferences for data access ... 6
1.4. Workflows for retrieving observation data from the Herschel Science Archive 7
1.5. Logging in to the Herschel Science Archive .. 8
1.6. Accessing the Herschel Science Archive ... 9
1.7. The HSA view ... 9
1.8. The HUI Search tab. .. 10
1.9. HSA query result, compact view. ... 11
1.10. HSA query result, expanded view. .. 11
1.11. Information summary for an observation returned as a query result. 12
1.12. The Observing Log webpage. .. 12
1.13. Downloading an observation from the Herschel Science Archive. 13
1.14. Selecting which part of an observation to browse. .. 15
1.15. Product loaded into HIPE from the HSA. ... 15
1.16. The shopping basket of data to retrieve from the HSA .. 18
1.17. The shopping basket of data to retrieve from the HSA .. 18
1.18. A Herschel observation ready to be loaded into HIPE. .. 20
1.19. The My HSA preferences dialogue window. ... 22
1.20. A detail of the Indexed Datasets table showing the Requires and Is required by
columns. .. 23
1.21. The Advanced tab of the My HSA preferences dialogue window. 24
1.22. The Product Browser. ... 25
1.23. Main window of Quick Analysis. ... 29
1.24. Quick Analysis - Browse. .. 30
1.25. Quick Analysis - Observation. ... 30
1.26. The Save Products tool. .. 31
1.27. Product export from HIPE into standard Herschel directory structure. 34
1.28. FITS save task dialogue window. ... 37
1.29. FITS read task dialogue window. ... 39
1.30. Structure of a FITS file produced from a SimpleImage. .. 42
1.31. Structure of a FITS file produced from a SpectralSimpleCube from a PACS obser-
vation. The two columns of the ImageIndex binary table extension are shown. 42
1.32. Structure of a FITS file produced from a SpectralSimpleCube from a SPIRE ob-
servation. The two columns of the ImageIndex binary table extension are shown. 43
1.33. Structure of a FITS file produced from a SpectralSimpleCube from a HIFI obser-
vation. ... 43
1.34. Structure of a FITS file produced from a PacsRebinnedCube. The two columns of
the ImageIndex binary table extension are shown. ... 44
1.35. Structure of a FITS file produced from a HifiTimelineProduct. This product can-
not be saved directly as a FITS file, but the summary table and each DatasetWrapper can.
The dashed gray lines show the contents of each FITS file. ... 44
1.36. Structure of a FITS file produced from a SpectrometerPointSourceSpectrum.
The five table columns are shown for the SSWD4 extension. They are the same for the SLWC3
extension. ... 45
1.37. Structure of the History extension of a FITS file created from a Herschel product.
Column names for each of the three binary table extensions are shown. 46
1.38. The SAMP Hub Monitor window. .. 54
2.1. Excerpt from the output of exportSpectrumToAscii ... 59
2.2. The TableDataset resulting from running the example script .. 59
2.3. The initial SourceListProduct generated by sourceExtractorSussextractor. 61
2.4. Excerpt from the text file written from the SourceListProduct. 61
2.5. The reconstituted SourceListProduct with data read in from the text file. 62
2.6. Excerpt from the a Spitzer spectrum product. ... 62
2.7. The table dataset resulting from running the example script. .. 64

ix

Data Analysis Guide Build 15.0.3244

2.8. Excerpt from the Planck Early Cold Cores Catalogue. .. 65
2.9. Excerpt from ReadMe file for Planck Early Cold Cores Catalogue. 65
2.10. The table dataset resulting from running the example script. .. 66
2.11. A table dataset imported from a CSV file. .. 68
2.12. A table dataset imported from a space-separated-value file. ... 69
2.13. A simple table dataset. .. 72
2.14. A simple table dataset. .. 73
2.15. Input spectrum for the exportSpectrumToAscii task. .. 75
3.1. Some of the features of HIPE plots. If you are reading the HTML version of this manual,
click on any of the blue labels to jump straight to the relevant section. 94
3.2. The Property Panel window. ... 101
3.3. Available filling closure types. ... 113
3.4. The filling patterns produced by the three LineHatchPaint objects shown in the pre-
vious example. .. 114
3.5. The filled area between the sinc(x) curves. ... 115
3.6. Plot with a customised auxiliary axis. .. 117
3.7. The same data set plotted as LINECHART (default) and HISTOGRAM. 119
3.8. Plot with embedded subplot. .. 120
3.9. RGB image in a plot. ... 124
3.10. Using special characters for labels. .. 124
3.11. Classes involved in plot operations. ... 129
3.12. The result of the commented plot example presented in this section. 130
3.13. The result of the plot example created with the simplified version of the script. 136
3.14. A plot with four panels. .. 139
3.15. A plot with horizontal and vertical error bars. ... 141
3.16. A plot with three layers and customised auxiliary axes. ... 142
3.17. A plot with three panels, each containing superimposed histograms. 144
3.18. A plot using several styles and colours for lines and plot symbols. 146
3.19. A plot made of two independent plots. ... 150
3.20. A plot with different symbol styles, error bars and a coloured horizontal band. 153
3.21. The result of the commented plot example presented in this section. 155
3.22. Viewers available for a table dataset in the product viewer, among them TablePlotter and
OverPlotter. ... 157
3.23. Layout of the TablePlotter GUI. ... 158
3.24. The plot with selected (blue) and hidden (red crosses) data points. 161
3.25. Extract Selected Data from Multi Columns to a New DataSet. 162
3.26. Simple overlay plots of different columns plotted against the same X-axis are created by
marking the Overlay field. ... 163
3.27. Preferences: Complex data can be displayed in four different ways as shown in this
properties menu. .. 163
3.28. The main panel of Over Plotter is very similar to that of the Table Plotter. New features
include the Layer Controls panel and the synchronization buttons. This Over Plotter is in All
Layers mode. .. 165
3.29. This Over Plotter is in "Single Layer" mode. The primary layer is displayed in its select-
ed colour and the secondary layer is displayed in green. All other layers are displayed in grey
colour. .. 166
3.30. This Over Plotter is in "Single Layer" mode. The primary layer is displayed in its select-
ed colour and the secondary layer is displayed in green. All other layers are displayed in grey
colour. These are the same layers as in the previous figure, but after selecting Layer 1 to be-
come prime. .. 166
3.31. A complex example for illustration. The Over Potter is in "Single Layer" mode. The pri-
mary layer is displayed in blue with large symbols and connected by a line. The Y-axis is set
to logarithmic mode. The secondary layer is displayed in green with large filled diamonds.
The third layer is displayed in grey colour. .. 168
3.32. A signal timeline displayed in Table Plotter that the Power Spectrum generator can be
applied to. .. 168
3.33. Main view of the Power Spectrum Generator. ... 169
3.34. Displaying the newly created power spectra in the Table Plotter. 169

x

Data Analysis Guide Build 15.0.3244

4.1. Finding variable types in the Variables view. .. 171
4.2. Viewing an image in HIPE. ... 173
4.3. Measuring angular distances on an image. .. 175
4.4. Opening the Dataset Viewer from the Outline view. ... 176
4.5. Colour map window. .. 177
4.6. Cut level selection window. ... 178
4.7. The annotation toolbox. .. 178
4.8. Adding annotations to a Display. .. 180
4.9. Jython code appearing in the annotation toolbox. ... 181
4.10. Example image transformation dialogue window. Rotating an image using the "rotate"
task. Several interpolation options are available. .. 183
4.11. Example image arithmetic dialogue window. ... 187
4.12. The createRgbImage task dialogue window. .. 190
4.13. The intensity profile below the image. ... 192
4.14. Dialogue window for automaticContour 195
4.15. Circle histogram area selection and parameter selection. .. 196
4.16. Display of the histogram task results, held in the histogram output dataset. 197
4.17. List of parameters for the two source extraction tasks. .. 204
4.18. The list of sources shown in the Product Viewer, with the internal dataset highlighted. 205
4.19. Opening the SkyMask toolbox. ... 208
4.20. Drawing a region of interest on the image. ... 209
4.21. Aperture photometry with an annular sky aperture as displayed in HIPE. 213
4.22. Aperture photometry results plot and tables. Note that n.a. stands for "not applicable"
and typically occurs when units are not assigned to the image. ... 213
5.1. The Spectrum Explorer for a single spectrum. ... 244
5.2. The new layout properties panel. .. 248
5.3. Filters on attributes. ... 251
5.4. fitFringe task UI. ... 261
5.5. Plot with standing waves. .. 262
5.6. Overplot of fitFringe results. .. 262
6.1. HIFI cube: data arrays .. 273
6.2. The Standard Cube viewer: zoom to fit is indicated ... 274
6.3. The Spectrum Explorer with a cube loaded .. 275
6.4. The cube comparison buttons ... 278
6.5. Mosaic/raster view ... 278
6.6. The Subplot menu. ... 279
6.7. changing layer properties .. 282
6.8. The arrays in a cube. .. 283
6.9. Tab arrangement in the Cube Explorer. .. 287
6.10. Combination of PACS and SPIRE spectra. ... 308
7.1. Selecting one spectrum to fit with the Spectrum Fitter GUI. Here a pixel near the centre of
the cube (highlighted with a green box) is displayed in the top left Spectrum Explorer and the
second subband of a HIFI WBS spectrum is displayed in the bottom right Spectrum Explorer. .. 310
7.2. The SFG accessed via the Spectrum Explorer, and showing a Polynomial fitted to one
pixel from a SPIRE cube. The labelled Spectrum Explorer and Fitter GUI panes are described
in the text below. ... 311
7.3. The working area of the SFG. .. 312
7.4. The MultiFit_Parms output. ... 314
7.5. Plot one spectrum (a spaxel/pixel) and open the Spectrum Fitter GUI. 317
7.6. Add a Polynomial model using addModel and press Accept to fit. 318
7.7. Reset the Spectrum Fitter GU to start work on the original spectrum again.addModel and
press Accept to fit. ... 318
7.8. Set weights by opening the Weights tab and drawing a range on the spectrum. 319
7.9. After setting weights go back to the Models tab and re-initialise the fit. 320
7.10. Setting the weights to zero at the line edges still did not produce a satisfactory fit. 320
7.11. Set weights to one either side of the line in the Weights tab before reinitialising the Poly-
nomial fit in the Models tab. .. 321
7.12. A script, the models and the residual can be saved in the Export tab. 321

xi

Data Analysis Guide Build 15.0.3244

7.13. The contents of MultiFit_Parms .. 325
7.14. Plot one spectrum (a spaxel/pixel) and open the Spectrum Fitter GUI. 327
7.15. The cross-hair indicating the layer the cube is displayed at may be obtrusive, you can
move it to the edge of the spectrum in the Spectrum Explorer Data Selection Panel. 328
7.16. Add a Polynomial model using addModel in the Models tab. 328
7.17. Add a Gaussian model using addModel and set the position and amplitude of the peak
by clicking on the spectrum. .. 329
7.18. Use addModel to add another Gaussian. ... 329
7.19. Add another Gaussian for the absorption, you will need to zoom out in order to set the
amplitude of the line below zero. Press Accept to fit. .. 330
7.20. The total model and Polynomial fit are plotted over the original spectrum, while the
Gaussian models appear below with the residual. .. 330
7.21. A script and the model parameters (and also the residual) can be saved from the Export
tab. .. 331
7.22. Plot one spectrum (a spaxel/pixel) and open the Spectrum Fitter GUI. 334
7.23. Set weights by opening the Weights tab and drawing a range on the spectrum. 334
7.24. Add a Polynomial model using addModel and press Accept to fit. 335
7.25. Add a Gaussian model using addModel and set the position and amplitude of the peak
by clicking on the parameter boxes ("Amplitude" or "X-Position") to the right and then on the
spectrum. .. 335
7.26. To fit an entire cube, use the MultiFit tab ... 336
7.27. The contents of MultiFit_Parms .. 337
7.28. Load models. ... 355
7.29. The MultiFit_Parms output .. 357
7.30. Linear model fitting. ... 369
7.31. Non-linear model fitting. ... 371
7.32. Non-linear model fitting. ... 373
7.33. Non-linear model fitting. ... 376
7.34. Mixed sine model fitting. .. 377
7.35. Combined model fitting. .. 381
7.36. Combined model fitting. .. 385

xii

Build 15.0.3244

List of Tables
2.1. Regular expressions. .. 92
3.1. Plot line styles .. 103
3.2. Symbol codes and images. .. 103
7.1. SpectrumFitter models .. 359
7.2. Spectrum fit model types and their use. ... 360
8.1. Built-in units. .. 389

xiii

Build 15.0.3244

List of Examples
1. Printing "hello" to the console. .. xxvi
2. How to retrieve an observation given an observation ID. .. xxvi
3. Setting a title plot. ... xxvi
4. Setting properties using Jython syntax. ... xxvii
1.1. Getting an observation from the HSA and saving it locally. .. 3
1.2. Creating a variable from an observation previously saved to disk. 3
1.3. How to save a product to a local pool, in the background. .. 4
1.4. Getting an observation from the HSA given the observation ID. 4
1.5. Saving an observation to disk from the HSA given the observation ID. 13
1.6. Getting an observation from the HSA given an observation ID. 14
1.7. Setting on the connected status of the MyHSA pool. .. 14
1.8. Setting off the connected status of the MyHSA pool. ... 14
1.9. Retrieving an observation from the HSA given the observation ID. 16
1.10. Browse all the versions of an observation (part 1). ... 16
1.11. Browse all the versions of an observation (part 2a). ... 17
1.12. Browse all the versions of an observation (part 2b). ... 17
1.13. Browse all the versions of an observation (part 3). ... 17
1.14. Downloading multiple observations from an array of obs ids. 18
1.15. Retrieving several observations from the HSA as tar.gz and opening them in HIPE. 19
1.16. Retrieve an observation from the HSA given the observation ID. 19
1.17. Load an observation from disk into a new variable. .. 20
1.18. Retrieving an observation from the HSA as a tar.gz and opening it in HIPE. 21
1.19. Load an observation from disk, specifying both path and observation ID. 21
1.20. Perform a query on a local store using the result of another query. 25
1.21. Retrieve an observation given the observation ID. ... 26
1.22. Load an observation from disk specifying both the observation ID and the pool directo-
ry. ... 27
1.23. Load an observation from disk specifying the observation ID, the local pool name and
the pool location. ... 27
1.24. Several examples using the getObservation task. ... 27
1.25. Save an observation to disk specifying the pool name and a tag. 32
1.26. How to rebuild the index of a local pool. ... 33
1.27. Second option for rebuilding the index of a local pool. ... 33
1.28. How to get the current workind directory for the Jython interpreter. 37
1.29. Creating a new empty data product and writing it to disk as a FITS file. 37
1.30. Creating a SimpleImage with random data and saving it to disk as a FITS file, reading it
back afterwards. .. 38
1.31. Using a dataset as a wrapper to store an array in a FITS file. 38
1.32. Load a product from a FITS file. .. 39
1.33. Setting a metadata property to a StringParameter value. .. 40
1.34. Create FITS file from random data and read it back. .. 40
1.35. Printing a FineTime formatted string to the console. ... 45
1.36. Importing a non-Herschel FITS file with the simpleFitsReader task. 47
1.37. Importing non-Herschel FITS files using specific image import tasks. 47
1.38. Importing non-Herschel FITS files using specific spectral import tasks. 47
1.39. Complete example to convert a Spectrum1d class to a CLASS FITS file. 49
1.40. Converting a VO table in XML format to TableDataset. ... 54
1.41. Writing a TableDataset from an observation to an XML-based VO file. 55
1.42. Writing a synthetic TableDataset to an XML-based VO file. .. 55
2.1. Creating a TableDataset with a Column made up of array data. 57
2.2. Read a numeric array from a file and loop over its values. .. 57
2.3. Read a numeric array from a file and tokenise its values in a loop. 57
2.4. Script to export a SpectralSimpleCube to ASCII, and read back into a TableDataset 58
2.5. Script to generate a SourceListProduct, write it to a text file, and read it back into HIPE 60
2.6. Worked example for reading in a Spitzer spectrum in "IPAC table" format 62

xiv

Data Analysis Guide Build 15.0.3244

2.7. Complete script for reading in the Planck Early Cold Cores Catalogue. 65
2.8. A standard comma-separated-value (CSV) file with a four-line header. 67
2.9. A standard comma-separated-value (CSV) file with only column titles specified. 67
2.10. Reading a table from a file, specifying its tabular format as CSV. 68
2.11. A space-separated-value file of the type that can be imported into HIPE with default op-
tions. ... 68
2.12. A space-separated-value file with only column titles specified. 69
2.13. Read a table from an ASCII file, specifying that its values are space-separated. 69
2.14. Read a table from an ASCII file, specifying the input format as IPAC. 70
2.15. Reading a table from an ASCII file, without specifying any input format. 71
2.16. Write a table to an ASCII file. ... 72
2.17. Creating a formatter that separates values using a single space character. 73
2.18. Creating a space-separated formatter and using it to write a table as an ASCII file. 74
2.19. Writing spectrum data to an ASCII file. ... 76
2.20. Writing spectrum data to an ASCII file without including metadata. 76
2.21. Writing spectrum data to an ASCII file, including flags. ... 77
2.22. Writing spectrum data to an ASCII file, including weights. .. 77
2.23. Writing spectrum data to an ASCII file, concatenating the spectral segments. 77
2.24. Writing spectrum data to an ASCII file, specifying a selection of spectral indices. 78
2.25. Writing spectrum data to an ASCII file, with a literal array of spectral indices. 78
2.26. Writing spectrum data to an ASCII file, specifying a selection of spectral segments. 79
2.27. Writing spectrum data to an ASCII file, specifying a literal array of spectral segments. 79
2.28. Creating a space-delimited formatter. .. 79
2.29. Writing spectrum data to an ASCII file, specifying a space-delimited formatter. 79
2.30. Writing a table to disk. ... 80
2.31. Reading a table from a file, specifying the ADVANCED type of table for parsing. 80
2.32. Reading a table from a file, specifying the ADVANCED table type for parsing and skip-
ping header lines. .. 81
2.33. Reading a table from an ASCII file, with ADVANCED type and character ignore op-
tions for the parser. .. 81
2.34. Reading a table from an ASCII file, with ADVANCED type and an ignore pattern that
trims spaces at the beginning. .. 82
2.35. Reading a table from an ASCII file, with ADVANCED type and guessing all value
types. ... 83
2.36. Reading a table from an ASCII file, with ADVANCED type and parsing all values as
doubles. ... 83
2.37. Reading a table from an ASCII file, with ADVANCED type and a custom table tem-
plate. ... 83
2.38. Reading a table from an ASCII file, with ADVANCED type and assuming 18 charac-
ter-wide columns and space separators. ... 84
2.39. Reading a table from an ASCII file, with ADVANCED type and providing a fully cus-
tomised parser. .. 84
2.40. Reading a table from an ASCII file while writing the parsing configuration to a file for
reuse. ... 84
2.41. Reading a table from an ASCII file, specifying a parsing configuration file. 85
2.42. Writing a table to an ASCII file without a header. ... 85
2.43. Writing a table to an ASCII file including metadata. .. 86
2.44. Writing a table to an ASCII file including metadata with a custom prefix. 86
2.45. Writing a table to an ASCII file with a custom formatter. .. 86
2.46. Writing a table to an ASCII file saving the writing configuration to another file. 87
2.47. Writing a table to an ASCII file, specifying a previously-saved writing configuration
file. ... 87
2.48. Creating a TableTemplate with 3 columns. ... 88
2.49. Customising a TableTemplate with column names, types, units and descriptions. 88
2.50. Setting column descriptions for a partial set of columns. ... 88
2.51. Creating a unit variable and checking if it is built in the system.s 88
2.52. Creating and customising a TableTemplate in one step. .. 88
2.53. Creating a comma-separated CSV parser. ... 89

xv

Data Analysis Guide Build 15.0.3244

2.54. Creating a CSV parser with a dollar sign for quoting values. .. 89
2.55. Creating a parser that specifies the widths of the columns. .. 89
2.56. Creating a parser based on a regular expression. .. 89
2.57. Creating a CSV parser that ignores line starting with a specific string. 90
2.58. Creating a fixed width parser that skips a number of header lines. 90
2.59. Create a parser based on a regular expression that trims the lines of the file. 90
2.60. Creating a CSV formatter that specifies a space character as a delimiter. 91
2.61. Creating a CSV formatter with the default options. .. 91
2.62. Creating a CSV formatter that uses a tab as a delimiter. .. 91
2.63. Creating a fixed width formatter. .. 91
2.64. Creating a CSV formatter that includes a header. ... 91
2.65. Creating a fixed width formatter with commented metadata. .. 91
2.66. Creating a CSV formatter with a custom comment prefix. ... 91
2.67. Creating a CSV formatter that includes a header, delimited with spaces and with com-
ments with a custom prefix. .. 92
2.68. Creating a fixed width formatter. .. 92
3.1. Creating a double array and populating with a range of values. 94
3.2. Creating a plot and adding layers to it in two steps. ... 95
3.3. Creating a plot and adding a layer to it in one step. ... 95
3.4. Setting the dimensions of the plot. .. 95
3.5. Creating a plot with initial dimensions. ... 95
3.6. Creating a plot with initial dimensions and auto-adjust. .. 95
3.7. Setting title and subtitle text in a plot. ... 95
3.8. Setting the visibility for a plot's title and subtitle. .. 95
3.9. Sets the text to be displayed. ... 96
3.10. Sets the horizontal alignment. Possible values are LEFT, CENTER and RIGHT. 96
3.11. Sets the vertical alignment. Possible values are MIDDLE, TOP and BOTTOM. 96
3.12. Sets the position of the title. Possible values are BOTTOMCENTER, BOTTOMLEFT,
BOTTOMRIGHT, TOPCENTER, TOPLEFT, TOPRIGHT and CUSTOMIZED. If set to
CUSTOMIZED, the title position is controlled by the setLocation method. 96
3.13. Sets the x and y location of the title, automatically switching the position to CUS-
TOMIZED. ... 97
3.14. Sets the x position of the title. ... 97
3.15. Sets the x and y position of the title. Equivalent to setLocation 97
3.16. How to create an additional layer in a plot. .. 97
3.17. Changes the name (and thus the legend) of the layer. ... 98
3.18. Sets the line style of the layer. Possible values are NONE, SOLID, MARKED,
DASHED and MARK_DASHED. You can also use the numbers 0, 1, 2, 3 and 4. 98
3.19. Sets the size of the layer symbols, in points. ... 98
3.20. Sets the shape of the symbol. See Table 3.2 for the names and numbers of available sym-
bols. .. 98
3.21. Sets the line thickness, in points. Only for line plots. .. 98
3.22. Sets the style of the layer. The input parameter is an instance of the Style class. For
more information on creating styles see Section 3.9 98
3.23. Adds a point to the layer. .. 99
3.24. Adds a set of points to the layer. .. 99
3.25. Waits for mouse click and returns the coordinates of the pointer. Returns a double[] 99
3.26. Like the previous method, but this one does the job for n successive clicks. Returns a
double[][] , that is, an array of double arrays. Each array holds the coordinates of a mouse
click. ... 99
3.27. The difference with respect to the previous two methods is that this time the coordinates
of the layer point closer to the mouse pointer are returned. Returns a double[] 99
3.28. Like the previous method, but this one does the job for n successive clicks. Returns a
double[][] , that is, an array of double arrays. Each array holds the coordinates of the data
point closest to each mouse click. .. 99
3.29. Returns an int representing the index of the current layer inside the PlotXY 99
3.30. Sets whether the layer is shown in the legend. Getter method isInLegend available. 100
3.31. Customising the appearance of the different plot symbols. ... 104

xvi

Data Analysis Guide Build 15.0.3244

3.32. Adding a customised range and title to a plot axis. ... 104
3.33. If flag is true, adjusts the range of the specified axis so that all data points will be
shown. ... 105
3.34. Sets the range of the axis. The lower and upper limit are passed as separate double
parameters. Note that there is no "Jython style" example because lists and tuples in Jython use
the same syntax. See the row just below for the example. ... 105
3.35. Set the range of the specified axis to values between lower and upper. Note that instead
of two arguments for the lower and upper limits, there is one array argument containing both
values. .. 105
3.36. Show grid lines for the specified axis if flag is true, hide the grid lines otherwise. 105
3.37. Sets the axis type. Available types are LINEAR , LOG , DATE , RIGHT_ASCENSION
and DECLINATION 106
3.38. Gets the axis orientation, either HORIZONTAL or VERTICAL . Setter method not avail-
able. ... 106
3.39. Sets the axis to a linear scale. Equivalent to setType(Axis.LINEAR) 106
3.40. Sets the axis to a logarithmic scale. Equivalent to setType(Axis.LOG) 106
3.41. Sets whether values on the axis are displayed in inverted order (for instance, right to left
for the abscissa). .. 106
3.42. Sets the position of the axis with respect to the plot. Possible values are TOP or BOTTOM
for abscissa axis and LEFT or RIGHT for ordinate axis. Get method available. 106
3.43. Sets the text to be displayed. .. 106
3.44. Sets the physical height of the major ticks. ... 107
3.45. Sets the interval between major ticks, in axis units. .. 107
3.46. Sets the side of the axis on which the ticks are drawn. Possible values are INWARD ,
OUTWARD and BOTH . .. 107
3.47. Sets the number of minor ticks displayed between two major ticks. 107
3.48. Sets whether the number of ticks on the axis is adjusted automatically to avoid overlap-
ping labels. Getter method isAutoAdjustNumber available. .. 107
3.49. Sets whether grid lines are displayed for major ticks. Getter method isGridLines
available. .. 107
3.50. Sets the colour of labels. ... 108
3.51. Sets the font of labels. .. 108
3.52. Sets the physical size of labels. .. 108
3.53. Sets the interval (in ticks) between successive labels. For example, a value of two dis-
plays a label on every other tick. .. 108
3.54. Sets the orientation of the labels (0 for horizontal, 1 for vertical). 108
3.55. Replaces the current labels with the values in an array of String objects. 108
3.56. Sets the side of the axis on which the labels are drawn. Possible values are INWARD and
OUTWARD 109
3.57. Sets the x axis to the specified Axis instance. The x axis will be reinstantiated with its
default settings plus whatever is indicated in the Axis instance. So any prior manipulations of
the axis are lost. .. 109
3.58. Sets the range of the x axis. ... 109
3.59. Sets the title of the x axis. ... 109
3.60. Sets the type of the x axis. Available types are LINEAR and LOG. 109
3.61. Sets the x and y values, passed as elements of an "array of arrays" of size two. Get
method available. Note that there is no setYx method! ... 109
3.62. Sets the x and y values, passed as two separate arrays. Note that there is no setYx
method! .. 110
3.63. Sets the ordinate values. Get method available. Note there is a getX method but not a
setX method. ... 110
3.64. Removes the x axis and uses the given axis as a shared x axis. 110
3.65. Creates an empty annotation. ... 111
3.66. Creates an annotation with the given text. ... 111
3.67. Creates an annotation with the given position and text. ... 111
3.68. Sets the position angle, in degrees, counterclockwise. ... 111
3.69. Sets the horizontal alignment. ... 111
3.70. Sets the vertical alignment. .. 111

xvii

Data Analysis Guide Build 15.0.3244

3.71. Sets the x position. ... 111
3.72. Sets the x and y position. .. 111
3.73. Sets the text of the annotation. ... 112
3.74. Gets the unique id of the annotation. No setter available. ... 112
3.75. Adds an Annotation object to the layer. ... 112
3.76. Adds several Annotation objects to the layer. The input Annotations are passed as an
array. ... 112
3.77. Sets an annotation to a given id, replacing what was there before. 112
3.78. Replaces all the annotations with the ones provided in the array. 112
3.79. Retrieves one annotation from the layer. .. 112
3.80. Retrieves all the annotations from the layer. The annotations are returned as an array. 112
3.81. Removes the annotation with the specified id. ... 113
3.82. Removes all the annotations. .. 113
3.83. Filling the areas between the curves. ... 114
3.84. Drawing an arbitrarily-positioned straight line using LayerXY. 116
3.85. Appends a low and high error value of x. ... 118
3.86. Appends a set of low and high error values of x. ... 118
3.87. Sets low and high error values of x. .. 119
3.88. Sets the low and high error values of x. ... 119
3.89. Returns an array of Ordered1dData with length equal to 2. .. 119
3.90. How to add and customise a subplot inside a main plot. .. 120
3.91. How to manually combine three bands to create an RGB image, respecting WCS infor-
mation. ... 122
3.92. Batching several plots to improve speed. .. 125
3.93. Distributing layers inside a main plot. .. 125
3.94. Sets whether the component is visible. ... 127
3.95. Sets the foreground colour of the component. .. 127
3.96. Sets the font of the component. You can specify a font by giving a name, style and point
size. Available font styles are PLAIN , BOLD and ITALIC . You can also use the numbers 0,
1 and 2, respectively. .. 127
3.97. Sets the name of the font of the component. ... 127
3.98. Sets the size of the font of the component. ... 127
3.99. Sets the style of the font of the component. Possible values are PLAIN , BOLD and
ITALIC . You can also use the numbers 0, 1 and 2, respectively. .. 127
3.100. Creating a plot that is not drawn on the screen. .. 128
3.101. Complete example that demonstrates the use of the PlotXY class. 130
3.102. Version of the example above using the Display class. .. 136
3.103. Plotting the figure that appears at the beginning of this chapter. 138
3.104. Distributing multiple plots using panels. ... 139
3.105. Plotting horizontal and vertical error bars. ... 141
3.106. Adding multiple layers and customised auxiliary axes to a plot. 142
3.107. Using several panels with histograms. .. 144
3.108. Plotting with customised line and plot styles. ... 146
3.109. Plotting two independent subplots. ... 150
3.110. How to add error bars and customised horizontal bars to a plot. 153
3.111. Complete example using PACS and SPIRE data of AFGL 2688. 155
4.1. Printing the type of a variable. ... 171
4.2. Setting the image value of a SimpleImage object. .. 171
4.3. Set the wavelength value of an image. ... 172
4.4. Set the wavelength value of an image, including units. ... 172
4.5. Setting the units of an image directly. ... 172
4.6. Setting the exposure of an image. ... 172
4.7. Setting the error and coverage datsets of an image. .. 172
4.8. Constructing a Display object from an image. ... 173
4.9. Saving the current view of a Display object. ... 176
4.10. Saving an image to disk without blocking the GUI. .. 177
4.11. Adding annotations and setting formatting options in a Display object. 180
4.12. Filling shapes with oversized lines in a Display. .. 180

xviii

Data Analysis Guide Build 15.0.3244

4.13. Opening the annotation toolbox programmatically. ... 181
4.14. Opening the colour and cut level dialogues programmatically. 181
4.15. Clamping an image with explicit limits. ... 181
4.16. Cropping an image specifying the rectangle dimensions. ... 182
4.17. Regridding an image and getting the flux change factor. .. 182
4.18. Rotating an image without specifying an interpolation method. 182
4.19. Rotating an image with a specific interpolation method. .. 182
4.20. Scaling an image both with and without custom interpolation. 182
4.21. Translating an image using two different sets of coordinates. 183
4.22. Transpose an image with a horizontal flip. .. 183
4.23. Adding images and also scalars to images. ... 184
4.24. Subtracting images and also scalars from images. .. 184
4.25. Multiplying images and also images by scalars. ... 184
4.26. Changing the pixel size of an image while ensuring flux conservation. 184
4.27. Dividing images and also images by scalars. ... 185
4.28. Integer division of images and image by scalar. ... 185
4.29. Applying the absolute value to the intensity values of an image. 185
4.30. Rounding the intensity values of an image. ... 185
4.31. Rounding the intensity values of an image to the largest previous integer. 185
4.32. Rouding the intensity values of an image to the smallest following integer. 185
4.33. Raising the intensity values of an image to the n-th power. .. 185
4.34. Squaring the intensity values with an specific task. ... 186
4.35. Taking the square root of the intensity values of an image. .. 186
4.36. How to obtain the natural logarithm of the intensity values of an image. 186
4.37. How to obtain the base 10 logarithm of the intensity values of an image. 186
4.38. How to obtain the base N logarithm of all intensity values of an image. 186
4.39. How to obtain the exponential of the intensity values of an image. 186
4.40. Raising 10 to the intensity value for all image intensity values. 186
4.41. Raising N to the intensity value for all image intensity values. 186
4.42. Smoothing an image using four different algorithms. .. 187
4.43. Converting image units with a specific task. ... 187
4.44. Convolving an image with a specific kernel. ... 188
4.45. Flagging pixels whose value exceeds the limit provided. ... 188
4.46. Getting the minimum and maximum values for a certain cut-off percentage. 188
4.47. Mosaicking images with the help of an intermediate array. .. 189
4.48. Creating an RGB image with specific weights for each channel. 189
4.49. Creating an RGB image with cut levels for each channel. .. 189
4.50. Creating an RGB image with weights, overall cut level and new WCS information. 190
4.51. Printing the WCS information of an image. .. 190
4.52. Creating WCS coordinate data. ... 191
4.53. Creating WCS coordinate data with parameters. .. 191
4.54. Creating a profile plot of an image. ... 193
4.55. Retrieving the pixel coordinates of the beginning of the line. 193
4.56. Retrieving the sky coordinates of the beginning of the line. .. 193
4.57. Converting the profile plot to a Double1d. .. 193
4.58. Getting the unit of the profile plot. .. 193
4.59. Creating the pixel profile plot of a synthetic image. .. 194
4.60. Creating an automatic line contour specifying distribution and plotting details. 194
4.61. Creating a manual line contour providing contour level values. 194
4.62. Creating a contour containing one single contour level. ... 194
4.63. Plotting automatically-generated contours on top of an image. 194
4.64. Creating a histogram from an image. ... 198
4.65. Getting the number of bins from the histogram. ... 199
4.66. Getting the lower cut level of the histogram. ... 199
4.67. Converting the histogram to a table dataset. .. 199
4.68. Getting the values of the bins as a Double1d array. .. 199
4.69. Getting the count for each histogram bin as a Double1d. ... 200
4.70. Get the unit of the histogram values. ... 200

xix

Data Analysis Guide Build 15.0.3244

4.71. Getting the centre pixel coordinates of the circle histogram. 200
4.72. Getting the centre sky coordinates of the circle histogram. ... 200
4.73. Getting the radius of the circle histogram in pixels. .. 200
4.74. Getting the radius of the circle histogram in arcseconds. .. 200
4.75. Getting the centre pixel coordinates for the ellipse histogram. 201
4.76. Getting the centre sky coordinates for the ellipse histogram. 201
4.77. Getting the width of the ellipse histogram in pixels. ... 201
4.78. Getting the width of the ellipse histogram in arcseconds. ... 201
4.79. Getting the upper left corner pixel coordinates of a rectangle histogram. 201
4.80. Getting the upper left corner sky coordinates of a rectangle histogram. 202
4.81. Getting the width in pixels of a rectangle histogram. .. 202
4.82. Getting the width in arcseconds of a rectangle histogram. .. 202
4.83. Getting the edges of a polygon histogram. .. 202
4.84. Getting the vertices of a polygon histogram as a table dataset. 202
4.85. Getting the vertices of a polygon histogram as a Double2D array. 203
4.86. Getting the edges of a polygon histogram in sky coordinates. 203
4.87. Creating a residual image subtracting the sources for the original image. 205
4.88. Creating an image containing only the sources of the original image. 205
4.89. Extracting the results of the task from the output array. ... 205
4.90. Removing a row from a sources list. ... 206
4.91. Plotting the source list along with the image with the help of the Display class. 206
4.92. Customising the size of the position circles when plotting sources with Display. 206
4.93. Making the position circles of plotted sources proportional to the flux intensity. 207
4.94. Plotting fully customised position circles by passing Color and Float1d objects. 207
4.95. Plotting position circles that take the sizes as sky coordinates by passing a Wcs object. 207
4.96. Creating a rectangular region of interest (SkyMask) using sky coordinates in decimal de-
grees. ... 207
4.97. Creating a circular region of interest (SkyMask) using sky coordinates in decimal de-
grees. ... 207
4.98. Creating a region of interest from a bidimensional array of booleans. 208
4.99. Applying the boolean OR operation between SkyMasks. ... 208
4.100. Inverting a region of interest. ... 208
4.101. Joining the areas of three different SkyMasks. ... 208
4.102. Masking an image with a complex, boolean SkyMask. .. 209
4.103. Retrieving the source list dataset from the results output list of a source extraction task. .. 209
4.104. Creating a SourceListProduct from a source list table dataset. 210
4.105. Creating a SourceListProduct from a source list dataset. .. 210
4.106. Fitting sources in an image. ... 211
4.107. Performing annular sky aperture photometry on a PACS map. 214
4.108. Performing annular sky aperture photometry on a SPIRE map. 214
4.109. Getting the centre pixel coordinates for the target. .. 215
4.110. Getting the centre sky coordinates for the target. .. 215
4.111. Getting the target radius in pixels. ... 215
4.112. Getting the target radius in arcseconds. .. 215
4.113. Getting the outer target radius in pixels. ... 215
4.114. Getting the inner radius of the sky estimation annulus in arcseconds. 216
4.115. Getting the name of the algorithm used by the aperture photometry task. 216
4.116. Checking if the aperture photometry task considers fractional or entire pixels. 216
4.117. Getting the results of the aperture photometry task as a table dataset. 216
4.118. Getting the results of the aperture photometry task as a Double2d table. 216
4.119. Getting the total flux (target+sky). ... 217
4.120. Getting the total number of pixels (target+sky). ... 217
4.121. Getting the flux intensity averaged by the total pixels (target+sky). 217
4.122. Getting the curve of growth for the results of aperture photometry task. 217
4.123. Getting the growth radius for the results of the aperture photometry task. 217
4.124. Getting the growth flux column of the results of the aperture photometry task. 217
4.125. Getting the intensity plot as a table dataset. ... 218
4.126. Getting the sky intensity radius of the intensity plot. ... 218

xx

Data Analysis Guide Build 15.0.3244

4.127. Getting the sky intensity values from the intensity plot as a Double1d. 218
4.128. Performing rectangular sky aperture photometry. .. 219
4.129. Getting the width in pixels of the rectangular aperture. .. 219
4.130. Getting the width in arcseconds of the rectangular aperture. 220
4.131. Getting the upper left corner of the rectangular aperture in pixel coordinates. 220
4.132. Getting the upper left corner of the rectangular aperture in sky coordinates. 220
4.133. Performing fixed sky aperture photometry. .. 221
4.134. Running the aperture photometry correction task for point sources. 221
4.135. Importing the required classes for the PSF-point source comparison example. 223
4.136. Reading the data from a PACS calibration observation (PSF-point source comparison). .. 224
4.137. Retrieving the beam profile from the latest SPIRE calibration (PSF-point source com-
parison). ... 224
4.138. Retrieving the necessary properties for PACS and SPIRE (PSF-point source compari-
son). .. 224
4.139. Creating auxiliary variables with the obsid and band (PSF-point source comparison). 224
4.140. Rotating the PSF and matching to the source (PSF-point source comparison). 225
4.141. Updating the Wcs information (PSF-point source comparison). 225
4.142. Matching the WCS of the beam and the source (PSF-point source comparison). 225
4.143. Retrieving the RA and declination in decimal degrees (PSF-point source comparison). ... 225
4.144. Retrieving the X, Y coordinates in pixels (PSF-point source comparison). 225
4.145. Setting the coordinates to the centre of the map (PSF-point source comparison). 226
4.146. Finding the exact centre of the PSF (PSF-point source comparison). 226
4.147. Find the exact centre of the point source (PSF-point source comparison). 226
4.148. Matching the WCS of the PSF to the coordinates of the source (PSF-point source com-
parison). ... 227
4.149. Defining the coordinates for building the EEF curve. .. 228
4.150. Creating an array of apertures. .. 228
4.151. Removing the first aperture from the array. ... 229
4.152. Creating a variable for storing two arrays of fluxes. .. 229
4.153. Performing the point source aperture photometry for every aperture in the array. 229
4.154. Performing the PSF aperture photometry for every aperture in the array. 229
4.155. Scaling the fluxes of the PSF and point source to peak (min aperture). 229
4.156. Defining apertures for the beam model. .. 229
4.157. Scaling the fluxes of the PSF and point source to median. .. 230
4.158. Plotting the results of this comparative aperture photometry. 230
4.159. Measuring the FWHM of the point source using a cubic spline interpolator. 230
4.160. Measuring the FWHM of the PSF using a cubic spline interpolator. 230
4.161. Comparing both values for FWHM. ... 230
4.162. Measuring the sky background scatter of beam and astro source. 231
4.163. Defining recommended values for circular photometry. ... 231
4.164. Performing the aperture photometry for all the small spot apertures. 231
4.165. Removing outliers from the sample. ... 231
4.166. Performing PSF comparison for PACS point sources. .. 232
4.167. Performing PSF comparison for SPIRE point sources. ... 236
4.168. Setting the camera and aperture variables. ... 240
4.169. Defining scaling factors for the data. .. 240
4.170. Setting up recommended aperture photometry values for all observation ids. 241
4.171. Scaling and subtracting the PSF. ... 241
4.172. Performing the aperture photometry of the residual image, computing the EEF and
printing every result. .. 241
5.1. Opening the Spectrum Explorer from a script. ... 244
5.2. Opening the Spectrum Explorer forcing all spectra to be plotted 245
5.3. Adding a new spectrum to a plot. ... 245
5.4. Usage of SpectrumPlot variables (overplotting spectra). .. 246
5.5. Adding spectra using the overloaded method add() .. 255
5.6. Selecting point spectra and segments. .. 258
5.7. Selecting point spectra and segments (second variation). ... 258
5.8. Importing the Integrator class .. 258

xxi

Data Analysis Guide Build 15.0.3244

5.9. Integrating over a set of ranges .. 258
5.10. Integration over a set of ranges with masking. ... 258
5.11. Integration over a set of ranges with masking and removing up to n levels of back-
ground ... 258
5.12. Fitting the fringes. .. 264
5.13. Smoothing the background baseline. .. 266
6.1. Creating an SpectralSimpleCube object. ... 271
6.2. Printing a cube dimensions .. 271
6.3. Printing all the spaxel coordinates that make up this cube. ... 271
6.4. Getting different coordinates from the WCS information of a cube 272
6.5. Opening the Spectrum Explorer and plotting a cube. .. 274
6.6. Opening the Spectrum Explorer and plotting all spectra from a cube. 274
6.7. Opening the Spectrum Explorer and plotting all spectra from a cube 276
6.8. Adding cube data to a Spectrum Explorer instance ... 277
6.9. Creating a plotting variable for later use with splot .. 284
6.10. Creating an array for selecting a particular spectrum from a cube 285
6.11. Creating a selection array with spaxel coordinates. ... 289
6.12. Creating a spectrum selection array. .. 289
6.13. Creating a deep copy of a cube. .. 293
6.14. Creating a wavelength/frequency grid for resampling data. .. 297
6.15. Using resampling tasks with cubes. ... 298
6.16. Declaring a Short3d array as flags for a cube. ... 299
6.17. Creating a mask using list slicing. ... 300
6.18. Creating start and end point array for integration. .. 302
6.19. Getting a layer from the images dataset of a cube. ... 302
6.20. Inspecting the contents of the images dataset of a cube. .. 303
6.21. Defining some Double1d arrays for range selection. ... 305
6.22. Converting the units of the flux maps generated by the Cube Toolbox 306
6.23. Converting the units of a map represented as a SimpleImage. 307
7.1. Creating a new instance of the Spectrum Fitter with and without a plot window. 314
7.2. Creating a Spectrum Fitter specifying the particular spectra by segment number(s). 315
7.3. Creating a Spectrum Fitter specifying the spectra by cube coordinates. 315
7.4. Creating a new instance of the Spectrum Fitter specifying both segment number and the
display of the plot window. ... 315
7.5. Retrieving an observation whose data will be used for a Polynomial interpolation. 316
7.6. Extracting a product from the observation that will be used for Polynomial interpolation. ... 316
7.7. Script automatically (some manual changes added for the sake of clarity) generated by
Spectrum Fitter (example 1). .. 322
7.8. Script automatically generated by Spectrum Fitter (example 1), and modified for this ex-
ample. .. 325
7.9. Multifitting a cube using exported models. ... 326
7.10. Retrieving an observation from the HSA to use its data for multimodel fitting. 327
7.11. Script automatically generated by the Spectrum Fitter (example 3), slightly modified for
this example. ... 331
7.12. Retrieving an observation from the HSA to use it in a multimodel fitting through the
GUI. .. 333
7.13. Extracting a product to use the data for multimodel fitting through the GUI. 333
7.14. Example script fitting a spectrum with multiple models as exported by HIPE. 338
7.15. Multifitting a cube with a set of exported models. .. 339
7.16. Extracting the parameters from the results of the multifitting. 339
7.17. Manually setting the unit of the velocity and intensity maps 340
7.18. Worked example of a manual conversion of all data in a cube from Jy·u to W/m while
creating flux maps. ... 340
7.19. Worked example of a manual conversion of all data in a cube from W/(m2 Hz Sr) to W/
m while creating flux maps. .. 341
7.20. Adding a new model to an instance of the Spectrum Fitter ... 342
7.21. Setting weighted regions for the fitting using the setMask method. 343
7.22. Setting "binary" weights to effectively mask out ranges of the spectrum from the fit. 343

xxii

Data Analysis Guide Build 15.0.3244

7.23. Setting a mask array that weights every point in the x-axis. .. 343
7.24. Setting limits for MultiFitting. .. 344
7.25. Setting limits for a particular model parameter in the MultiFitter. 344
7.26. Setting limits for all the parameters of a model in the MultiFitter (generic). 344
7.27. Setting limits for all the parameters of a model in the MultiFitter (with values). 344
7.28. Fixing the value of a model parameter during fitting. .. 345
7.29. Printing the model information, including expected parameters. 346
7.30. Running the fit after setting parameters and (optional) limits and masks. 346
7.31. Printing the fitted parameters of a model. ... 347
7.32. Creating a table of fitted parameters. ... 347
7.33. Removing one or all models from an instance of the Spectrum Fitter. 348
7.34. Mostly complete example on iterative fitting (using the residual for the next step). 349
7.35. Exporting a fitting script with the same actions performed in the GUI 350
7.36. Saving a residual data as an ASCII file. ... 350
7.37. Retrieving the residual in the same format as the input was. 351
7.38. Exporting the (total) model details as an ASCII file. ... 351
7.39. Exporting model details as an ASCII file. ... 351
7.40. Getting the model or total model in the same format as the input data. 351
7.41. Saving the fit parameters to an ASCII file. ... 352
7.42. Saving the model fit parameters as an XML file. ... 352
7.43. Getting the model parameters as a TableDataset. ... 352
7.44. Saving the model fit parameters as a SpectralLineList for use with other spectra. 353
7.45. Getting the integral of the model line. .. 354
7.46. Computing the integrated flux after MultiFitting a spectral cube. 354
7.47. Printing several data in MultiFit_Parms. ... 357
7.48. MultiFitting a SpectrumContainer with a set of previously exported models. 357
7.49. Using ComboModels with a specific relationship between fit parameters. 358
7.50. Setting the parameters of the added model. ... 359
7.51. Setting the parameters of a multi model fitting or a MultiFitting. 359
7.52. Creating a non-linear model for use with the Spectrum Fitter. 361
7.53. Adding a custom model, previously exported as a Jython file. 361
7.54. Selecting the fitting algorithm to use. .. 362
7.55. Extracting images from the ParameterCube after MultiFitting a cube 363
7.56. Retrieving the ParameterCube from the MultiFitter results. .. 363
7.57. Getting the peak flux image from the ParameterCube. ... 363
7.58. Converting the peak flux image of the ParameterCube into an image of the integrated
flux, for a PACS cube. ... 364
7.59. Manual conversion of map units from Jy·u to W/m .. 365
7.60. Manual conversion of map units from W/(m2 Hz Sr) to W/m 365
7.61. Getting the cube of the total fitted model, and parameters and errors datasets. 365
7.62. Getting the Chi-squared on the command line ... 367
7.63. Simple polynomial fitting with error calculation using MonteCarloError. 368
7.64. Arctan fit with evidence estimation using a prior. .. 370
7.65. Fitting with PadeModel and evidence estimation using a prior range. 371
7.66. Fitting data with a non-linear SineModel, using a Hessian matrix as confidence; then fit-
ting with a mixed SineModel and estimating error with MonteCarloError. 373
7.67. Fitting data with a combined model of Gaussian, Polynomial and Sine models. 378
7.68. Fitting data with a combined model of Gaussian, Polynomial and Sine models. 382
8.1. Getting the product stored in the results of a MultiFitting. ... 388
8.2. Creating an empty matrix that can hold the frequency values of the fitted products. 388
8.3. Filling the matrix with the fitting results data. ... 388
8.4. Defining constants required for the conversion. ... 388
8.5. Converting the whole matrix values taking advantage of the capabilities of HIPE arrays. 388
8.6. Creating a new image object to hold the velocity values. ... 388
8.7. Manually setting the units of the output velocity map. .. 388
8.8. How to convert an instance of SpireSpectrum1d. ... 394
8.9. How to convert an instance of HrsSpectrumDataset. ... 395
8.10. How to convert an instance of SpectralSimpleCube. ... 395

xxiii

Data Analysis Guide Build 15.0.3244

8.11. How to convert an instance of SimpleImage. ... 396

xxiv

Build 15.0.3244

List of Procedures
3.1. Useful methods of the PlotTitle class. See Section 3.29 for the conventions used in
this table. ... 96
3.2. Miscellaneous setters of the LayerXY class. See Section 3.29 for the conventions used in
this table. ... 98
3.3. Other methods of the LayerXY class. See Section 3.29 for the conventions used in this
table. ... 99
3.4. Useful methods of the Axis class. See Section 3.29 for the conventions used in this ta-
ble. .. 105
3.5. Useful methods of the AxisTitle class. See Section 3.29 for the conventions used in
this table. .. 106
3.6. Some methods of the AxisTick class. See Section 3.29 for the conventions used in this
table. .. 107
3.7. Some methods of the AxisTickLabel class. See Section 3.29 for the conventions used
in this table. .. 108
3.8. Axis-related methods of the LayerXY class. See Section 3.29 for the conventions used in
this table. .. 109
3.9. Methods of the Annotation class. See Section 3.29 for the conventions used in this ta-
ble. .. 111
3.10. Methods of the PlotXY class for handling annotations. See Section 3.29 for the con-
ventions used in this table. .. 112
3.11. Methods for handling error bars in layers. See Section 3.29 for the conventions used in
this table. .. 118
3.12. Common methods to customise colours, fonts and visibility. See Section 3.29 for the
conventions used in this table. .. 127
4.1. Available methods for profilePixel and profileSky 193
4.2. Available methods for the output of histogram tasks. .. 199
4.3. Available methods for the output of the circleHistogram task. 200
4.4. Available methods for the output of the ellipseHistogram task. 201
4.5. Available methods for the output of the rectangleHistogram tasks. 201
4.6. Available methods for the output of the polygonHistogram task. 202
4.7. Available methods for the output of the annularSkyAperturePhotometry
task. ... 215
4.8. Available methods for the output of the rectangularSkyAperturePhotometry
task. ... 219

xxv

Build 15.0.3244

Preface
This document describes all the data analysis and visualization tools available in HIPE:

• Data input/output tools. Chapter 1

• ASCII table data import/export tools. Chapter 2

• Plotting tools. Chapter 3

• Image analysis tools. Chapter 4

• Spectral analysis tools. Chapter 5

• Spectral analysis tools for cubes. Chapter 6

• Spectral fitting tools. Chapter 7

If you are interested in knowing more about HIPE and its features, see the HIPE Owner's Guide.

If you are interested in knowing more about the scripting language and data types used by HIPE, see
the Scripting Guide.

Note

Since HIPE is a multi-platform software, screenshots in this manual come from different
operating systems. Do not worry if the look and feel on your system is different from what
you see in this manual: all the relevant features are system-independent.

1. Conventions used in this manual
Interactive code examples. These are code examples where you are supposed to issue commands
in the Console view of HIPE. These examples never show the HIPE> prompt that appears in the
Console view. The output by HIPE is preceded by a hash mark #. The hash mark does not appear
when you try the example in HIPE.

print "Hello"
Hello

Example 1. Printing "hello" to the console.

Variable names. The names of variables in code examples are shown in a different typeface than
the rest of the code, to indicate that they are not fixed keywords but can be changed. In the following
example, you can use a different name instead of myObs, while you must type getObservation
and obsid exactly as shown:

myObs = getObservation(obsid=1342183046)

Example 2. How to retrieve an observation given an observation ID.

Java-style and Jython-style method calling. With most objects you interact with via the command
line in HIPE, you can get and set values via methods whose names begin by get and set:

myPlot.setTitleText("Plot title")
print myPlot.getTitleText()
Plot title

Example 3. Setting a title plot.

Jython offers a simplified syntax for these cases:

xxvi

Preface Build 15.0.3244

myPlot.titleText = "Plot title"
print myPlot.titleText
Plot title

Example 4. Setting properties using Jython syntax.

This manual uses the simplified syntax, but you are free to use either style in your scripts. Note that
the simplified syntax exists only for get and set methods.

xxvii

Build 15.0.3244

Chapter 1. Data input/output
This chapter and the next describe how to import data into HIPE from a variety of sources and how
to export data from HIPE to a variety of destinations.

There are four main topics related to data input/output in HIPE. These correspond to the four icons
you see when clicking on Access Data from the Welcome HIPE view:

• Data Access: this perspective provides all the tools to get your data from the Herschel Science
Archive (HSA). See Section 1.4 for more information.

• Access Data Products: an infrastructure to help you store, query and retrieve Herschel data on your
computer. See Section 1.7 for more information.

• Import FITS files: save your data to FITS and import external FITS files. HIPE will do its best
to determine what's inside the file and act accordingly. See Section 1.16.2 for importing Herschel
data and Section 1.16 for importing non-Herschel data.

• Import text tables: save and read data as text-only files in a variety of formats. See Chapter 2 for
more information.

You can also exchange data with applications compatible with Virtual Observatory standards, such as
SAOImage DS9 and Topcat. See Section 1.17 for more information.

1.1. Components of an observation
Herschel observations (more formally, observation contexts) contain many data products, grouped
in several contexts . Contexts are special products that contain references to other products, allowing
data to be organized in a very natural, tree-like structure. Moreover, these references can point not
only to products loaded into a HIPE session, but also to products still on your local disk, or even
stored in the Herschel Science Archive. This feature allows HIPE to easily keep track of all the various
pieces of data associated with processing of an observation, and to load these automatically when
needed, regardless of where they are stored. For more information on contexts, see the Scripting Guide
: Section 2.8.5 in Scripting Guide .

The following is the structure of a typical observation, common to all instruments and all observing
modes:

History: Contains the automatically generated script of actions per-
formed on your data, a history of the tasks applied to the data,
and the parameters belonging to those tasks.

1

Data input/output Build 15.0.3244

Auxiliary context: All Herschel non-science spacecraft data required directly or
indirectly in the processing and analysis of the scientific data.

Browse image product A thumbnail image associated with an observation. This is the
thumbnail you see when you browse observations in the Her-
schel Science Archive, or when you open an observation with
the Observation Viewer in HIPE.

Browse product A representative product from an observation, for example an
image or a spectrum. Useful for quick browsing and inspection
of observations.

Calibration context: The parameters that characterise the behaviour of the satellite
and the instruments. Used for reprocessing data.

Level-0 context: Raw data, minimally manipulated.

Level-0.5 context: Data processed to an intermediate point adequate for inspec-
tion.

Level-1 context: Detector readouts calibrated and converted to physical units, in
principle instrument and observatory independent.

Level-2 context: Scientific analysis can be performed. These data products are in
theory at a publishable quality level and should be suitable for
Virtual Observatory access. However, please consult the TWiki
pages set up by HIFI, PACS and SPIRE for more information
on the quality of these products.

Level-2.5 context: • For PACS, level 2.5 products are photometric maps (Sim-
pleImage) produced with MadMap and the high-pass-fil-
ter pipeline, combining the scan and cross-scan AORs.

• For SPIRE, level 2.5 products are destriped maps combinin-
ing from the scan and cross-scan AORs from parallel mode.

• For HIFI, level 2.5 contents depend on the AOT. Broadly
there are three kinds of HIFI AOTs: single point observa-
tions, spectral scan observations and mapping observations.
The first two of these will produce one or more single spectra
while the last will produce a spectral cube.

Level-3 context: • For the PACS photometer, level 3 products are photomet-
ric maps (SimpleImage) produced by the high-pass-fil-
ter pipeline, combining all overlapping images from a given
program.

• For the SPIRE photometer, level 3 products are combined
maps of any overlapping areas from the same proposal using
scan mode AOTs. The maps are mosaics of the level-2 maps
that have been calibrated for extended emission and have the
Planck zero-level correction applied.

Observation log context: A log of actions performed on the Products in the observation
context.

Quality context: Issues flagged by the pipelines that indicate possible issues with
the quality of the data or pipelining. An empty quality report
indicates no problems in processing.

2

http://herschel.esac.esa.int/twiki/bin/view/Public/HifiCalibrationWeb
http://herschel.esac.esa.int/twiki/bin/view/Public/PacsCalibrationWeb
http://herschel.esac.esa.int/twiki/bin/view/Public/SpireCalibrationWeb

Data input/output Build 15.0.3244

Trend analysis context Products useful for tracking systematic changes in instrument
response over time.

1.2. Typical workflow
This section describes the typical workflow involved with downloading, reprocessing and saving a
single observation.

Figure 1.1. Typical workflow for downloading, reprocessing and saving an observation.

Download observation. Download your observation from the Herschel Science
Archive. You can download a tar file from the HSA User Inter-
face, or get an observation directly into HIPE with the follow-
ing command, provided you know the obsid already:

obs = getObservation(obsid=1342231345, useHsa=True,
 save=True)

Example 1.1. Getting an observation from the HSA and saving it
locally.

See Section 1.4.5 for more details.

Warning

The example above downloads an entire ob-
servation and saves it to disk. This could be
expensive both in time (depending on network
conditions) and disk space (as there are obser-
vations that take several gigabytes).

Load observation into HIPE. Needed only if you downloaded a tar file from the Herschel
Science Archive in the previous step. Extract the contents of the
tar file into any directory and load the observation into HIPE
with the following command, where /path/to/dir is
the path to the directory containing the observation:

myObs = getObservation(path="/path/to/dir")

Example 1.2. Creating a variable from an observation previously
saved to disk.

See Section 1.5 for more details.

Reprocess observation. This step depends on what kind of observation you have down-
loaded. Each of the Herschel instruments' data reduction guides
includes a Launch Pad with quick-look information about how
to reprocess your data.

• HIFI Launch Pad

• PACS Launch Pad for photometry and spectroscopy .

• SPIRE Launch Pad

Save observation to disk Once you have reprocessed your observation, you can save it
to disk with the following command:

3

../../hifi_um/html/hificookbook.html
../../pacs_phot/html/PdrgP.Chp.1.html
../../pacs_spec/html/PdrgS.Chp.1.html
../../spire_drg/html/spire-launchpad.html

Data input/output Build 15.0.3244

bg("saveProduct(product=myObs, pool='myPool',
 tag='My reprocessed data')")

Example 1.3. How to save a product to a local pool, in the back-
ground.

Note that you will not overwrite the original observation down-
loaded from the Herschel Archive. See Section 1.10 for more
details.

In subsequent HIPE sessions, you can open the original observation or the reprocessed versions with
the following command, provided you know the obsid:

obs = getObservation(obsid=1342231345)

Example 1.4. Getting an observation from the HSA given the observation ID.

HIPE will search for the observation in the following locations (see Section 1.3 for more information
on where your data are stored):

• A pool named like the obsid in your local pool directory (by default .hcss/lstore in your home
directory).

• Any other pool in your local pool directory.

• The MyHSA pool.

See Section 1.7 for more information on retrieving observations from disk.

1.3. How data are stored on your disk
This section describes where HIPE keeps Herschel data on your disk. Note that you do not need to
know where a certain data product or observation is stored, because you can use HIPE to search through
all the Herschel data stored on your computer. See Section 1.7 for more information.

Data from the Herschel Science Archive. Observations you download from the Herschel Science
Archive are stored in tar files. Once you unpack an observation and load it into HIPE, the contents are
indexed and referenced by a special data pool called MyHSA .

If you get your data from the Herschel Science Archive via the getObservation command, with the
useHsa=True and save=True options, the data are stored directly in the MyHSA pool. See Sec-
tion 1.4.5 for more details.

You can set the directory where the MyHSA pool is stored by choosing Edit → Preferences and
clicking MyHSA in the left-hand side list. The repository is kept by default in a MyHSA directory inside
the .hcss directory.

Note that MyHSA contains only unmodified data downloaded from the Archive. It is like your local
copy of the Herschel Science Archive with the observations of interest to you. Reprocessed data are
stored elsewhere.

Warning

Do not change the contents of the MyHSA directory manually. Always handle your data
through HIPE, as described in this chapter.

Reprocessed observations. Observations and data products you save after reprocessing are stored
into pools , which are grouped into storages . A pool is a repository you can use to save, load and search

4

Data input/output Build 15.0.3244

observations and data products. A storage groups one or more pools. Every pool must be registered
to a storage. A common situation is a storage containing a single pool. If a storage contains more than
one pool, only the first registered pool is accessible for writing.

Figure 1.2. Pools and storages. All pools must be registered to a storage. A pool can be registered to more
than one storage. A common situation is a storage containing a single pool.

There are many types of pools, for handling local and remote data. The local pool , or local store ,
is probably the one you will use most often. As the name suggests, this pool is held locally on your
system, usually in a .hcss/lstore directory under your home directory. Although products are
stored as FITS files, you should use the graphical tools provided by HIPE and described in this chapter
(see for instance Section 1.7) rather than manipulating the files directly.

Note

Local pools are also called local stores for historical reasons, but they are pools , not
storages .

See Section 1.3.1 for more information on how to manage pools and storages on your system.

This chapter contains all you need to know to use pools and storages in most situations. If you want
to delve deeper and learn how to manage pools and storages from the command line, see the Scripting
Guide : Chapter 7 in Scripting Guide.

1.3.1. Managing storages and pools

Storages and pools are the two tools with which you can store and retrieve data on your computer (see
Section 1.3 for more details). With the Storages & Pools panel in the Preferences dialogue window
(see Figure 1.3) you can create, delete and associate storages and pools.

To open this window, choose Edit → Preferences or press Alt+Enter , then go to Data Access >
Storages & Pools .

5

Data input/output Build 15.0.3244

Figure 1.3. Preferences for data access

Within this window you can accomplish the following tasks:

• Creating and deleting pools. In the Pools area, click Add , enter the pool name and click OK .
You can choose what kind of pool to create from the drop-down list. If you are unsure, or if you
just want to store data on your local disk, leave the Local Pool default.

For pools fetching remote data (Versant Database Pool and HTTP Pool) you can cache data locally
by ticking the Use cache checkbox.

You can set other properties of the new pool (for instance, the directory of a Local Pool) in the
parameters table.

Click Apply when you are done.

To delete a pool, select it from the list and click Remove .

To refresh the list of pools, click Refresh . This is useful if, for instance, you copy a pool into your
local pool directory while HIPE is running.

• Creating and deleting storages. Use the Add and Remove buttons in the Storages area, in the
same way as with pools.

• Registering pools to storages. Select a pool in the Pools area and drag it to a storage in the Storages
area.

By ticking the Add pools/storages from variables automatically checkboxes, any new pools or stor-
ages you create elsewhere in HIPE (for instance, from the command line) will appear automatically
in this dialogue window.

Note that this does not work the other way around: pools and storages created in this dialogue window
will not appear as variables in the Variables view.

Warning

Do not remove pools from disk while you have variables in HIPE referring to data in those
pools. Since HIPE does not always keep all the contents of a variable in memory, you may
not be able to save the variable contents to disk again.

6

Data input/output Build 15.0.3244

1.4. Getting observations from the Herschel
Science Archive

This section outlines the steps for getting your data out of the Herschel Science Archive, and serves as
a map for the rest of the subsections. Four common workflows are outlined in the following flowchart.
See the text after the flowchart for links to the relevant documentation.

Figure 1.4. Workflows for retrieving observation data from the Herschel Science Archive

• Workflow A: You want data for a specific observation and you know the OBSID.

1. Log into the HSA as shown in Section 1.4.1 .

2. If you want all data for the observation to download to your computer, see Section 1.4.5 .

3. If you want to browse parts of the observation in HIPE, see Section 1.4.6 .

• Workflow B: You want to browse the archive by position, observing mode and/or proprietary
status.

1. Log into the HSA as shown in Section 1.4.1 .

2. Search for data in the HSA: Section 1.4.2 .

3. See Section 1.4.3 for an explanation of the information that is returned

• Workflow C: You want a list of observations for a specific program but you don't know the
OBSIDs.

a. Using the HSA User Interface: First, log into the HSA as shown in Section 1.4.1 . Then, query
the archive following the instructions in Section 1.4.2 .

b. Using the online observing log: follow the instructions in Section 1.4.4 .

With the list of OBSIDs in hand, you may proceed with any of the other workflows to download
or browse the data.

7

Data input/output Build 15.0.3244

• Workflow D: You have a list of multiple OBSIDs and you want to download the data for all
of them.

1. Log into the HSA as shown in Section 1.4.1 .

2. Download the data, requesting either the processing version currently in the archive, or repro-
cessing using the current pipeline release:

a. To download the data currently in the archive, see Section 1.4.7 .

b. Using the online observing log: follow the instructions in Section 1.15 .

1.4.1. Logging into the HSA

To easily access data in the archive, you must first ensure that you are logged into the HSA inside
HIPE. Typically this must be done only once.

To check your login status, you can inspect the bottom status bar of HIPE. If you are not logged in,
the text "HSA Log-in" will be visible as shown in Figure 1.5 . Click on this part of the sidebar and
enter your Herschel username and password. Tick the Remember me checkbox if you want HIPE to
store your credentials securely—then you won't have to re-enter your login and password in future
HIPE sessions.

Figure 1.5. Logging in to the Herschel Science Archive

Once you have logged into the archive in HIPE, you can move to the Welcome page (see below).

8

Data input/output Build 15.0.3244

Figure 1.6. Accessing the Herschel Science Archive

Starting on the Welcome page (the default view on first opening HIPE), click on Access Data. In
the Access to Herschel Data view that appears, click Data Access (see Figure 1.6). The Data Access
perspective appears. From it you can use the Herschel Science Archive view to launch the archive
interface.

Tip

If you cannot see the Welcome page, click the icon at the top right corner of the HIPE

main window. Also, in the same toolbar to the left, there is an always-visible icon
that instantly launches the HSA interface.

Figure 1.7. The HSA view

In the Herschel Science Archive view, click Open HSA User Interface to launch the HSA application.
You may need to accept the security certificate (see Figure 1.7).

Tip

If you cannot find the Open HSA User Interface button in the HIPE window, go to the
top-level menu item Window → Show View → Data Access → Herschel Science Archive .

Only authorised users can access data covered by proprietary rights. The same rule applies to the
viewable quick-look products of observations, as well as to proposal-related files. They can only be
viewed by the logged-in observation owner.

9

Data input/output Build 15.0.3244

1.4.2. Finding observations in the HSA

Using the HUI: The Herschel Science Archive User Interface (HUI) opens on the Search tab: see
Figure 1.8.

Figure 1.8. The HUI Search tab.

Most items in the HUI have small speech bubble icons next to them. Click a speech bubble icon to
obtain help on the relative item.

To define your query, set all the relevant fields in the Search tab. You can search for observations
by position, instrument mode, proprietary status, observer, or program identifier. Click Query to run
your search. A new tab opens (see Figure 1.9) with the observations matching the query.

Click the icon to switch between a compact (Figure 1.9) and expanded (Figure 1.10) view of
the results. See Section 1.4.3 for an explanation of the summary information.

10

Data input/output Build 15.0.3244

Figure 1.9. HSA query result, compact view.

Figure 1.10. HSA query result, expanded view.

Sending query results to HIPE. You can send all or some of the query results to HIPE as a table
dataset.

• To send all results, click the yellow envelope icon at the top of the query results tab. Choose Send
ALL as VOTable → HIPE .

• To send some results:

• Select the results you want to send by ticking the checkbox next to each entry.

• Click the smaller yellow envelop icon just above the results table. Choose Send selected Metadata
To → HIPE .

1.4.3. Inspecting the query results of an observation
A query made with the HUI returns a table with one row per observation, as shown in Figure 1.9 .
Click the magnifying lens icon to display additional information, including an enlarged version of the
observation thumbnail image, if available.

Information about the quality of science data in an observation is held in a special product called
Quality Control Report . It includes the assessment of the execution of the observation by the space-
craft and the instruments, the evaluation of the success of the data processing, the outcome of the
systematic inspection of the final product and, if required, the instrument specialist and community
support astronomer analysis.

In the query results page of the HSA interface, every observation displays the status of the quality
control process and a Quality Report button to access the Quality Report summary.

11

Data input/output Build 15.0.3244

Figure 1.11. Information summary for an observation returned as a query result.

The Quality Report summary lists all the quality information relevant to you. This summary is only
generated once the quality control cycle of an observation has been completed, which can take some
time.

For observations still under quality control assessment, the Status field is empty, and the Quality
Report button is greyed out (see for example Figure 1.9).

Once the quality control assessment of an observation is complete, the Quality Control status box
displays its outcome as one of PASSED , FAILED or PENDING (see for example Figure 1.11). Further
explanations and known caveats about the outcome are included in the Comments section of the Quality
Report summary. The PENDING flag is used when the quality control cycle has finished but there are
still actions to be taken. Typically this involves the reprocessing of an observation.

1.4.4. Finding observation IDs outside the HUI
The Observing Log. The most common alternative to the HUI for finding observation IDs, or
program/proposal IDs, is to consult the Herschel Observing Log. By default this webpage shows the
most recent downlinked observations (the last one was Obs. Id 1342271266 on the 29th of April of
2013), as shown in Figure 1.12. You can also use the form at the top of the page to query by any of
the column headings: operational day (OD), target name, proposal ID, observing mode, observation
ID, AOR label, AOR duration, start time, processing (SPG) version, or quality control state. You can
click the column headings themselves to sort the values for that column, sorting on all items found
and not just those displayed on the current page.

Figure 1.12. The Observing Log webpage.

The Observing Log form does not allow querying by coordinates or proprietary status.

Using IRSA. In your web browser, navigate to the IRSA homepage at irsa.ipac.caltech.edu. Type a
target name into the Search box and click Search . Scroll to the bottom of the search results page,
and find the table "Archive Availability". Look for lines containing Mission = Herschel, such

12

http://herschel.esac.esa.int/observing/LogReport.html
http://irsa.ipac.caltech.edu

Data input/output Build 15.0.3244

as Herschel PACS Data. Click on the Go button in the last column (Explore Data). This takes you
to a results page similar to the results tab in the HUI, where you can browse postcards and locate the
observation id of interest.

Using Vizier. In your web browser, navigate to the Vizier catalog of Herschel observations . In the
Simple Target tab, enter the source name. In the Constraints Table be sure to tick the ObsId entry
under the Show column. Then click on Submit . As for the HUI and IRSA, browse the postcards
to find the observation id of interest.

1.4.5. Downloading one entire observation
This section explains how to download all the data for a single observation from the Herschel Science
Archive to your local disk.

GUI Method: Using the HUI

Prerequisites. You must have logged into the HSA, as described in Section 1.4.1 , and searched
for one or more observations, as described in Section 1.4.2 .

In the query results tab of the HUI, click the download icon to access a Retrieve Products menu,
from which you can select what parts of the observation to download. Choose All to download the
entire observation. Once you have made your choice, you are prompted to save the tar file with the
observation.

Figure 1.13. Downloading an observation from the Herschel Science Archive.

Using this method is only recommended for individual observations. To download many observations
at once, see Section 1.4.7 .

Where are my data? Your data are contained in a tar file on your disk. HIPE is not yet aware
of the data.

Where do I go from here? Once you have downloaded your observation from the Archive, you
must load it into HIPE, as explained in Section 1.5 .

Command-line method: Using getObservation

Prerequisites. You must be logged into the HSA as described in Section 1.4.1 .

Use the getObservation command to download an observation from the Herschel Science
Archive and save it to disk. You need to know the obsid of your observation:

myObs = getObservation(obsid=1342231345, useHsa=True, save=True)

Example 1.5. Saving an observation to disk from the HSA given the observation ID.

Warning

When retrieving SPIRE/PACS parallel mode observations, you must specify the in-
strument parameter with a value of either PACS or SPIRE, as shown by the following
examples:

13

http://vizier.u-strasbg.fr/viz-bin/VizieR?-source=VI/139

Data input/output Build 15.0.3244

myObs = getObservation(obsid=1342183046, instrument='PACS',
 useHsa=True, save=True)

myObs = getObservation(obsid=1342183046, instrument='SPIRE',
 useHsa=True, save=True)

Where are my data? Your observation has been saved to the My HSA repository on your disk.
Do not access the files directly. You can access your observation in HIPE at any time with the Product
Browser, as explained in Section 1.7 , or with this command, which will look for all copies of an
observation with a given obsid:

myObs = getObservation(obsid=1342183046)

Example 1.6. Getting an observation from the HSA given an observation ID.

For more information on managing your My HSA repository, see Section 1.6 .

Note

In some cases you may want to configure getObservation so that it doesn't look for
and download observations from the HSA. There is a setting within Preferences in Data
Access > My HSA called Save data on-demand that controls this behaviour. In a script,
you can set it on and off using the following commands:

Turn it on
MyHSAPool.getInstance().setConnection(herschel.ia.pal.pool.hsa.MyHSAConnection.ON)

Example 1.7. Setting on the connected status of the MyHSA pool.

Turn it off
MyHSAPool.getInstance().setConnection(herschel.ia.pal.pool.hsa.MyHSAConnection.OFF)

Example 1.8. Setting off the connected status of the MyHSA pool.

Where do I go from here? Your observation is now referenced by the myObs variable. You
can now work on your data and then save your modified data to disk as explained in Section 1.10 .

In future HIPE sessions, you can retrieve the original observation or the modified one as explained
in Section 1.7 .

1.4.6. Browsing an observation in the HSA with known
OBSID

With HIPE you can browse the contents of observations stored in the HSA without having to save
them first. What is sent to HIPE are just references to data products, not the products themselves.

GUI Method: Using the HUI

Prerequisites. You must have logged into the HSA, as described in Section 1.4.1 , and searched
for one or more observations, as described in Section 1.4.2 .

In the query result tab, click the download icon to access a Send to HIPE menu. With this you can
choose whether to browse the whole observation or just a portion of it.

14

Data input/output Build 15.0.3244

Figure 1.14. Selecting which part of an observation to browse.

Select an option and, if the connection between the two applications (HUI and HIPE) is well estab-
lished, a pop-up window appears with the message VOTable sent successfully to external application
. Data starts to load into HIPE automatically.

If the option All was selected, a variable called obsid_xxxxxxxxxx is created in HIPE, with an
actual observation number. Other options are also stored in different variables as illustrated in Fig-
ure 1.15 .

Figure 1.15. Product loaded into HIPE from the HSA.

Where are my data? Your data are not stored on your machine, but read on-demand from the
HSA. Note also that for this, the Internet connection must be kept open throughout the session.

Where do I go from here? Once you have finished browsing the data, you can save them to disk
as described in Section 1.10 .

Command-line method: Using getObservation

Prerequisites. You must be logged into the HSA as described in Section 1.4.1 .

Use the getObservation command to browse an observation from the Herschel Science Archive.
You must know the OBSID of the observation:

15

Data input/output Build 15.0.3244

myObs = getObservation(obsid = 1342231345, useHsa = True)

Example 1.9. Retrieving an observation from the HSA given the observation ID.

Warning

When retrieving SPIRE/PACS parallel mode observations, you must specify the in-
strument parameter with a value of either PACS or SPIRE, as shown by the following
examples:

myObs = getObservation(obsid=1342183046, instrument='PACS',
 useHsa=True, save=True)

myObs = getObservation(obsid=1342183046, instrument='SPIRE',
 useHsa=True, save=True)

Double click on the myObs variable in the Variables view to open the Observation Viewer. You
can also print out portions of the observation context via commands like print myObs.level2
, but in general the Observation Viewer will be much more convenient for browsing.

Where are my data? Your data are not being accessed from storage on your machine, but are read
on-demand from the HSA. Note also that for this to work, the Internet connection must be kept open
throughout the session. If either the save=True option is passed to getObservation, or the "Save data
on-demand" option is turned on as detailed in Section 1.6.1 , data are saved into your MyHSA location.

Where do I go from here? Once you have finished browsing the data, you can save them to disk
as described in Section 1.10 .

1.4.6.1. Multiple versions of the same observation

There are two additional cases when, given an observation ID, there are multiple instances of the
observation in the HSA or in your computer. They are identified by two metadata fields, one of which
changes its meaning between these two different locations.

• spgVersion is always the version of HCSS that was used to generate the product as part of the
Standard Product Generation (SPG) pipeline. Its format is M.m.p where M is major version, m is
minor version and p is patch version like in 11.1.0.

• version can be two things, identified by an integer number, depending on the location (even if,
conceptually, they are the same thing):

• In the HSA: it is the number of bulk reprocessings performed on the data.

• In your computer: it is the number of changes followed by a save to the same pool that you have
made to the data.

Using the command line, you can browse all versions in a very powerful way:

obs = getObservation(obsid = 1342197792, useHsa = True, allVersions = True)

Example 1.10. Browse all the versions of an observation (part 1).

If you haven't downloaded this observation before, all the versions displayed are the ones available in
the HSA, as in this example. The output of the command can be seen below:

More than one observation found. Please, refine your query

The following parameters:
urn = null
obsid = 1342197792

16

Data input/output Build 15.0.3244

od = -1
instrument = null
tag = null
spgVersion = null
creationDate = null
version = -1

Produces more than one result:
Pool id | Obsid | Tag | Version | Track id | Urn | Creator
hsa | 1342197792 | | 8 | OBS_12508@wn25.n1grid.lan_1_16441247557132381 |
 urn:hsa:herschel.ia.obs.ObservationContext:429666 | SPG v11.1.0 |
hsa | 1342197792 | | 9 | OBS_12508@wn25.n1grid.lan_1_16441247557132381 |
 urn:hsa:herschel.ia.obs.ObservationContext:526876 | SPG v12.1.0 |
hsa | 1342197792 | OBS:P:0050005020 | 10 |
 OBS_12508@wn25.n1grid.lan_1_16441247557132381 |
 urn:hsa:herschel.ia.obs.ObservationContext:620498 | SPG v13.0.0 |

To retrieve the observation please provide a version, urn, or a SPG version number
 like '11.1.0'

This output text advises you that spgVersion is a substring of the metadata field creator present
in the archive. This way, SPG v11.1.0 becomes 11.1.0 for the purposes of retrieving the obser-
vation. If you now type:

obs = getObservation(obsid = 1342197792, useHsa = True, spgVersion="11.1.0")

Example 1.11. Browse all the versions of an observation (part 2a).

Or:

obs = getObservation(obsid = 1342197792, useHsa = True, version = 8)

Example 1.12. Browse all the versions of an observation (part 2b).

Which in this case is the same, you will download the desired observation version to disk.

Note

When downloading observations to your computer and, as stated above, the version
number is reset to zero (0) to represent, from that moment on, user changes, so if you want
to retrieve a specific SPG version from a local pool, you are required to use spgVersion.
To load from disk the previously downloaded observation, you should type:

obs = getObservation(obsid = 1342197792, useHsa = False,
 spgVersion="11.1.0")

Example 1.13. Browse all the versions of an observation (part 3).

1.4.7. Downloading multiple observations

GUI Method: Using the HUI

Prerequisites. You must have logged into the HSA, as described in Section 1.4.1 , and searched
for one or more observations, as described in Section 1.4.2 .

You can download multiple observations at once via FTP with the Shopping Basket .

To select data for retrieval, tick the checkbox to the left of each record of the observations list, and
then click the shopping basket icon at the top of the table. Alternatively, add one observation at a
time by clicking the shopping basket icon in the observation's table row. A Shopping Basket Overview
window appears with the observations you have added.

17

Data input/output Build 15.0.3244

Figure 1.16. The shopping basket of data to retrieve from the HSA

Once you have added all the observations you wanted to the shopping basket, click the large shopping
basket icon on the HUI toolbar to open the Shopping Basket tab.

Figure 1.17. The shopping basket of data to retrieve from the HSA

You can remove one or more observations from the shopping basket by ticking the checkboxes on the
corresponding rows and then clicking the Remove All Selected icon in the top row of the table. You
can also add more observations at any time by going back to the query results tab.

Once you are happy with the contents of the shopping basket, click the Submit Request button. After
a short while you receive an email message with the FTP location where your data are stored. You
can then download the data as a tar file.

Where are my data? Your data are contained in a tar file on your disk. HIPE is not yet aware
of the data.

Where do I go from here? Once you have downloaded your observations from the archive, you
must load them into HIPE, as explained in Section 1.5 .

Command-line method: Using getObservation

Prerequisites. You must be logged into the HSA as described in Section 1.4.1 .

You can use the getObservation command within a loop to download multiple observations
from the Herschel Science Archive and save them to disk. You need to know the obsid of all the
observations:

myObsids = [1342242595, 1342239349]

for i in myObsids:
 print "Downloading obsid " + `i`
 myObs = getObservation(obsid=i, useHsa=True, save=True)

Example 1.14. Downloading multiple observations from an array of obs ids.

It is also possible to do this with tarred observations retrieved using the HAIO

18

Data input/output Build 15.0.3244

from java.nio.file import Files
import urllib

Create temporary directory for TAR.GZ download
tempdir = Files.createTempDirectory("hipe")
observationIds = [1342231052, 1342231345]

Output dictionary of observations (empty for now)
observations = {}

Do the loop
for obs in observationIds:
 # Download a TAR.GZ observation using the HAIO and builtin urllib
 strObsPath = str(tempdir)+"/obs.tar.gz"

 urllib.urlretrieve("http://archives.esac.esa.int/hsa/aio/jsp/product.jsp?"+\
 "OBSID="+str(obs)+"&PRODUCT_LEVEL=Auxiliary&COMPRESSION=TARGZ&"+\
 "PROTOCOL=HTTP", strObsPath)
 # Decompress the file
 outputDir = str(tempdir)+"/obs"+str(obs)
 decompress(strObsPath, outputDir)

 # One more step as there is another directory with a random name within outputDir
 randomDir = os.listdir(outputDir)[0]
 finalPath = outputDir+"/"+randomDir

 # Open the tarred observation from disk
 observations[obs] = getObservation(path = finalPath)

Example 1.15. Retrieving several observations from the HSA as tar.gz and opening them in HIPE.

Warning

When retrieving SPIRE/PACS parallel mode observations, you must specify the in-
strument parameter with a value of either PACS or SPIRE, as shown by the following
examples:

myObs = getObservation(obsid=1342183046, instrument='PACS',
 useHsa=True, save=True)

myObs = getObservation(obsid=1342183046, instrument='SPIRE',
 useHsa=True, save=True)

Where are my data? Your observations have been saved to the My HSA repository on your disk.
Do not access the files directly. You can access your observations in HIPE at any time with the Product
Browser, as explained in Section 1.7 , or with this command, which will look for all copies of an
observation with a given obsid:

myObs = getObservation(obsid=1342183046)

Example 1.16. Retrieve an observation from the HSA given the observation ID.

For more information on managing your My HSA repository, see Section 1.6 .

Where do I go from here? The last observation downloaded is now referenced by the myObs vari-
able. You can find and load the other observations via the Product Browser as explained in Section 1.7
. Then you can work on your data and save the modified data to disk as explained in Section 1.10 .

In future HIPE sessions, you can retrieve the original observations or the modified ones as explained
in Section 1.7 .

1.5. Loading observations downloaded from
the HSA into HIPE

19

Data input/output Build 15.0.3244

Prerequisites. You have already downloaded one or more observations as tar files from the Her-
schel Science Archive as described in Section 1.4.5 and Section 1.4.7 . Alternatively, you have re-
ceived on-demand reprocessed data as explained in Section 1.15 .

You need to load the observations into HIPE before you can view and reprocess the data. You need
to do it only once for each observation you download from the Herschel Science Archive.

Note

If you downloaded your observation via the command line using the getObservation com-
mand with the save=True parameter, you do not need to follow these steps. Your ob-
servation has already been loaded into HIPE. See Section 1.7 for information on how to
find your observation in HIPE.

GUI method: using the Navigator view
1. Uncompress the tar file you downloaded from the Herschel Science Archive. One directory is cre-

ated for each observation contained in the tar file.

Warning

Some compression applications (especially in non-UNIX operating systems, i.e. Win-
dows) need to convert the line endings of the text files inside the TAR archive from
the UNIX standard (using only LF characters). For a common utility that has problems
with this, please see this Known Issue describing the issue (and a workaround). You
can also use other software such as 7-Zip, or the decompress task in HIPE: Sec-
tion 1.104 in HCSS User's Reference Manual

2. In the Navigator view of HIPE, open the directory that was created when you uncompressed the
tar file. You will see an item with a Saturn icon, as shown in the following image.

Figure 1.18. A Herschel observation ready to be loaded into HIPE.

3. Double click on the item with the Saturn icon. HIPE loads and opens the observation.

Where are my data? Your data are still in the directory created from uncompressing the tar file.
The data has been indexed in the My HSA repository, but HIPE has not copied the data elsewhere,
which is why you must not delete this directory. You must also not modify the data files directly. For
more information on managing your downloads from the Herschel Science Archive, including how
to delete unwanted data, see Section 1.6 .

Where do I go from here? You can now start working on your observation. Once you are finished,
to save your modified data see Section 1.10 . To load the original or modified observation in future
HIPE sessions, see Section 1.7 .

Command-line method: using getObservation
1. Uncompress the tar file you downloaded from the Herschel Science Archive. One directory is cre-

ated for each observation contained in the tar file.

2. Issue the following command in the Console view of HIPE, where /path/to/dir is the path
to the directory containing the observation (for example, /home/joe/joe141729940):

myObs = getObservation(path="/path/to/dir")

Example 1.17. Load an observation from disk into a new variable.

20

http://herschel.esac.esa.int/twiki/bin/view/Public/HipeKnownIssues#I_have_downloaded_FITS_files_in

Data input/output Build 15.0.3244

For a complete example downloading the observation in tar.gz format from the Herschel Science
Archive using Herschel Archive InterOperability subsystem (HAIO), see below:

from java.nio.file import Files

Create temporary directory for TAR.GZ download
tempdir = Files.createTempDirectory("hipe")
obs = 1342231052
Download a TAR.GZ observation using the HAIO and builtin urllib
strObsPath = str(tempdir)+"/obs.tar.gz"
import urllib
urllib.urlretrieve("http://archives.esac.esa.int/hsa/aio/jsp/product.jsp?"+\
 "OBSID=1342231052&PRODUCT_LEVEL=Auxiliary&COMPRESSION=TARGZ&"+\
 "PROTOCOL=HTTP", strObsPath)
Decompress the file
outputDir = str(tempdir)+"/obs"
decompress(strObsPath, outputDir)

One more step as there is another directory with a random name within
 outputDir
randomDir = os.listdir(outputDir)[0]
finalPath = outputDir+"/"+randomDir

Open the tarred observation from disk
obs = getObservation(path = finalPath)

Example 1.18. Retrieving an observation from the HSA as a tar.gz and opening it in HIPE.

HIPE loads the observation, assigning it to variable myObs .

If the directory contains multiple observations, you must specify the obsid of the observation you
want to load:

myObs = getObservation(path="/path/to/dir", obsid=1342183046)

Example 1.19. Load an observation from disk, specifying both path and observation ID.

Where are my data? Your data are still in the directory created from uncompressing the tar file.
The data has been indexed in the My HSA repository, but HIPE has not copied the data elsewhere,
which is why you must not delete this directory. You must also not modify the data files directly. For
more information on managing your downloads from the Herschel Science Archive, including how
to delete unwanted data, see Section 1.6 .

Where do I go from here? You can now start working on your observation. Once you are finished,
to save your modified data see Section 1.10 . To load the original or modified observation in future
HIPE sessions, see Section 1.7 .

1.6. Managing your HSA downloads
You can manage your downloads from the Herschel Science Archive via the My HSA preferences
dialogue window. To open it, choose Edit → Preferences and click My HSA in the left-hand side list.

21

Data input/output Build 15.0.3244

Figure 1.19. The My HSA preferences dialogue window.

The two tables. The Indexed Datasets table lists observations you have loaded directly from the
HSA User Interface (HUI) in tar form, as explained in Section 1.5 . The Direct retrieval sessions
table lists observations you have browsed or downloaded using the Product Browser, as explained in
Section 1.7 , or the getObservation command, as explained in Section 1.4.5 and Section 1.4.6 .

In the My HSA dialogue window you can perform the following tasks:

• Change the location where configuration information and downloads from the Herschel Sci-
ence Archive are stored. . Write a new path in the Directory text field, or click Choose and
navigate to the new directory.

• Load downloaded observations into HIPE. Click Add and navigate to a directory created
from unpacking a tar file downloaded from the HUI. Select the .xml file in the directory and click
Open . HIPE loads the observation. A new row appears in the Indexed Datasets table.

This way of loading observations is equivalent to the one described in Section 1.5 .

• Remove downloaded observations from disk. Select one or more rows from the Indexed
Datasets and Direct retrieval sessions tables and click Remove . A dialogue window appears
asking for confirmation. The default is to delete the configuration , so that HIPE is no longer aware
of the data, but the data themselves are kept on disk. You can tick the Remove FTP products as
well checkbox to delete the data.

Note that removing one observation could affect the integrity of other observations. See the warning
at the end of this section for more information.

The state icons. The state of the data in each row of the tables is indicated by the following icons:

•
 — The data have been fully downloaded and indexed. No new data are being added.

•
 — New data are being added. For example, you are still browsing the corresponding observation

in HIPE.

•
 — HIPE has detected an error. Usually this means that you have moved or removed the obser-

vation from the original location when you unpacked the tar file provided by the HUI. Note that this
does not mean that the MyHSA database got corrupted. You just need to import the data again and
remove the old link using the Remove button. Alternatively, move the observation to its original
location to restore the appropriate links.

The table columns. Some of the columns of the two tables are described below:

22

Data input/output Build 15.0.3244

• Path. Gives the directory where the tar downloaded from the HUI was unpacked, or the location
(session) inside MyHSA where a direct download of data from HIPE was stored.

• Size. Gives the actual size of your observation, both the physical size on disk and the size that
it occupies in memory. Note that the values can be lower than the size given in the observation ID
column. This can be due to two reasons: either you have downloaded the observation only partially,
or some of the files were not indexed or downloaded again into MyHSA because they were already
in a different MyHSA location. The latter case can occur, for instance, with auxiliary files of two
observations taken in the same OD, or with calibration files of two observations performed with the
same instrument. In this way MyHSA avoids duplication of files. This means that observations are
linked among them. Such links are shown in the two columns Requires and Is required by .

• Requires. Gives the location in MyHSA where part of the data reside, when different from the
actual location of the observation.

• Is required by. Means that some files of this observation are required by a different one.

Figure 1.20. A detail of the Indexed Datasets table showing the Requires and Is required by columns.

Warning

The Requires and Is required by columns show that some observations depend on each
other inside MyHSA. Therefore, the removal of one observation can impact one or more
different observations. Again, this does not mean that the MyHSA database got corrupted.
You just need to import the removed observation again and remove the old link using the
Remove button, or to move the observation to its original location, to establish the appro-
priate links again. Then click the Update Links button in the Advanced tab as explained
in Section 1.6.1 .

Note

Data indexed or downloaded with a version of HIPE before 10.0 will not show real values
for these columns. Recovering this information from previously downloaded observations
would impact HIPE performance.

Warning

If you find large amounts of data in the Direct retrieval sessions that you don't recall down-
loading, it may be that you have set the "Save data on-demand" option. See Section 1.6.1
. Alternatively, you may have been using getObservation with useHsa=True and
save=True (though this is less likely as save=False is the default).

1.6.1. Advanced configuration

23

Data input/output Build 15.0.3244

Figure 1.21. The Advanced tab of the My HSA preferences dialogue window.

In the Advanced tab of the My HSA dialogue window you can perform the following tasks:

• Update links between configurations. Click the Update Links button to update the information
in the Requires and Is required by columns in the tables of the My HSA tab. It is useful to click
this button each time you remove data from the main My HSA tab, since HIPE does not update the
links automatically for performance reasons.

• Download online data automatically when you browse them. . Tick the Save data on-demand
to enable automatic data download (the default is "unticked"). This applies to two cases:

• You query the Herschel Science Archive via the Product Browser using the HSA data source (see
Section 1.7 for more details), or getObservation with useHsa=True (see Section 1.4.6).
When you browse any of the results, the data you view are downloaded automatically.

• You download a partial observation from the Herschel Science Archive by selecting something
other than Retrieve Products → All in the HUI (see Section 1.4.5 for more details). If you then
load the partial observation into HIPE and try to view missing data, these are downloaded auto-
matically. Note that automatic download works only if HIPE is connected to the Herschel Science
Archive through the Product Browser, by selecting the On-line radio button in the Data Source
panel. See Section 1.7 for more details.

Warning

Do not change the address in the URL text field. This is the address of the Herschel Science
Archive service.

1.7. Retrieving an observation from disk
Prerequisites. You must have downloaded one or more observations from the Herschel Science
Archive (see Section 1.4) and loaded them into HIPE (see Section 1.5). Optionally you may have
already reprocessed your data and saved the results to disk (see Section 1.10).

GUI Method: Using the Product Browser

24

Data input/output Build 15.0.3244

Figure 1.22. The Product Browser.

Follow these steps to find observations on your disk:

1.
Open the Product Browser perspective by clicking the icon on the HIPE toolbar, or by choosing
Window → Show Perspectives → Product Browser perspective .

2. Select the data sources you want to query in the Data Source panel (see Figure 1.22). Those of
interest to you are the following:

• MyHSA, On-line : the Herschel Science Archive. This is an alternative way of browsing the HSA.

• MyHSA, Off-line : the observations you have downloaded from the Herschel Science Archive
and loaded into HIPE.

• Local Pools : the data pools on your disk where you save Herschel data after you have reprocessed
them.

3. Set your query parameters in the Observations tab. Typically you will want to indicate an obser-
vation ID. You can add more query parameters by clicking on the small plus icon at the bottom of
the list in the Search parameters panel. Then you can select a metadata value, an operator (such
as ==) and a value.

4. Click Run to execute the query.

• Result. Your result is shown in the table below the query parameters area and stored in a
variable called QUERY_RESULT , for the first query, or QUERY_RESULT_x for subsequent
queries, where x is a number. If no result is found then no QUERY_RESULT is produced.

For expert users: the result variable may be used as argument in a ProductStorage.se-
lect() statement.

results=storage.select(MetaQuery(...),QUERY_RESULT_1)

Example 1.20. Perform a query on a local store using the result of another query.

• Versions. Versions are created whenever saved data are modified and stored again. If you
ticked the Show all versions checkbox, you will see all versions of your data, instead of just
the latest one.

• Tags. Tags are keywords or phrases you can associate to a product, to better describe and
remember its contents. For example, you could assign to a product the tag "to be completed" to

25

Data input/output Build 15.0.3244

remember that you have not finished processing it. When defining tags, you are free to use the
keywords and phrases that work best for you.

If the data was saved with a tag assigned to it, you will see the tag displayed in the tag column.
If you do not see a tag column, right click on any column header and choose Select layout →
Standard Table Layout . See Section 1.10 for how to add tags when saving observations to disk.

5. Review the results.

• Select a row to further inspect it in the Outline view. This also creates a variable called se-
lected .

• Double click a row to create a variable in the Variables view. This is not the same as the se-
lected variable, whose contents change according to the selected row.

• Right click on the table to do the following on the selected rows:

• Create variables in the Variables view (same as double click).

• Remove the data from the pool. You can also remove an entire observation, including all child
products. Removing does not work for data in the MyHSA area.

• Export the data to FITS.

See Section 1.8 for how to customise the layout of the result area.

6. Inspect selected results in the Outline view.

• Double click an item to open it with the default viewer. Be aware that HIPE may have to load
the item first, which could be a time and memory consuming operation for large products.

• Right click on an item and choose Open With to open it with a viewer of your choice in the
Editor view.

Tip

The Product Browser does not find data I know to be present. Check the following:

• Make sure that the location of your data is selected in the Data Source panel. If in doubt,
select more data locations.

• Make sure you are searching for the right kind of data. For example, you may be in the
Observations tab, thus searching for entire observations when instead you want to look
for a data product inside an observation. If so, switch to the Products tab and make sure
that the Product type field has the correct value. If in doubt, choose herschel.i-
a.dataset.Product to search for any data product.

Command-line method: getObservation

With getObservation you must keep track of, and provide to the task, the OBSID, and possibly
also the name and location of the pool where you saved your data, if these are not the defaults.

• If your data were saved with the default name (the OBSID) and location (your lstore directory),
they can be loaded by specifying the OBSID:

myObs = getObservation(obsid=1342231345)

Example 1.21. Retrieve an observation given the observation ID.

HIPE will search for the observation in the following locations (see Section 1.3 for more information
on where your data are stored): 26

Data input/output Build 15.0.3244

• A pool named like the obsid in your local pool directory (by default .hcss/lstore in your
home directory).

• Any other pool in your local pool directory.

• The MyHSA pool.

• If your data were saved in a non-default pool location, this must be specified:

myObs = getObservation(obsid=1342183046, poolLocation=myDirectory)

Example 1.22. Load an observation from disk specifying both the observation ID and the pool directory.

HIPE will look in the non-default location for a pool with the same name as the obsid.

• If your data were saved in a non-default pool location and with a non-default pool name (different
from the obsid), both must be specified:

myObs = getObservation(obsid=1342183046, poolName=myPool,
 poolLocation=myDirectory)

Example 1.23. Load an observation from disk specifying the observation ID, the local pool name and
the pool location.

HIPE will look in the non-default location for a pool with the specified name.

Here are some further examples:

Most useful task parameters
myObs = getObservation(obsid=<int|string> [,poolName=<string>]
 [,poolLocation=<string>] [,useHsa=<boolean>] [,save=<boolean>]
 [,tag=<string>])

Most common uses:

Get your data from [HOME]/.hcss/lstore/134211111
myObs = getObservation(obsid=134211111)

Get your data from [HOME]/.hcss/lstore/MyFirstDataset
myObs = getObservation(obsid=134211111, poolName="MyFirstDataSet")

Get your data from /BigDisc/PACS/MyFirstDataSet
myObs = getObservation(obsid=134211111, poolLocation="/BigDisc/PACS/",
 poolName="MyFirstDataSet")

Get your data using a tag
myObs = getObservation(obsid=134211111, tag="Reprocessed version 2")

Get your data from the MyHSA pool
myObs = getObservation(obsid=134211111, poolName="MyHSA")

Example 1.24. Several examples using the getObservation task.

1.8. Customising the Product Browser results
You can customise the result area of the Product Browser perspective (Figure 1.22) in the following
ways:

• Click on a column title to sort the column in ascending or descending order. You can sort up to
three columns. Double click a column to reset sorting.

• Drag and drop a column title to move the column.

27

Data input/output Build 15.0.3244

• Right click on a column title to show a menu with additional options:

• Select one of the two predefined layouts. The layouts differ by the type, size and position of
visible column.

• Save the current layout with a custom name. The new layout will then be available from the
Select Layout submenu. You can also overwrite one of the predefined layouts, although this is
not recommended.

• Add a column before or after the current column.

• Remove the current column from the layout.

1.9. How to use the Quick Analysis perspec-
tive

GUI method

To perform a search with the Quick Analysis tool, select any of the search tabs present at the top of
the interface and fill the required inputs in the following fashion:

• Search by Target: give the Target name, which will be resolved by SIMBAD or NED and, if
wanted, the search Radius around the Target. If not specified, the search Radius is 10 arcsec. Note
that any observation within the given Radius will also be retrieved.

• Search by RA/Dec: In this case, the required data are Right Ascension (hh:mm:ss), Declination
(dd:mm:ss) and a search Radius in arcsec like in the above case.

• Search by Obs ID: The only data required is the Observation identifier.

• Search by OpDay: all observations taken in the given Operational Day will be returned.

To execute any of the searches, either press the Search button on the right represented by magnifying
glasses or press the Enter key in any of the text fields. Please note that only the active tab data will
be taken into account when performing the search.

28

Data input/output Build 15.0.3244

Figure 1.23. Main window of the Quick Analysis perspective with the results of a search by target name.

Upon execution of the search (see the figure above), the results found will be displayed just below the
search panels. The data loaded are Browse Products, which are a particular subset of the final science
products generated by the pipeline (see the Data Product Overview (please open this link in a new
page or tab) web page for details on the products served per sub-instrument). Selecting any of the
results will open the most appropriate analysis tool for the corresponding type of data:

• For cubes and spectrum datasets, the Spectrum Explorer will be opened. For more information,
see Chapter 5.

• For maps, an instance of the Display class will be created with all the tools required to analyse
the image. For more information, see Section 4.1.

It is also possible to work on the data using these standard tools without any further action, if wished.

Additionally, you can right-click on the result to be able to choose between opening the Browse Prod-
uct or an Observation Context. This choice can be saved by click on Edit → Preferences , navigating
to General > Appearance > Quick Analysis and set as default the desired behaviour.

Note the difference in the contents of the Data navigator panel (left of the spectrum plot) between
opening only the Browse Product:

29

http://www.cosmos.esa.int/web/herschel/data-products-overview

Data input/output Build 15.0.3244

Figure 1.24. A detailed view of the result of a search using Quick Analysis (Browse Products).

Or opening the whole Observation Context and focusing on the product:

Figure 1.25. A detailed view of the result of a search using Quick Analysis (Observation Context mode).

Command-line method
Note

While using the Quick Analysis perspective, all GUI interactions are echoed to the Con-
sole. The Console view is not included in this perspective, but you can open it manually
by clicking on Window → Show View → Workbench → Console .

1.10. Saving data (products and observa-
tions) to disk

30

Data input/output Build 15.0.3244

Prerequisites. You have made changes on an observation, for instance by reprocessing data with
a pipeline script. You now want to save your reprocessed data. As you will see, the procedure is the
same whether you want to save an entire observation or a smaller piece of data that is still a product.

GUI method
To save an observation or product to disk, follow these steps:

1. Right click on the data variable name in the Variables view and choose Send to → Local pool .

The Save Products Tool opens in the Editor view (see Figure 1.26). Your observation variable
name appears in the Products column.

2. Assign one or more tags to the observation you want to save. To assign a tag to a product, double
click the corresponding cell in the Tags column, write the tag and press Enter .

Tags are keywords or phrases you can associate to a product, to better describe and remember its
contents. For example, you could assign to a product the tag "To be completed" to remember that
you have not finished processing it. When defining tags, you are free to use the keywords and
phrases that work best for you. Tags are especially useful to recognise different versions of the
same observation, which by definition have the same obsid.

3. Select a pool from the Select Pool drop-down list, or write a pool name. If a pool with that name
does not exist, it is created.

4. Make sure that the observations and products you want to save are selected and click Save to
store them into the pool.

When you press Save there is no success or failure message. You can check the Console view,
where the corresponding command has been echoed, to make sure that the data have been saved
correctly.

Figure 1.26. The Save Products tool.

Command-line method
To save products (including observations) to disk, use the saveProduct command. You must specify
the variable you want to save, the pool you want to save it to and the tag you want to associate to it.
Adding a tag is not compulsory but strongly recommended.

Tags are keywords or phrases you can associate to a product, to better describe and remember its
contents. For example, you could assign to a product the tag "To be completed" to remember that you

31

Data input/output Build 15.0.3244

have not finished processing it. When defining tags, you are free to use the keywords and phrases that
work best for you. Tags are especially useful to recognise different versions of the same observation,
which by definition have the same obsid.

bg("saveProduct(product=myObs, pool='myPool', tag='My reprocessed data')")

Example 1.25. Save an observation to disk specifying the pool name and a tag.

If a pool with the name you specify does not exist, it is created.

Note

If you use the saveObservation in HCSS User's Reference Manual command, note
these differences with respect to saveProduct :

• saveObservation does not support tags.

• saveObservation does not store the calibration tree when used with observations.

Where are my data? Your data are now in a local pool , typically in a subdirectory of .hc-
ss/lstore in your home directory. Do not touch the files directly, but keep working on them from
HIPE. If you modify the files outside HIPE, you may corrupt the pool structure.

Where do I go from here? Now that your data are saved, you have these possibilities:

• If you quit HIPE and start a new session at a later date, you will want to load the data you have
saved. See Section 1.7 for more information.

• After saving data on your local disk, you may want to share them with a colleague. See Section 1.12
for information on how to export an observation for sharing with other HIPE users.

1.11. Migrating pools across incompatible
versions of HIPE

HIPE 10 developer versions (builds between 2069 and 2674) and HIPE 11 or later pools are incom-
patible with earlier versions of HIPE (including all public releases of HIPE 10).

In order to use (where “use” means any process involving reading, scanning, or checking of the local
pools by HIPE and not just explicitly opening the pool from, for example, the Product Browser) these
existing pools with an incompatible HIPE version, you should rebuild the index of the pool. Given
that it is not guaranteed that newer data will work with older versions of the software, this guide will
focus only on making the pools useable in the following cases:

• Case 1: Using pools that were created/modified in a HIPE 10 version prior to 2069, with a HIPE
10 version between 2069 and 2674.

• Case 2: Using pools that were created/modified in a HIPE 10 version between 2069 and 2674, with
a HIPE 10 version after 2674.

• Case 3: Using pools that were created/modified in a HIPE 10 version other than the 2069-2674
range, with HIPE 11 or later.

• Case 4: Using pools with an index rebuilt for a HIPE 10 version other than the range 2069-2674,
with HIPE 11 or later.

Prerequisite: A pool created with a HIPE 10 version prior to 2069.

Case 1:

32

Data input/output Build 15.0.3244

• Pool you want to open: A pool like the one detailed in the prerequisite.

• Error message: There is no error displayed and the pool is completely usable in HIPE 10 versions
2069-2674.

Case 2:

• Pool you want to open: A pool that is like the prerequisite or has been processed in a scenario like
Case 1.

• Error message: Querying the pool using the Product Browser returns nothing (no error message).
Opening the observation from the Console using getObservation returns the following error mes-
sage:

#herschel.ia.task.TaskException: Error processing getObservation task: Index Version
 not compatible.
Expected : 4 Existing: 6.Pool pool_name requires upgrading before you can use it with
 this software.
In order to do so, you need to run pool_name.rebuildIndex() to upgrade.Depending on the
 size of the
pool this process can take a long time, please be patient!More information can be found
 in the Data
Analysis Guide, section 1.2.2.1 (Update of index format for local stores).

• Notes about the error message:

• pool_name is the name of the pool you are trying to load.

• pool_name.rebuildIndex() is not the proper command to rebuild the pool. See below
for the appropriate commands.

• The section of the Data Analysis Guide referenced is not correct. This is Section 1.11 .

• Workaround:

Any of the following commands will rebuild the index of the pool:

• This ensures we are rebuilding the specified pool using a static method from the class Local-
StoreFactory :

LocalStoreFactory.getStore(pool_name).rebuildIndex()

Example 1.26. How to rebuild the index of a local pool.

• This rebuilds the pool using a ProductStorage instance named store :

store.writablePool.rebuildIndex()

Example 1.27. Second option for rebuilding the index of a local pool.

Case 3:

• Pool you want to open: A pool that is like the prerequisite.

• Error message: There is no error displayed and the pool is completely usable in HIPE 11 or later.

Case 4:

• Pool you want to open: A pool which index was rebuilt following Case 2 instructions.

• Error message: There is no error displayed and the pool is completely usable in HIPE 11 or later.

That's it! You should now be able to read your pool. If you find you cannot, contact the Helpdesk.

33

Data input/output Build 15.0.3244

Tip

Note that the index files will not be backed up while you run rebuildIndex(), unless you
invoke Configuration.setProperty("hcss.ia.pal.pool.lstore.in-
dex.backup", "true") first.

See the HIPE Owner's Guide: Section 4 in HIPE Owner's Guide .

1.12. Exporting an observation to a colleague
Prerequisites. You have reprocessed one or more observations and saved them to disk as explained
in Section 1.10 .

You can pack data held in local pools on your disk so that you can send them to other HIPE users.
Follow these steps:

1. Choose Window → Show View → Data Access → Export Herschel data from HIPE .

The Export Herschel data from HIPE view opens.

2. From the Input Pool drop-down list select the pool that contains the data you want to export.

a. If you want to export the whole pool. Click Export pool and enter the name of the zip
file the data will be exported to.

b. If you want to export one or more observations from the pool. .

i. Click Show Contents . The full observations contained in the pool appear in the Observations
area.

ii. Select the observations you want to export from the list.

iii.Choose the export data format from the drop-down list at the bottom of the view. You can
choose among compressed tar (recommended), uncompressed tar and loose files (unpacked
directory).

iv. Click Export to HSA hierarchical structure and enter the name of the file the observations
will be exported to.

Note

What is meant by HSA hierarchical structure is the same hierarchical directory structure
of the data downloaded from the HSA. The format of individual files is FITS.

Figure 1.27. Product export from HIPE into standard Herschel directory structure.

This view makes use of the exportObservation task, documented in the User's Reference Man-
ual : Section 1.131 in HCSS User's Reference Manual

Where do I go from here? Now you can send the zip or tar file you produced to other users. This
is how they can load your data into their HIPE installation:

34

Data input/output Build 15.0.3244

• If you exported your pool by clicking Export pool . . Other users can extract the zip file into
their local pool directory (typically .hcss/lstore in their home directory) and find your data
via the Product Browser as explained in Section 1.7 .

• If you exported one or more observations by clicking Export to HSA Data Format . . Other
users can uncompress the tar files and load the observations into HIPE as described in Section 1.5 .

1.13. Retrieving products from disk
You can use the Product Browser perspective to find data products inside observations on your disk.
The procedure is the same as for finding whole observations, as described in Section 1.7 , with only
these differences:

• Rather than setting your search parameters in the Observations tab alone, you will want to use the
Products , Metadata and Free Metadata tabs as well. For example, you may indicate an observation
ID and select a particular type of product from the Product type drop-down list in the Products tab.

• If you do not see the product type you want in the Product type drop-down list in the Products tab,

try clicking the icon to reload the product types.

Tip

The Product Browser does not find data I know to be present. Check the following:

• Make sure that the location of your data is selected in the Data Source panel. If in doubt,
select more data locations.

• Make sure you are searching for the right kind of data. For example, you may be in the
Observations tab, thus searching for entire observations when instead you want to look
for a data product inside an observation. If so, switch to the Products tab and make sure
that the Product type field has the correct value. If in doubt, choose herschel.i-
a.dataset.Product to search for any data product.

1.14. Removing data from disk
Removing reprocessed data. You can remove data products, up to full observations, from the
result area of the Product Browser (see Figure 1.22). Select one or more rows, then right click and
choose Remove product from storage/pool . Click Yes in the confirmation window to remove the data.

Note

Removing a product context, such as an observation context, does not remove just the
context itself (the container) but also its child products (the contents).

Removing data downloaded from the HSA. Original data downloaded from the HSA cannot be
removed in the Product Browser. Instead, choose Edit → Preferences and click My HSA in the left-
hand side list. The My HSA panel opens. Here you can select data you loaded from tar files downloaded
from the HSA (Indexed Datasets from HSA tar files) or online data you browsed from the Product
Browser (Direct retrieval sessions). Click Remove to delete the selected data items.

Warning

Do not remove data from disk while you have variables in HIPE referring to those data.
Since HIPE does not always keep all the contents of a variable in memory, you may not
be able to save the variable contents to disk again.

1.15. On-demand reprocessing of observa-
tions

35

Data input/output Build 15.0.3244

You can reprocess data "on demand" to have the most updated data products.

The HSA contains data processed with different versions of the processing pipeline and calibrations.
Although all the data are periodically bulk-reprocessed with certain pipeline versions and the same
calibration files, a certain degree of inhomogeneity is unavoidable, since the HSA is the science archive
of an operational mission, whose content is being continuously upgraded.

To reprocess your data with the latest operational version of the pipeline and calibration files, you can
submit a request for on-demand reprocessing . The selected observations are processed at the Herschel
Science Centre and the results are provided to you through FTP. Only the same processing profile
which is used by the standard processing is available in on-demand mode.

You can request on-demand reprocessing by following these steps:

1. Log into the HSA and open the HSA User Interface as described in Section 1.4.1 .

2. Search for the observations you want to reprocess, as described in Section 1.4.2 .

3. Select the observations for which you would like to request on-demand reprocessing, by ticking
the checkbox next to the observation record.

4. Click the shopping cart icon in the toolbar of the HSA User Interface.

The Shopping Basket tab opens.

5. Click the On Demand Reprocessing tab.

6. Click Submit Request .

To monitor the status of your on-demand jobs, choose Windows → On Demand Monitor in the HSA
User Interface.

Once the reprocessing has been completed, you receive an email notifying the availability of processed
data for FTP retrieval.

The new products are delivered in a zipped file. Unzip this file in your favourite directory and load the
observations into HIPE by using the Navigator view or the getObservation task, as explained
in Section 1.5 .

Since the products generated in on-demand mode are not stored in the HSA, they cannot be indexed
under MyHSA. Instead they are indexed in your local store (see Section 1.3) under a pool called
by the same name as the zip file provided by the HSA (<instrument>_<obsid> , for instance
s_1342216878). Therefore, once the observation has been indexed for the first time, subsequent
recoveries of it from your disk should be done with the getObservation command or the Product
Browser as explained in Section 1.7 .

Note

On-demand reprocessing is intended to be used for a limited set of observations. This is
because this functionality makes use of the same operational system at the Herschel Sci-
ence Centre which is used for the daily processing of Herschel data and for bulk repro-
cessing. These processes always have priority over any on-demand reprocessing request.

1.16. Exchanging data with FITS files

1.16.1. Saving a product to a FITS file
You can save any kind of Herschel data to FITS files, as long as it is of type Product or a dataset
such as a TableDataset. All the raw and reduced data coming from the Herschel Science Archive

36

Data input/output Build 15.0.3244

are either products or datasets. Note that you cannot save arrays such as Double1d (for example,
single columns extracted from a table dataset). In that case, see the end of this section for how to wrap
arrays into datasets.

To save a product or dataset as FITS file, follow these steps:

1. Select the product or dataset in the Variables view.

2. Right click on the variable name and choose Send to → FITS file.

The simpleFitsWriter task dialogue window opens in the Editor view, as shown in Fig-
ure 1.28.

3. Write the name of the FITS file in the file field. Alternatively, click the folder icon to browse to
a different directory.

4. Optionally, tick the Ask before overwriting checkbox to be warned if you are about to overwrite
an existing file.

5. Optionally, choose a compression method from the compression drop-down list. You can choose
between ZIP and GZIP.

6. Press Accept to save the product or dataset to file.

Figure 1.28. FITS save task dialogue window.

Note

• You are responsible for adding the .fits extension to the file name, plus any addi-
tional extension, such as .gz , if you choose a compression method. If you fail to do
so, other applications such as ds9 may not handle the file correctly.

• Unless you choose a different directory, FITS files are saved in the directory HIPE was
started from. To locate this directory, issue these commands in the Console view:

import os
 print os.getcwd()

Example 1.28. How to get the current workind directory for the Jython interpreter.

From the command line

You can write a product or dataset to a FITS file with the simpleFitsWriter in HCSS User's Reference
Manual task. Follow the link to access the corresponding entry in the User's Reference Manual.

myProduct = Product() # Empty data product
simpleFitsWriter(myProduct, "myProduct.fits")

Example 1.29. Creating a new empty data product and writing it to disk as a FITS file.

37

Data input/output Build 15.0.3244

Files are saved in the directory from which you started HIPE, unless you provide a different path with
the file name.

The following commands create an image and save it as a multi-extension FITS file:

Saving an image composed of random data to disk
myImage = SimpleImage(description="An image",image=Double2d(50,100), \
 error=Double2d(50,100),exposure=Double2d(50,100))
simpleFitsWriter(myImage, "myImage.fits")
Reading back the file created
path = "myImage.fits"
myImage = importImage(filename = path)

Example 1.30. Creating a SimpleImage with random data and saving it to disk as a FITS file, reading it
back afterwards.

Warning

The above code generates a FITS file with the value 50 assigned to the NAXIS2 keyword
and 100 assigned to NAXIS1. In other words, the image size is 50 pixels along the y axis
and 100 pixels along the x axis. The coordinate values are displayed in this order (y, x) in
the Image Viewer. For an explanation of why the y size is specified before the x size, see
the Scripting Guide : Section 2.2.5 in Scripting Guide.

If you get a SignatureException error when trying to save a variable to FITS, it probably means
that your variables are not a product or dataset, but a simple array, such as a Double1d. To save it
to FITS file you have to manually wrap a table dataset around it:

myArray = Double1d(10, 10.0) # Array, cannot be saved to FITS
myTable = TableDataset()
myTable["myArray"] = Column(myArray) # Putting array into dataset
simpleFitsWriter(myTable, "myTable.fits")

Example 1.31. Using a dataset as a wrapper to store an array in a FITS file.

1.16.2. Retrieving a Herschel product from a FITS file

To load a Herschel product stored in a FITS file (or any other standard FITS file), do either of the
following:

• Double click on the FITS file in the Navigator view.

• Choose File → Open File , select the FITS file and click Open.

The tasks used by HIPE to load FITS files are fitsReader and simpleFitsReader. The fit-
sReader task (see Figure 1.29) tries to guess the file contents by looking at the XTENSION keyword,
and puts the contents in a variable of the appropriate type.

Note

This procedure is also valid for high-level reduced data from ISO, XMM-Newton, ALMA
and SOFIA. For files that aren't correctly imported this way, please see Section 1.16.6

If fitsReader does not recognise the file contents, it defaults to the simpleFitsReader task.
This task is optimised to read data from FITS files as packaged by HIPE. If the file is not a HIPE
FITS product, the contents are put in unformatted arrays. You can choose how to read the file or let
the software choose.

To run fitsReader or simpleFitsReader from HIPE, go to the Tasks view, select the All tasks
folder and scroll down to fitsReader or simpleFitsReader. Double click on the task name

38

Data input/output Build 15.0.3244

to open its dialogue window. Insert the input file name and click the Accept button to run the task
and read in the FITS file.

Figure 1.29. FITS read task dialogue window.

From the command line

You can read data from a FITS file into HIPE with the fitsReader in HCSS User's Reference Manual
task. Follow the link to access the corresponding entry in the User's Reference Manual.

myProduct = fitsReader("myProduct.fits") # Load a product from FITS

Example 1.32. Load a product from a FITS file.

1.16.3. Translation of Herschel metadata to FITS key-
words

Long, mixed-case parameter names, defined in the metadata of your product, are converted to a FITS
compliant notation. This notation dictates that parameter names must be uppercase, with a maximum
length of eight characters.

HIPE uses the following lookup dictionaries to convert well-known FITS parameter names into a
convenient and human-readable name:

• Common keywords widely used within the astronomical community, which are taken from
HEASARC.

• Standard FITS keywords.

• HCSS keywords containing keywords that are not defined in the above dictionaries.

• Instrument-specific dictionaries:

• The HIFI-specific dictionary is included in the HCSS dictionary and maintained as a part of it.
See above.

39

../../hcss_drm/ia/io/fits/dictionary/DictionaryHeasarc.map
http://heasarc.gsfc.nasa.gov/
../../hcss_drm/ia/io/fits/dictionary/DictionaryStandard.map
../../hcss_drm/ia/io/fits/dictionary/DictionaryHcss.map

Data input/output Build 15.0.3244

• The PACS-specific dictionary is located here.

For example the following metadata is transformed into a known FITS keyword:

product.meta["softwareTaskName"]=StringParameter("FooBar")

Example 1.33. Setting a metadata property to a StringParameter value.

The result in the FITS product header is the following:

HIERARCH key.PROGRAM='softwareTaskName'
 PROGRAM = 'FooBar '

A full demonstration is available in the following example. The script creates a product with several
nested datasets, stores it into a FITS file, and then retrieves it again.

First we will get some unit definitions for our example
from herschel.share.unit import *
from java.lang.Math import PI

Construction of a product (only for demonstration purposes)
points = 50
x = Double1d.range(points)
x *= 2*PI/points
eV = Energy.ELECTRON_VOLTS
Create an array dataset that will eventually be exported
s = ArrayDataset(data = x, description = "range of real values", \
unit = eV)
degK = Temperature.KELVIN
Provide some metadata for it (header information)
s.meta["temperature"] = LongParameter(long=293,\
description="room temperature", unit = degK)

We can store the array in a FITS file
after making it a Product
p = Product(description="FITS demonstration",creator="You")
Add some meta data
p.meta["sampleKeyword"]=StringParameter("First FITS file")
p.meta["observationInstrumentMode"]=StringParameter("UnitTest")
Add the array of data to the product
p["myArray"] = s
Store in FITS file
fits = FitsArchive()
fits.save("sdemo.fits", p)

And restore it
scopy = fits.load("sdemo.fits")

Create a TableDataset for export
t = TableDataset(description = "This is a table")
t["x"] = Column(x)
t["sin"] = Column(data=SIN(x),description="sin(x)")

And a composite dataset with an array and a table in it
c = CompositeDataset(description="Composite with three datasets!")
c.meta["exposeTime"] = DoubleParameter(double=10,description="duration")
c["childArray"] = s
c["childTable"] = t
c["childNest"] = CompositeDataset("Empty child, just to prove nesting")

And finally, a product that has the composite dataset,
TableDataset and array dataset.
p = Product(description="FITS demonstration",creator="demo.py")
p.creator = "You?"
p.modelName = "demonstration"
p.meta["sampleKeyword"] = \

40

../../pacs_drm/pacs/share/io/DictionaryPacs.map

Data input/output Build 15.0.3244

StringParameter("Example keyword not in FITS dictionaries")
p.meta["observationInstrumentMode"] = StringParameter("UnitTest")
p["myArray"] = s
p["myTable"] = t
p["myNest"] = c

Save our product ...
fits.save("demo.fits",p)
... load it back into a new variable, n,...
n = fits.load("demo.fits")
... and show it!
print n
print n["myArray"]
print n["myNest"]
print n["myNest"]["childNest"]

We can also get information on the metadata/keywords
print n.meta
And look at a specific piece of metadata
print n.meta["startDate"]

Example 1.34. Create FITS file from random data and read it back.

1.16.4. Structure of Herschel products when saved as
FITS

This section describes the structure of FITS files created from typical Herschel product types appearing
in Level 2 data.

All FITS files described here, when produced from Herschel observation products, also have a His-
tory extension with three child extensions: HistoryScript, HistoryTasks and History-
Parameters. These are explained separately in Section 1.16.4.9.

How to export data products from HIPE to other astronomical software is described in Section 1.16.7.
If you have successfully exported Herschel data to other software, you are encouraged to contribute

information to this page. Click the icon in the toolbar of the HIPE Help System to get in touch
with us.

1.16.4.1. General information

World Coordinate System. WCS information is held in the main header of the FITS file and in
the image extension, for those products that have an image dataset.

Measurement units. Information on measurement units is held in the header of each FITS exten-
sion. Look for the QTTY____ and BUNIT keywords, unless stated otherwise in the following sec-
tions.

1.16.4.2. SimpleImage

A FITS file from a SimpleImage shows at least three image extensions called image, error and
coverage. These have the same size and contain the flux, error and coverage information of the
original image, respectively. Usually there is also a History extension and more could be created
by the pipelines. To check which extensions are present in the product, you can use print mySim-
pleImage and check the contents of the datasets attribute.

If a WCS is present in the original image, the WCS keywords appear in the FITS file for each array-like
extension such as coverage, error.

For the most current information about the structure of products and their datasets, you can check the
Product Definitions Document and, for PACS products, the PACS Products Explained document.

41

../../pacs-ppe/html/pacs-ppe.html

Data input/output Build 15.0.3244

Figure 1.30. Structure of a FITS file produced from a SimpleImage.

1.16.4.3. SpectralSimpleCube for PACS

A SpectralSimpleCube has two three-dimensional datasets, image and coverage, and one
table dataset ImageIndex, with two columns relating each cube layer to its wavelength. The Lay-
erCount column contains the layer index (starting from zero) and the DepthIndex column con-
tains the corresponding wavelength.

These datasets are translated to two image and one binary extension in the FITS file, with the same
names. The wavelength measurement unit is held in the header of the ImageIndex extension, under
the TUNIT1 keyword.

If a WCS is present in the original image, this is kept in the FITS file.

Tip

A PACS projected cube is a SpectralSimpleCube.

Figure 1.31. Structure of a FITS file produced from a SpectralSimpleCube from a PACS observation.
The two columns of the ImageIndex binary table extension are shown.

1.16.4.4. SpectralSimpleCube for SPIRE

The structure of this product, and corresponding FITS files, for SPIRE observation is mostly the same
as for PACS observations, as described in Section 1.16.4.3. The only difference is the addition of

42

Data input/output Build 15.0.3244

two more three-dimensional datasets, error and flag , converted to two image extensions in the
FITS file.

Figure 1.32. Structure of a FITS file produced from a SpectralSimpleCube from a SPIRE observation.
The two columns of the ImageIndex binary table extension are shown.

1.16.4.5. SpectralSimpleCube for HIFI

You can find SpectralSimpleCube objects in Level 2.5 HIFI data. These cubes are made of three
three-dimensional datasets, called image, weight and flag. These are converted to three image
extensions in the FITS file.

Unlike cubes from PACS and SPIRE observations, there is no ImageIndex dataset relating cube
layers to their wavelength (frequency for HIFI). Instead, you can look at the image dataset metadata,
where parameters crpix3, crval3, ctype3 and so on define the reference layer, unit and scale
of the frequency axis.

These keywords are translated to the header of the image extension in the FITS file.

Figure 1.33. Structure of a FITS file produced from a SpectralSimpleCube from a HIFI observation.

1.16.4.6. PacsRebinnedCube

A PacsRebinnedCube derives from a SpectralSimpleCube and adds more components to
it. The exported FITS file is correspondingly more complicated.

Cube data is held in six three-dimensional image extensions, called image, ra, dec, stddev, ex-
posure and flag. The ra and dec extensions hold the coordinates of each pixel in degrees (the
measurement unit is shown in the extension header).

The ImageIndex extension relates each cube slice to its wavelength, in the same way as with a
SpectralSimpleCube. The waveGrid extension contains the same wavelength information as
the ImageIndex extension, but without the LayerCount column.

The contents of the qualityControl extension can be ignored.

43

Data input/output Build 15.0.3244

Figure 1.34. Structure of a FITS file produced from a PacsRebinnedCube. The two columns of the
ImageIndex binary table extension are shown.

1.16.4.7. HifiTimelineProduct

The HifiTimelineProduct is a product context (a container with references to other products),
which means that it cannot be saved as FITS file from HIPE.

Inside a HifiTimelineProduct there are a summary table and one or more DatasetWrapper
products (one per building block) containing a number of SpectrumDataset objects.

The summary table and each DatasetWrapper can be separately saved as FITS files, but note that
these FITS files will not have the History extension.

The FITS file of a summary table has one binary extension called wrapped, which reproduces the
original table.

The FITS file of a DatasetWrapper has one binary extension per spectrum. These are called 0001,
0002 and so on. These extensions contain the actual spectra. Each extension is a table with one
row and as many columns as the parameters describing the spectrum. Each table cell may contain a
single value (like longitude and obs time) or an array of values (like flux and lsbfrequency).

Figure 1.35. Structure of a FITS file produced from a HifiTimelineProduct. This product cannot be
saved directly as a FITS file, but the summary table and each DatasetWrapper can. The dashed gray
lines show the contents of each FITS file.

44

Data input/output Build 15.0.3244

1.16.4.8. SpectrometerPointSourceSpectrum

This SPIRE product has one extension called 0000, with two children extensions called SSWD4 and
SLWD4. These correspond to the centre bolometers of the short and long wavelength spectrometer
arrays, respectively. Each extension is a table with five columns: wave (wavelength), flux, error,
mask (zero unless mask flags have been applied) and numScans. Each row is a data point of the
spectrum.

The numScans column is not present for data processed with SPG versions prior to 9.1.0.

Figure 1.36. Structure of a FITS file produced from a SpectrometerPointSourceSpectrum. The
five table columns are shown for the SSWD4 extension. They are the same for the SLWC3 extension.

1.16.4.9. The History extension

The History extension is part of all the FITS files generated from HIPE products, including those
described in the previous sections. It contains the following child extensions, all in binary table format:

• HistoryScript. This table contains a Jython script with all the operations performed on the data
that resulted in this data product. The table as a single column, and each row corresponds to a line
of the script.

• HistoryTasks. This table shows the names of all the tasks used in data processing, and the corre-
sponding HIPE version and build number. The execution date and time is also shown in the Ex-
ecDate column. The format is FineTime, that is, the number of microseconds since 1st January
1958. To convert a value to a more convenient format, you can use a command like the following
in the Console view of HIPE:

print FineTime(1693341725238000)

Example 1.35. Printing a FineTime formatted string to the console.

• HistoryParameters. This table lists all the task parameters used during data processing, with their
type, value and whether the value used was the default (column IsDefault). Note that, for pa-
rameters, of type PRODUCT, the value is usually an expression like hash2798118624. This is a
unique value identifying the particular data product that was used.

With the TaskID column you can find the task a given parameter was used in, by comparing the
value with those in the ID column of the HistoryTasks column.

For more information about history in products, see the Scripting Guide: Section 2.8.7 in Scripting
Guide.

45

Data input/output Build 15.0.3244

Figure 1.37. Structure of the History extension of a FITS file created from a Herschel product. Column
names for each of the three binary table extensions are shown.

1.16.5. Troubleshooting FITS import/export
For more information see the FITS IO general documentation.

Problems opening FITS files created by HIPE

If you export a FITS file from HIPE and modify it with an external program, HIPE may not be able
to import it anymore. If this happens, follow these steps:

1. Open the FITS file with a FITS editing program such as fv.

2. Delete the HCSS____ keyword from the header of all extensions.

3. Save the file.

HIPE should now be able to read the file.

FITS header character limit

A FITS header card is limited to 80 characters. StringParameters and FITS card descriptions longer
than the allocated length are distributed over multiple lines. An & character at the end of a line means
that the text continues on the next line. The keyword CONTINUE is used for the lines after the first one.

Opening multi-extension FITS files in DS9

When FITS files with multiple extensions are opened as cubes in DS9, the application crashes. One
alternative is to open the different extensions in separate frames, for which you need at least version 6
of DS9. Version 6 or higher of DS9 does not crash on cubes, and it correctly opens only the relevant
extensions.

1.16.6. Importing a non-Herschel FITS file into HIPE
There are several options for importing data from a non-Herschel FITS file and making it fit into a
Herschel product or dataset. These options go from a relatively simple class for reading/writing FITS
files which is included along with Java (FitsArchive) to a HIPE task that tries to smartly guess the
most similar Herschel product to create and load the FITS file data into (fitsReader). Some of them
have been previously described in this section, but they will be mentioned again as part of a workflow
that will allow you to select the most appropriate mechanism for importing some exotic FITS file.

46

../../hcss_drm/ia/io/fits/index.html

Data input/output Build 15.0.3244

1. The FitsArchive class can only be used via script and you can find examples in both the URM
entry in HCSS User's Reference Manual and in this section in Example 1.39 (writing FITS only).
The usual output for this class is simply a dataset that holds the data encapsulated in a generic
Product.

2. The simpleFitsReader task has been explained before in Section 1.16.2. To use the task
through the GUI, you can:

• Double click on the FITS file in the Navigator view.

• Choose File → Open File , select the FITS file and click Open .
When using the GUI, if you select guess (see Figure 1.29) as the fitsType input parameter,
the task that will be called internally is fitsReader instead. This option tries to guess the file
contents by looking at the XTENSION keyword, and puts the contents in a variable of the appro-
priate type. If fitsReader does not recognise the file contents, it defaults to the simpleFit-
sReader task. This task is optimised to read data from FITS files as packaged by HIPE. If the file
is not a HIPE FITS product, the usual output is a set of unformatted arrays. To run fitsReader
or simpleFitsReader from HIPE, go to the Tasks view, select the All tasks folder and scroll
down to fitsReader or simpleFitsReader. Double click on the task name to open its dia-
logue window. Insert the input file name and click the Accept button to run the task and read in the
FITS file. Finally, if you want to script those tasks, either have a look at their URM entries (simpl-
eFitsReader in HCSS User's Reference Manual or fitsReader in HCSS User's Reference Manual)
or try this example copied from the URM:

filepath = "path_to_file/filename"
readertype = SimpleFitsReaderTask.ReaderType.STANDARD
product=simpleFitsReader(file=filepath, reader=readertype)

Example 1.36. Importing a non-Herschel FITS file with the simpleFitsReader task.

Remember that the fitsReader task is the same but it only requires one parameter (therefore
using guessing implicitly): file.

3. If you know the HIPE type that most closely matches the FITS file data, you can use any of the
import * tasks. These are the current import tasks:

• importCube in HCSS User's Reference Manual

• importSpectralCube in HCSS User's Reference Manual

• importImage in HCSS User's Reference Manual

• importRgbImage in HCSS User's Reference Manual
The image importing tasks only have one parameter, a string containing the path to the file and
return the image as an output parameter. For example:

filePath = "myNonHerschel.fits"
myImage = importImage(filename = filePath)

Example 1.37. Importing non-Herschel FITS files using specific image import tasks.

The cube importing tasks have two parameters, an input/output parameter that takes a previously
defined variable and sets its content to the data in the FITS file and a string containing the path
to the file. For example:

filePath = "myNonHerschel.fits"
myCube = SpectralSimpleCube()
myCube = importSpectralCube(spectralcube = myCube, filename = filePath)

Example 1.38. Importing non-Herschel FITS files using specific spectral import tasks.

47

Data input/output Build 15.0.3244

1.16.6.1. Using data from other missions and observatories

HIPE is able to load FITS files. Being an open format, many missions and observatories offer their
products as FITS files. In particular, HIPE can read the FITS files that the Common Astronomy Soft-
ware Applications (CASA) suite of tools produces. This software is used to process the raw data (un-
readable by HIPE) obtained from ALMA interferometer and generate the final products (readable by
HIPE in the form of a standard FITS file).

1.16.7. Importing a Herschel FITS file into external ap-
plications

This section describes how to import FITS files of Herschel products into some popular data analysis
applications.

1.16.7.1. IDL

Importing images. See the following code:

IDL> im = mrdfits('/path/image.fits',1)
% Compiled module: FXMOVE.
% Compiled module: MRD_HREAD.
% Compiled module: FXPAR.
% Compiled module: GETTOK.
% Compiled module: VALID_NUM.
% Compiled module: MRD_SKIP.
MRDFITS: Image array (2012,2009) Type=Real*8
% Compiled module: SWAP_ENDIAN_INPLACE.
IDL> tv,im

Importing spectra. See the following code:

IDL> spec = mrdfits('/path/spectrum.fits',2)
% Compiled module: MATCH.
% Compiled module: MRD_STRUCT.
MRDFITS: Binary table. 4 columns by 2061 rows.
IDL> help,spec,/struc
** Structure <15e03af4>, 4 tags, length=28, data length=28, refs=1:
 WAVE DOUBLE 31.200000
 FLUX DOUBLE 8.2931329
 ERROR DOUBLE 3.4131544
 MASK LONG 0
IDL> plot,spec.wave,spec.flux

Importing cubes. See the following code:

IDL> cube = mrdfits('/path/cube.fits',2)
MRDFITS: Image array (16,18,374) Type=Real*8
IDL> help,cube
CUBE DOUBLE = Array[16, 18, 374]
IDL> plot,cube[8,8,*]

In the case of PACS projected cubes, the structure of the FITS file is that described in Section 1.16.4.6 .

IDL> FITS_HELP,'path/cubeName.fits'
XTENSION EXTNAME EXTVER EXTLEVEL BITPIX GCOUNT PCOUNT NAXIS NAXIS*
0 32 0 0 0
1 IMAGE image -64 1 0 3 39 x 39 x 29
2 IMAGE coverage -64 1 0 3 39 x 39 x 29
3 BINTABLE ImageIndex 8 1 0 2 12 x 29
4 IMAGE History 32 1 0 0
5 BINTABLE HistoryScript 8 1 0 2 80 x 7
6 BINTABLE HistoryTasks 8 1 0 2 35 x 1
7 BINTABLE HistoryParameters 8 1 0 2 103 x 12
IDL> image = mrdfits('path/cubeName', 'image', hd) ; the header contains the image's
 WCS
IDL> imageIndex = mrdfits('path/cubeName','ImageIndex')

48

Data input/output Build 15.0.3244

IDL> wave = imageIndex.depthindex ; cube's wavescale

1.16.7.2. CLASS

You can read the FITS files produced with the hiClass task in HIPE on HIFI data with the following
commands:

file out MyHIFISpectra.hifi mul
fits read MyHIFISpectra.fits
#
Now you have a CLASS file named MyHIFISpectra.hifi (you can use whatever
you want as an extension) you can access like you always do in CLASS:
#
file in MyHIFISpectra.hifi
find
get first
set unit f i
device image white
plot

For PACS data or any Spectrum1d product, run this script in HIPE:

Spectrum1d to CLASS FITS conversion
Written by C. Borys April 15, 2010
cborys@ipac.caltech.edu
Inspired greatly by HICLASS, written originally by Bertrand Delforge
and now maintained by Damien Rabois.
The core code was taken directly from that package.

NOTE: this code is specific for HIFI, and even then may lack
some of the keywords CLASS looks for. The script is relatively
easy to tweak however.

Out of the box, this should work on the spectrum1d that
is output from HIFI's deconvolution task. Indeed that was
the driver for this task in the first place.

'''

from herschel.ia.io.fits.dictionary import AbstractFitsDictionary
from herschel.share.fltdyn.time import FineTime
from java.util import Date
from herschel.share.unit import Frequency

Define keyword dictionary
The following class is stolen directly from HICLASS
class MyFitsDictionary(AbstractFitsDictionary):
"""Dictionary to use with FitsArchive to get proper keywords.

Because HCSS can use metadata parameters with fancy names and FITS
is stuck with keywords of 8 uppercase ASCII characters, a
dictionary is needed to convert the meta data parameter names into
FITS keywords.

The present class defines a dictionary for which the HCSS name and
the FITS name of a parameter are identical. This allows you to
populate a HCSS dataset using the keywords you will want to see
appear in the FITS file. And they will be used.

When instanciating this dictionary, feed to the constructor a
product created by HiClass. It will be scanned and all the meta
data parameters found in its datasets will be added to the
dictionary.

Say you want to export a product p:
>>> dico = MyFitsDictionary(p)
>>> archive = FitsArchive()
>>> archive.rules.append(dico)
>>> archive.save(sFileName, p)

"""

49

Data input/output Build 15.0.3244

def __init__(self, p):
 """p: HiClass product."""
 AbstractFitsDictionary.__init__(self)
 self._addKeysForProduct(p)
def _addKeysForProduct(self, prod):
 map(self._addKeysForDataset, map(prod.get, prod.keySet()))
def _addKeysForDataset(self, ds):
 for meta_name in ds.meta.keySet():
 self.set(meta_name, meta_name)

This routine checks for a meta data parameter and if it doesn't exist,
sets a default.
def checkForMeta(spectrum,metaName,metaDefault) :
if spectrum.meta.containsKey(metaName):
 mdata = spectrum.meta[metaName]
else :
 class_name= metaDefault.__class__.__name__
 print metaName, "tag not found in spectrum. Setting to default"
 if class_name.endswith('Float') :
 mdata = DoubleParameter(Double(metaDefault))
 elif class_name.endswith('Double') :
 mdata = DoubleParameter(metaDefault)
 elif class_name.endswith('String') :
 mdata = StringParameter(metaDefault)
 elif class_name.endswith('Long') :
 mdata = LongParameter(metaDefault)
return mdata

the main routine:
def spectrum1dToClass(spectrum,fitsfn):
ensure that the spectrum is a 1d.
class_name = spectrum.__class__.__name__
if class_name.endswith('Spectrum1d'):
 print "Converting input spectrum"
else :
 print "Input is not a Spectrum1d, exiting."
 return -1

p=Product(description = 'Herschel HIFI', \
 instrument = 'HIFI', \
 creator = 'spectrum1dToClass')
p.type = 'Class formatted fits file'

sFlux=spectrum.getFlux()
sWave=spectrum.getWave()*1e6 # converts to Hz, assumes data is in MHz
n_channels=sFlux.length()

compute frequency parameters
this computes a scale, but needs a lot of error checking
-assumes data has no NANs and is ordered, etc.
works fine for decon output but may crash on types of 1d.
sIndex = Double1d.range(len(sWave))
fitter = Fitter(sIndex, PolynomialModel(1)) # Degree 1: y = ax+b.
result = fitter.fit(sWave)
freqSpacing=result[1]
freqStart=result[0]
Irregularity. not used for now.
diff = (sIndex * freqSpacing + freqStart)-sWave
irregularity = STDDEV(diff)

blankingvalue=-1000

here is where we set all the meta data CLASS fits needs.
meta= MetaData()
#
Axis dimensions.

meta['MAXIS'] = LongParameter(4, "Number of axis")
meta['MAXIS1'] = LongParameter(n_channels, "Max nb of channels in spectrum")
meta['MAXIS2'] = LongParameter(1, "Position coordinate 1 scale")

50

Data input/output Build 15.0.3244

meta['MAXIS3'] = LongParameter(1, "Position coordinate 2 scale")
meta['MAXIS4'] = LongParameter(1, "Stokes parameters")
#
Axis 1: Frequency.

CLASS understands FREQ, FREQUENCY, LAMBDA, WAVELENGTH.
meta['CTYPE1'] = StringParameter("FREQ", "Frequency scale parameters")
meta['CRVAL1'] = DoubleParameter(freqStart, \
 "Frequency offset @ reference channel")
meta['CDELT1'] = DoubleParameter(freqSpacing, \
 "Freq step, fres, channel width.")
meta['CRPIX1'] = LongParameter(0, "Number of the reference channel")
#
Axis 2: Right ascention.

CLASS understands RA--, RA ; DEC-, DEC ; GLON ; GLAT ; TIME, UT.
For the projection system, CLASS understands
: P_NONE = 0 ! Unprojected data
-TAN: P_GNOMONIC = 1 ! Radial Tangent plane
-SIN: P_ORTHO = 2 ! Dixon Tangent plane
-ARC: P_AZIMUTHAL = 3 ! Schmidt Tangent plane
-STG: P_STEREO = 4 ! Stereographic
lamb: P_LAMBERT = 5 ! Lambert equal area
-ATF: P_AITOFF = 6 ! Aitoff equal area
-GLS: P_RADIO = 7 ! Classic Single dish radio mapping
Read Representations of celestial coordinates in FITS
Authors: Mark R. Calabretta, Eric W. Greisen
(Submitted on 19 Jul 2002)
arXiv:astro-ph/0207413v1
http://arxiv.org/abs/astro-ph/0207413

Be careful:
RA becomes RA---GLS with three hyphens
Dec becomes DEC--GLS with two hyphens.
That's why we can also write 'RA--' and 'DEC-'
for 'RA' and 'DEC': it's just easier to add the
projection code after that.
#
proj = '-GLS'
#

meta['CTYPE2'] = StringParameter('RA--' + proj)
meta['CRVAL2'] = checkForMeta(spectrum,"raNominal",0.0)
meta['CDELT2'] = DoubleParameter(0.0)
meta['CRPIX2'] = DoubleParameter(0.0)
#
Axis 3: Declination.

meta['CTYPE3'] = StringParameter('DEC-' + proj)
meta['CRVAL3'] = checkForMeta(spectrum,"decNominal",0.0)
meta['CDELT3'] = DoubleParameter(0.0)
meta['CRPIX3'] = DoubleParameter(0.0)
#
Axis 4: Stokes.

meta['CTYPE4'] = StringParameter('STOKES')
meta['CRVAL4'] = DoubleParameter(1.0)
meta['CDELT4'] = DoubleParameter(0.0)
meta['CRPIX4'] = DoubleParameter(0.0)
#
Misc. information.

meta['EQUINOX'] = checkForMeta(spectrum,"equinox",0.0)
meta['BLANK'] = LongParameter(blankingvalue, "Marker of invalid channels")
meta['DATE-RED'] = DateParameter(FineTime(Date()),"Creation date of this file")
meta['PVEL-LSR'] = DoubleParameter(0.0,"source velocity")
meta['PVELTYPE'] = StringParameter('radio','source velocity type')
meta['TELESCOP'] = StringParameter('Herschel-HIFI-WBS','source of data')
meta['SCAN'] = LongParameter(1)
meta['SUBSCAN'] = LongParameter(1)
meta['OBJECT'] = checkForMeta(spectrum,"object",'Unknown object')
meta['MOLECULE'] = StringParameter('Unknown molecule','Molecule name')

51

Data input/output Build 15.0.3244

meta['LINE'] = StringParameter('Unknown line','Line name')
meta['EXPOSURE'] = checkForMeta(spectrum,"exposure",0.0)
meta['TSYS'] = checkForMeta(spectrum,"Tsys",0.0)
meta['RESTFREQ'] = DoubleParameter(freqStart,'')
meta['IMAGFREQ'] = DoubleParameter(freqStart,'')
meta['BEAMEFF'] = checkForMeta(spectrum,"beff",1.0)
meta['PRESSURE'] = DoubleParameter(0.0,'Atmospheric pressure')
meta['TOUTSIDE'] = DoubleParameter(0.0,'Atmospheric temperature')

convert the 1d flux into a 2d array for CLASS.
sArray=Double2d(1,sFlux.length())
sArray[0,:]=sFlux
format the data into a table dataset, and tag it with our metadata
sData=TableDataset()
sData["DATA"]=Column(data=sArray,description="The spectrum",unit=Frequency.HERTZ)
sData.meta=meta
insert the data into our product, and convert metadata keywords into FITS
 compliant text.
p["data"]=sData
keyDictionary=MyFitsDictionary(p)
for meta_name in meta.keySet():
 keyDictionary.set(meta_name, meta_name)

save the output.
fits=FitsArchive()
fits.rules.append(keyDictionary)
fits.save(fitsfn, p)

example usage:
spectrum1dToClass(mySpectrum1d,'myClassOutput.fits')

Example 1.39. Complete example to convert a Spectrum1d class to a CLASS FITS file.

1.16.7.3. SAOImage DS9

Choose File → Open to open FITS files of Herschel images and cubes.

Note also that you can exchange data between HIPE and SAOImage DS9 via the Virtual Observatory
SAMP protocol. See Section 1.17 for more information.

1.17. Working with the VO (External Tools)
The Virtual Observatory is a set of technologies allowing, among other things, the integration of dif-
ferent data analysis applications. You can view and manipulate data in one application (such as HIPE),
send it to another application with the click of a button, view and manipulate the data there, and send
it back to the original application. HIPE supports this using SAMP, Simple Application Message Pro-
tocol .

SAMP works using a message hub , a very light-weight piece of software that coordinates data ex-
change among VO-aware applications.

All ESA archives are VO-aware already, but access to VO-aware archives in HIPE is not available
yet. Aladin or VOSpec (please open this link in a new tab or window) already provide an interface
to many data sources, such as the ESA archives, including ISO. So it is possible to access the ESA
archives by retrieving the data using Aladin and sending it to HIPE from there.

1.17.1. Sending products from HIPE to external tools

To send a data product to a VO-enabled application, follow these steps:

1. If the application is not one of SAOImage DS9 , Topcat , Aladin or VOSpec , start it manually. If
the application is one of those listed, HIPE will start it automatically when sending the data.

52

http://aladin.u-strasbg.fr/aladin.gml
http://www.cosmos.esa.int/web/esdc/vospec

Data input/output Build 15.0.3244

You can start some VO-enabled applications directly from HIPE. Click the External Tools icon in
the HIPE Welcome page to display the list. Click an icon to launch the corresponding application.

2. Select the product in the Variables view.

3. Do either of the following:

• From Tools → Interoperability → Send Data to , select the application to which you want to
send your product.

• Right click on the product in the Variables view and from the Send to menu choose the appli-
cation to which you want to send your product.

The product appears in the chosen application.

To return the data to HIPE, send them from the other application. Refer to the documentation of the
external application for instructions.

Troubleshooting.

• Data exchange is possible only if there is an overlap between the VO interfaces supported by HIPE
and the other application. If the applications have no supported interface in common, no data can be
exchanged. This is indicated by the external application name being greyed out in the Send Data
to menu.

• There is no VO protocol to exchange whole data cubes between application. You must instead
extract and send single images or spectra.

• If the application is not listed in the Send Data to menu at all, make sure that the application is
connected to SAMP.

• VOSpec may be listed twice in the menu as VOSpec and VOSpec (2, not supported) . This is due
to a bug in version 6.5.p2 of VOSpec. Use the VOSpec entry and ignore the other one.

• If HIPE cannot find SAOImage DS9 on your system, choose Edit → Preferences and go to External
Tools , where you can specify where the application is installed.

• HIPE connects to the VO automatically at startup. If the icon at the bottom right corner of HIPE

is white () instead of yellow () it means that HIPE has disconnected for some reason.
Choose Tools → Interoperability → Connect to the VO to connect again.

• When you select an application from the Send Data to menu and that application is downloaded
via Java WebStart, you may need to send the data a second time after the application has started.

• If none of the above points solves your problem, you may have found a bug in the software. Please
raise a Helpdesk ticket.

Choosing Tools → Interoperability → SAMP Hub Status opens the SAMP Hub Monitor:

53

Data input/output Build 15.0.3244

Figure 1.38. The SAMP Hub Monitor window.

Here you can find information about the client applications connected to the hub and the messages
sent and received by each application. You should not have to look at this window other than for
debugging purposes.

1.17.2. Sending products from external tools to HIPE
To return the data to HIPE, send them from the other application. Refer to the documentation of the
external application for instructions.

Caveats. Sending data from external applications to HIPE has the following limitations:

• It is not possible to send multiple planes at once from Aladin to HIPE.

• It is not possible to send HIFI OTF maps back to HIPE from Aladin.

• When sending a table dataset to Topcat, units are not treated correctly. Degrees and arcminutes are
converted to radians, while other units are ignored.

1.17.3. Opening VO Tables from HIPE
You can open VO table data in XML form without resorting to SAMP interoperability. This type
of VO Table file is returned from the execution of TAP queries on services like VizieR or Simbad,
or using tools like Topcat and Aladin. It can be identified by the root tag <VOTABLE> or the XML
declaration <?xml at the beginning of the file. To do that, you make use of the task voToTable.
This task takes two parameters, data is the path to the VO table XML file and name is the mandatory
name for the output TableDataset. The path parameter can be either an absolute path or relative
to HIPE installation and the XML file could even be packaged in a JAR file.

table1 = voToTable(data='votable.xml', name='Dubhe')

Example 1.40. Converting a VO table in XML format to TableDataset.

The output is a regular instance of TableDataset containing all the info from the VO table XML
file.

54

Data input/output Build 15.0.3244

1.17.4. Writing tables to files in VO-table XML format
To write a TableDataset instance to a file in VO-table XML format, there is a task called table-
ToVo which takes as arguments the file name and the TableDataset to write. You can use the
following two examples as reference:

Taking a dataset from an auxiliary product - happens to be a EventsLogDataset in
 this case.
obs = getObservation(obsid=1342265972, useHsa=True)
data = obs.refs["auxiliary"].product.refs["EventsLogProduct"].product["16_2"]
from tempfile import NamedTemporaryFile
outfile = NamedTemporaryFile(delete=False)
The task requires a specific file extension (.xml, .vot or .votable)
outfile.name += ".xml"
tableToVo(file=outfile.name, table=data)

Example 1.41. Writing a TableDataset from an observation to an XML-based VO file.

Constructing a simple TableDataset from scratch
t = TableDataset()
t["First"] = Column(Double1d(10))
t["Second"] = Column(Double1d(10))

from tempfile import NamedTemporaryFile
outfile = NamedTemporaryFile(delete=False)
The task requires a specific file extension (.xml, .vot or .votable)
outfile.name += ".xml"
tableToVo(file=outfile.name, table=t)

Example 1.42. Writing a synthetic TableDataset to an XML-based VO file.

55

Build 15.0.3244

Chapter 2. Saving data as text files
This chapter covers the reading and writing of tabular data from text (ASCII) files. The first section
lays out some considerations for users working with text files, and explains some of the concepts and
terms that apply to handling ASCII data in HIPE. This is followed by several sections of "worked
examples" with data formats you may typically encounter. The remaining sections each address a
particular task that you may want to accomplish.

You can choose to first go to the "worked examples" as a quick start to working with the ASCII I/
O tasks in HIPE, or to jump to individual task-based sections of interest, or to read straight through
the chapter from beginning to end.

2.1. Considerations and concepts for working
with text files

Points to consider about ASCII I/O.

• The best ASCII format to use with HIPE is CSV. HIPE is prepared to automatically open
comma-separated values (CSV) files with the .csv file extension, when double-clicking them in
the Navigator view. Files with delimiter characters usually require less effort to parse than blank
space separated files, which can require fine-tuning and configuration of the parser class. See Sec-
tion 2.14 and the sections after that one.

• FITS files are often a better exchange format. Products in HIPE are easily exported to FITS
files, which are easily read back into HIPE with metadata and history preserved. There is no general
way to save a data product or a product context to text files, aside from the Spectrum products. If
you must save a product to file, save it into FITS format. See Section 1.16.1 for more details.

• The ASCII I/O tasks work, in general, with table datasets. Table datasets are by far the most
common data structure for Herschel data. Any Herschel data product is ultimately a collection of
table datasets. There are dedicated HIPE tasks to exchange data in table dataset form with text files.
See the next sections for details.

For more information on table datasets, see the Scripting Guide: Section 2.4 in Scripting Guide.

Tip

You can save table datasets directly to FITS format. This is the recommended way to
save table datasets to file. See Section 1.16.1 for more details.

• The ASCII I/O tasks are tools that often require manual configuration. Aside from a few
automatically-supported formats, the tasks require some setup in order to handle all cases of data in
text files. To set up all column information in a table dataset such as name, unit, type and description,
typically you will have to perform some configuration on the command-line.

The ASCII I/O tasks do not automatically detect the format of the data in a text file, with the ex-
ception of certain .csv (comma-separated-values) and .tbl (space-separated) files.

Tip

In the Navigator view of HIPE, you can double-click on files ending in .csv or .tbl,
to read these in as, respectively, comma-separated-value or space-separated tables.

• Spectra have their own dedicated task for writing to text files. There is a dedicated export-
SpectrumToAscii task for exporting spectra to text files. This task accepts as input all the
most common data types describing spectra in HIPE, including Spectrum1d, Spectrum2d and
SpectralSimpleCube. An example of using the exportSpectrumToAscii task is given
in Section 2.2. For more information on the exportSpectrumToAscii task, see Section 2.12.

56

Saving data as text files Build 15.0.3244

• Jython in HIPE includes a rich set of functionality for handling text files. There are different
ways to exchange data with text files, depending on the type of data you want to exchange:

• Jython lists, tuples and dictionaries. You can write these data structures to file using Jython
commands, as explained in the Scripting Guide: Section 1.25 in Scripting Guide.

Note that Herschel data is never distributed as plain Jython data structure, so it is unlikely you
will have to write them to file.

For more information on lists, dictionaries and tuples, see the Scripting Guide: Section 1.10 in
Scripting Guide.

• Numeric arrays, such as Double1d. You can wrap 1-dimensional numeric arrays into a table
dataset and write the table dataset to file, as explained later in this chapter. Assuming you have
a Double1d array called myArray, this is how you create a table dataset containing it:

myTableDataset = TableDataset()
myTableDataset["myColumn"] = Column(myArray)

Example 2.1. Creating a TableDataset with a Column made up of array data.

Numeric arrays may be written to a file using the print statement. Consider two Double1d
arrays named wavelength and flux with equal lengths:

wavelength = Double1d(5, 1.0)
flux = Double1d(5, 1.0)
fh = open('myspectrum.txt','w')
for i in range(len(wavelength)):
 print >> fh, '%13.6f %13.6f'% (wavelength[i], flux[i])
fh.close()

Example 2.2. Read a numeric array from a file and loop over its values.

For more information about formatting strings and printing to file, see the Scripting Guide, Sec-
tion 1.23 in Scripting Guide and Section 1.8 in Scripting Guide respectively.

You can read back the values as follows:

fh = open('myspectrum.txt')
lines = fh.readlines()
wave = Double1d()
fl = Double1d()
for line in lines:
 lsplit = line.split()
 wave.append(float(lsplit[0]))
 fl.append(float(lsplit[1]))
fh.close()

Example 2.3. Read a numeric array from a file and tokenise its values in a loop.

For more information on Numeric arrays, see the Scripting Guide: Section 2.2 in Scripting Guide.

Concepts in working with the ASCII I/O tasks. There are several concepts and terms that you
need to know to work with the full functionality of the ASCII I/O tasks.

• Parsers. A parser defines rules to read a text file into HIPE. See Section 2.26 for the available
types of parser, their features and how to configure them.

• Formatters. A formatter defines rules to write data from HIPE into a text file. See Section 2.27
for the available types of formatter, their features and how to configure them.

• Table templates. A table template describes the data to be read from, or written to, a text file. It
defines the number of columns in the file, their name, the type and description of the data. While
the parser defines general formatting rules, such as the character used to separate data values, the

57

Saving data as text files Build 15.0.3244

table template describes the data themselves. See Section 2.25 for how to create and configure a
table template.

• Configuration files. You can use a configuration file to store a particular configuration of the
tasks for reading and writing text files. You can then load the configuration file for subsequent
executions of the task. See Section 2.18 and Section 2.23 for instructions.

• Delimiters. A delimiter is a character that denotes a boundary between fields in a text file.
The most common delimiter is a comma. For more information on specifying delimiters, see Sec-
tion 2.17.

• Regular expressions. A regular expression is a concise and flexible means to match strings of
text, such as particular characters or patterns of characters. Regular expressions are used to specify
which lines of a file to skip, as discussed in Section 2.15, and with the RegexParser for specifying
the delimiter between data fields (for example, to specify multiple spaces or tabs). A discussion of
regular expressions is outside the scope of this manual, but Section 2.28 contains a few examples.

2.2. Worked example: Saving a Spectrum
product as a text file

Use the exportSpectrumToAscii task for exporting spectra to text files. This task accepts as
input all the most common data types describing spectra in HIPE, including Spectrum1d, Spec-
trum2d and SpectralSimpleCube. This section explains how to output a SpectralSimple-
Cube to the default comma-separated-value format, and how to read it back into a table dataset.

Warning

The exportSpectrumToAscii task does not write out all of the columns of the spec-
trum -it only writes the standard wave , flux and weight columns. This is particular-
ly important for SPIRE and PACS data because the error column is not written out.
However, the errors can be written as weights, if weight is set to True in the task, where
the weights are calculated as 1/error^2. To ensure that all the data are written to file,
please use the asciiTableWriter via a script or the GUI, e.g. by right clicking the
variable name in the Variables view and choosing Send To -> Text file.

For more information on the exportSpectrumToAscii task, see Section 2.12.

Command-line script. The script in Example 2.4 retrieves a HIFI cube from the archive, exports
it to an ASCII file in your home directory, and then reads it back into a table dataset.

Worked example for exporting a Spectrum object to the default
ascii format

Retrieve a cube from the archive
obs = getObservation(obsid=1342210097, useHsa=True)
HifiCube=obs.level2_5.refs["cubesContext"].product.refs["cubesContext_WBS-H-USB"]. \
 product.refs["cube_WBS_H_USB_1"].product

print HifiCube.class
prints <type 'herschel.ia.dataset.spectrum.SpectralSimpleCube'>

Set up the output file
from herschel.share.io import FileUtil
myFile = java.io.File(FileUtil.USER_HOME,'HifiCube.txt')
The previous line creates the text file in your home directory. If you
want to create the file in another directory, you can write the full
path plus the file name within quotes, for example:
myFile = java.io.File('/my/custom/path/HifiCube.txt')

Export the Spectrum object to an ASCII file
myFile.absolutePath returns the directory path you chose
for the file, so you do not need to write it again.

58

Saving data as text files Build 15.0.3244

exportSpectrumToAscii(ds=HifiCube, file=myFile.absolutePath)

Now read it back in
HifiCubeTxt = asciiTableReader(file=myFile.absolutePath,\
 ignoreWarn=False)

Example 2.4. Script to export a SpectralSimpleCube to ASCII, and read back into a TableDataset

Output text file format. The script in Example 2.4 outputs the cube into a HifiCube.txt in
your home directory. An excerpt of the output file is shown in Figure 2.1.

Figure 2.1. Excerpt from the output of exportSpectrumToAscii

Each "metadata" or "comment" line begins with a # character. The rest of the file is in the 'HIPE-
standard' comma-separated-value format with a header of four lines.

Re-read table in HIPE. The last line of the script in Example 2.4 reads the exported spectrum into
a table dataset named HifiCubeTxt. A view of this table dataset as rendered by the Dataset Viewer
in HIPE is shown in Figure 2.2. Note that the imported object is not a SpectralSimpleCube. To
recover the original cube, it would be necessary to output it as a FITS file and then to import it to
HIPE. Note also that the metadata are not recovered by asciiTableReader.

Figure 2.2. The TableDataset resulting from running the example script

59

Saving data as text files Build 15.0.3244

2.3. Worked example: Saving a SourceList-
Product as a text file

The SourceListProduct is a catalogue of sources extracted from PACS or SPIRE maps by the
source extraction tasks in HIPE. This section describes how to write a SourceListProduct to
HIPE, then how to read it back in as a TableDataset. This example further shows how to reformat
the TableDataset back into the form of a SourceListProduct.

Parts of this example can be used to reformat an external catalogue into a SourceListProduct.
You can use such a product as input to the HIPE source extractors, or drag and drop it onto a displayed
image in HIPE to mark the source positions.

Command-line script. The script in Example 2.5 will generate a SourceListProduct from a
map retrieved from the archive, write it to a text file in a temporary directory, read the table back into
HIPE and reformat it as a SourceListProduct.

Worked example for outputting a SourceListProduct and
reading it back into HIPE

Retrieve a SPIRE map from the archive
obs = getObservation(obsid=1342222849, useHsa=True)
myMap = obs.level2.refs['psrcPSW'].product

Run sourceExtractorSussextractor to create source list
srcList = sourceExtractorSussextractor(image=myMap,\
 detThreshold=5.0, fwhm=17.5)

Get the temporary directory
import os
temp_dir = Configuration.getProperty('var.hcss.workdir')

Show that the SourceListProduct can be written to FITS
Note this preserves the metadata in the SourceListProduct
simpleFitsWriter(product=srcList, file=\
 os.path.join(temp_dir,'srcList.fits'))

Output the "sources" table to ASCII
Note: in Outline view, you can right-click on the
"sources" TableDataset and then Send to -> Text file
asciiTableWriter(table=srcList["sources"], \
 file=os.path.join(temp_dir,'srcList.txt'))

Read the text file back into HIPE
newSrcTable = asciiTableReader(file=\
 os.path.join(temp_dir,'srcList.txt'), \
 ignoreWarn=False)

Make the TableDataset into a sourceListDataset
newSourceTable = SourceListDataset(newSrcTable)

Insert the SourceListDataset into a SourceListProduct
and update the wcs
newSourceList = SourceListProduct(newSourceTable)
newSourceList.setWcs(myMap.wcs)

Example 2.5. Script to generate a SourceListProduct, write it to a text file, and read it back into HIPE

The initial SourceListProduct. The script in Example 2.5 generates a SourceListProduct
named srcList. The format of this list is shown in Figure 2.3.

60

Saving data as text files Build 15.0.3244

Figure 2.3. The initial SourceListProduct generated by sourceExtractorSussextractor.

Output text file format. The middle lines in the script in Example 2.5 output the SourceList-
Product into a temporary directory, as a FITS file and as a text file. An excerpt of the text file is
shown in Figure 2.4. This default format is comma-separated values with a four-line header as de-
scribed in Section 2.10.

Figure 2.4. Excerpt from the text file written from the SourceListProduct.

Re-read table in HIPE. The last section of the script in Example 2.5 reads the exported
source list into a table dataset named newSrcTable. Note that the imported object is not a
SourceListProduct. The rest of the script shows how to convert the imported table dataset into
a SourceListProduct. A view of this table dataset as rendered by the Dataset Viewer in HIPE
is shown in Figure 2.5.

61

Saving data as text files Build 15.0.3244

Figure 2.5. The reconstituted SourceListProduct with data read in from the text file.

2.4. Worked example: Reading a Spitzer
spectrum into a table dataset

The Spitzer Heritage Archive serves a variety of data products in an ASCII format known commonly
as IPAC Table Format. In this section, the procedure to read in a Spitzer spectrum is shown, using
the RegexParser and a table template.

Note

HIPE can now read files in the IPAC Table Format automatically. See Section 2.8 for
more information. This example is left as an illustration of advanced usage of parsers and
table templates.

Input file format. Spitzer Spectra ASCII table in fixed format. An excerpt is shown in Figure 2.6.

Figure 2.6. Excerpt from the a Spitzer spectrum product.

Each metadata or comment line begins with a backslash. The header information is delimited by the
pipe symbol. The rest of the table can be treated as a space-separated file.

Command-line script. The following script downloads the online catalogue, writes it to a tempo-
rary file, sets up the template and the RegexParser, reads in the table, and deletes the input file.

Worked example for reading in a Spitzer spectrum in "IPAC table" format

62

http://sha.ipac.caltech.edu/applications/Spitzer/SHA/

Saving data as text files Build 15.0.3244

Following is the contents of the table, which is excerpted
from a Spitzer spectrum 'SPITZER_S0_20925696_0005_5_E7559452_bksub.tbl'
contents= (
"\\ char HISTORY PROCESS 2010/10/02 02:34:03\n"
"\\ char HISTORY irs_tune v3.4 (nl_and_params v1.9)\n"
"\\ char HISTORY INFILE = extract.tbl\n"
"\\ char HISTORY INFILE = cal/fluxcon.tbl\n"
"\\ char HISTORY UP_DOWN_MODE = tune_down\n"
"\\ char HISTORY APPLY = 3,\n"
"\\ char HISTORY NAMELIST_FILE = cdf/irs_tune.nl\n"
"|order |wavelength |flux_density |error |bit-flag |\n"
"|int |real |real |real |int |\n"
"| | |Jy |Jy | |\n"
" 1 7.45515 0.346469 NaN 12288 \n"
" 1 7.51564 0.391154 0.003242 0 \n"
" 1 7.57612 0.425596 0.003127 0 \n"
" 1 7.63660 0.407751 0.002902 0 \n"
" 1 7.69709 0.402711 0.002706 0 \n"
" 1 7.75757 0.436215 0.002651 0 \n"
" 1 7.81805 0.467682 0.002622 0 \n"
" 1 7.87854 0.487097 0.002598 0 \n"
" 1 7.93902 0.495642 0.002537 0 \n"
" 1 7.99951 0.507413 0.002473 0 \n"
" 1 8.05999 0.518590 0.002417 0 \n"
" 1 8.12047 0.526655 0.002387 0 \n"
" 1 8.18096 0.536147 0.002327 0 \n"
" 1 8.24144 0.545094 0.002325 0 \n"
" 1 8.30192 0.547389 0.002331 0 \n"
" 1 8.36241 0.548689 0.002258 0 \n"
" 1 8.42289 0.546367 0.002166 0 \n"
" 1 8.48337 0.538944 0.002116 0 \n"
" 1 8.54386 0.526541 0.002110 0 \n"
" 1 8.60434 0.508472 0.002094 0 \n"
" 1 8.66483 0.486871 0.002067 0 \n"
" 1 8.72531 0.461781 0.001984 0 \n"
" 1 8.78579 0.437327 0.001933 0 \n"
" 1 8.84628 0.408632 0.001860 0 \n"
" 1 8.90676 0.381725 0.001845 0 \n"
" 1 8.96724 0.356162 0.001866 0 \n"
" 1 9.02773 0.326461 0.001852 0 \n"
" 1 9.08821 0.298850 0.001872 0 \n"
" 1 9.14869 0.268248 0.001751 0 \n"
" 1 9.20918 0.238048 0.001703 0 \n"
" 1 9.26966 0.208400 0.001683 0 \n"
" 1 9.33015 0.178549 0.001605 0 \n"
" 1 9.39063 0.150669 0.001579 0 \n"
" 1 9.45111 0.123782 0.001466 0 \n"
" 1 9.51160 0.105198 0.001351 0 \n"
" 1 9.57208 0.081897 0.001237 0 \n"
" 1 9.63256 0.066417 0.001172 0 \n"
" 1 9.69305 0.054389 0.001019 0 \n"
" 1 9.75353 0.043911 NaN 12288 \n"
" 1 9.81401 0.034835 NaN 12288 \n"
" 1 9.87450 0.029328 0.001027 0 \n"
" 1 9.93498 0.025912 0.000797 0 \n"
" 1 9.99547 0.021534 0.000759 0 \n"
)

The next three lines merely set up the example to be read in
from herschel.share.io import FileUtil
myFile = java.io.File(FileUtil.TEMP_DIR,\
 'SPITZER_S0_20925696_0005_5_E7559452_bksub.tbl')
FileUtil.saveTextFile(myFile, contents)

Set up the parser to ignore (1) lines beginning with backslash;
(2) lines beginning with the pipe symbol; (3) blank lines.
Set the delimiter to be one or more spaces.
myParser=RegexParser(ignore='^\\\\|^\||^\\s*$',delimiter='\\s+')

Check the units that we will feed to the Table Template

63

Saving data as text files Build 15.0.3244

NOTE: Some HIPE core-only installation need this import
from herschel.share.unit import Unit
print Unit.parse("microns").isKnown()
returns False

print Unit.parse("MICROMETERS").isKnown()
returns True

print Unit.parse("Jy").isKnown()
returns True

Set up the Table Template
myTemplate = TableTemplate(5, \
 names = ["Order", "Wavelength", "Flux", "Error", "Bit-flag"], \
 types = ["Integer", "Double", "Double", "Double", "Integer"], \
 units = ["", "MICROMETERS", "Jy", "Jy", ""], \
 descriptions = ["Spectral order", "Wavelength", \
 "Flux density", "Error in flux density", "Flags"])

Read in the table
table = asciiTableReader(file=myFile.absolutePath, \
 template = myTemplate,
 parser=myParser)

Clean up by deleting the file
myFile.delete()

Example 2.6. Worked example for reading in a Spitzer spectrum in "IPAC table" format

Resulting table in HIPE. The result of running the previous script is a table dataset named table.
A view of this table dataset as rendered by the Dataset Viewer in HIPE is shown in Figure 2.7.

Figure 2.7. The table dataset resulting from running the example script.

2.5. Worked example: Reading a VizieR cata-
logue into a table dataset

The VizieR archive server (CDS, Strasbourg) hosts a number of astronomical catalogues in text form.
This section shows the procedure to read in the ASCII format of the Planck Early Cold Cores Cata-
logue, using the FixedWidthParser and a table template.

64

http://cdsarc.u-strasbg.fr/

Saving data as text files Build 15.0.3244

Tip

The VizieR archive server can also output catalogues in FITS format, which are trivially
read into HIPE.

Input file format. The Planck Early Cores Catalogue in text form is a large ASCII table in fixed
format. An excerpt is shown in Figure 2.8.

Figure 2.8. Excerpt from the Planck Early Cold Cores Catalogue.

The format is explained in a separate ReadMe file, shown in Figure 2.9.

Figure 2.9. Excerpt from ReadMe file for Planck Early Cold Cores Catalogue.

Command-line script. The sizes of the columns must be specified to the FixedWidthParser,
and the TableTemplate must be set up, following the information in Figure 2.8.

The script in Example 2.7 downloads the online catalog, writes it to a temporary file, sets up the
template and the FixedWidthParser, reads in the table, and deletes the input file.

Worked example for Planck Early Cold Cores Catalogue

Setup: grab the catalog (ecc.dat)

The following five commented lines download a file from the Internet.
If you have a file already on your hard disk, or if you download
the file manually, load the file locally (see below).

65

http://cdsarc.u-strasbg.fr/ftp/cats/VIII/88/ecc.dat
http://cdsarc.u-strasbg.fr/ftp/cats/VIII/88/ReadMe

Saving data as text files Build 15.0.3244

from herschel.share.io import FileUtil
catFile = java.io.File('/path/to/ecc.dat')
catUrl='http://cdsarc.u-strasbg.fr/ftp/cats/VIII/88/ecc.dat'
destFile = java.io.File(FileUtil.TEMP_DIR,'ecc.dat')
FileUtil.copyToFile(java.net.URL(catUrl),catFile)

Load "ecc.dat" as a local resource (catFile)

catFile = java.io.File('/path/to/ecc.dat')

Set up the Table Template
myTemplate = TableTemplate(30, \
 names = ["cat", "name", "SNR", "GLon", "GLat", "RAdeg", "DEdeg",\
 "S353", "S545", "S857", "S3000", "e_S353", "e_S545", "e_S857", \
 "e_S3000","T", "beta", "gS857", "e_T", "e_beta", "e_gS857",\
 "fit", "T.c", "beta.c", "a.c", "b.c", "e_T.c", "e_beta.c",\
 "e_a.c", "e_b.c"], \
 types = 2*["String"] + 5*["Float"] + 8*["Integer"] + 2*["Float"] + \
 ["Integer", "Float", "Float", "Integer", "Integer"] + 8*["Float"], \
 units = 3*[""] + 4*["deg"] + 8*["mJy"] + ["K", "", "mJy", "K", "", "mJy", \
 "mJy^2", "K", "", "arcmin", "arcmin", "K", "", \
 "arcmin", "arcmin"])
Descriptions could be added, but are omitted for brevity's sake

Set up the parser
myParser=FixedWidthParser(sizes=[7, 14, 6] + 4*[9] + 8*[10] + 2*[7] + \
 [10, 7, 7, 10, 7, 7, 7, 6, 6, 7, 7, 6, 6])

Read in the table
table = asciiTableReader(file=catFile.absolutePath, \
 template = myTemplate, parser=myParser)
Here we used destFile.absolutePath to indicate the absolute path of
the file we downloaded from the Internet at the beginning of the
script.
Most likely you have already a file on your hard disk, in which case
you can just pass the path as a string to the file parameter:
table = asciiTableReader(file="/home/user/myFile.dat", \
template = myTemplate, parser=myParser, delimiter=None)

Example 2.7. Complete script for reading in the Planck Early Cold Cores Catalogue.

Resulting table in HIPE. The result of running the script in Example 2.7 is a table dataset named
table. An excerpt of this table dataset, displayed with the Dataset Viewer in HIPE, is shown in
Figure 2.10.

Figure 2.10. The table dataset resulting from running the example script.

66

Saving data as text files Build 15.0.3244

2.6. Reading a comma-separated-value (CSV)
file into a table dataset

This section explains how to read tabular data from a text file where data elements are separated by
a single comma, like the following example:

First,Second,Third
Double,Integer,String
W,cm,
Power,Length,
This line is a comment
1.2,3,One
4.3,7,Two
5.5,4,Three

Example 2.8. A standard comma-separated-value (CSV) file with a four-line header.

The above example shows an optional four-line header that gives the following additional information
about the data:

• First line. Column names. Optional.

• Second line. Column data types. Mandatory.

• Third line. Column measurement units. Optional.

• Fourth line. Column description. Optional.

You must always include all the four header lines, but you can omit items on some lines (except the
data types line) by writing just the data separator (a comma) without any data. In the previous example,
only the first two values for measurement unit and description have been filled. You have to fill all
values only for the second line, that of the data types. Note that, even if you choose not to fill any
value of a header line, you still have to include that line. A header line with no filled values will be
just a series of commas.

If you want to specify just the column names, you do not need to include a full header. You can list the
column names on the first line. The line must begin with the # character, the same used for comments:

First,Second,Third
This line is a comment
1.2,3,One
4.3,7,Two
5.5,4,Three

Example 2.9. A standard comma-separated-value (CSV) file with only column titles specified.

In the graphical interface. Follow these steps:

1. Double click on the asciiTableReader task in the Tasks view. The task dialogue window
opens in the Editor view.

2. Enter the path to the text file in the file field, or click the folder icon to the right of the field and
navigate to the text file.

3. Select CSV from the tableType drop-down list.

4. Click Accept. The file is imported into a table dataset. For more information on table datasets, see
the Scripting Guide: Section 2.4 in Scripting Guide.

Tip

If the file has extension .csv, you can import it by double clicking on it in the Navigator
view of HIPE.

67

Saving data as text files Build 15.0.3244

On the command line. Issue the following command in the Console view of HIPE, assuming that
myTable is the name of your new table dataset and /path/to/myTable.txt is the path to the
file you want to import:

myTable = asciiTableReader(file='/path/to/myTable.txt', tableType='CSV')

Example 2.10. Reading a table from a file, specifying its tabular format as CSV.

For a full list of task parameters of the asciiTableReader task, see the User's Reference Manual:
Section 1.27 in HCSS User's Reference Manual.

Resulting table dataset. The file shown in Example 2.8 results in the following table dataset:

Figure 2.11. A table dataset imported from a CSV file.

• All lines beginning with # are ignored.

• Column names are as specified in the header. If one or more column names are missing in the
header, they are replaced with Column0, Column1, Column2 and so on.

• If a line of data has fewer elements than the others, missing data elements are represented by empty
cells in the output table dataset.

2.7. Reading a space-separated file into a ta-
ble dataset

This section explains how to read tabular data from a text file where data elements are separated by
a one or more spaces, like the following example:

First Second Third
Double Integer String
W cm []
Power Length []
This is a comment
1.2 3 One
4.3 7 Two
5.5 4 Three

Example 2.11. A space-separated-value file of the type that can be imported into HIPE with default options.

The above example shows an optional four-line header that gives the following additional information
about the data:

• First line. Column names. Optional.

• Second line. Column data types. Mandatory.

• Third line. Column measurement units. Optional.

• Fourth line. Column description. Optional.

68

Saving data as text files Build 15.0.3244

You must always include all the four header lines, but you can omit items on some lines (except the
data types line) by writing a set of empty square brackets [] instead of the item. In the previous
example, only the first two values for measurement unit and description have been filled. You have
to fill all values only for the second line, that of the data types. Note that, even if you choose not to
fill any value of a header line, you still have to include that line. A header line with no filled values
will be just a series of empty sets of square brackets.

If you want to specify just the column names, you do not need to include a full header. You can list the
column names on the first line. The line must begin with the # character, the same used for comments:

First Second Third
This line is a comment
1.2 3 One
4.3 7 Two
5.5 4 Three

Example 2.12. A space-separated-value file with only column titles specified.

In the graphical interface. Follow these steps:

1. Double click the asciiTableReader task in the Tasks view. The task dialogue window opens
in the Editor view.

2. Enter the path to the text file name in the file field, or click the folder icon to the right of the field
and navigate to the text file.

3. Select SPACES from the tableType drop-down list.

4. Click Accept. The file is imported into a table dataset. For more information on table datasets, see
the Scripting Guide: Section 2.4 in Scripting Guide.

Tip

If the file has extension .tbl, you can import it by double clicking on it in the Navigator
view.

On the command line. Issue the following command in the Console view of HIPE, assuming that
myTable is the name of your new table dataset and /path/to/myTable.txt is the path to the
file you want to import:

myTable = asciiTableReader(file='/path/to/myTable.txt', tableType='SPACES')

Example 2.13. Read a table from an ASCII file, specifying that its values are space-separated.

For a full list of task parameters of the asciiTableReader task, see the User's Reference Manual:
Section 1.27 in HCSS User's Reference Manual.

Resulting table dataset. The file shown in Example 2.11 results in the following table dataset:

Figure 2.12. A table dataset imported from a space-separated-value file.

69

Saving data as text files Build 15.0.3244

• All lines beginning with # are ignored.

• Column names are as specified in the header. If one or more column names are missing in the
header, they are replaced with c0, c1, c2 and so on.

• Enough columns are created to include all the values in the first line. If other lines have fewer
elements, the resulting table dataset has empty cells.

2.8. Reading an IPAC, SExtractor or Topcat
file into a table dataset

This section explains how to read text files obtained from one of the following sources:

• Catalogues from IPAC/IRSA (InfraRed Science Archive).

• Source lists from SExtractor.

• Space-separated tables.

In the graphical interface. Follow these steps:

1. Double click the asciiTableReader task in the Tasks view. The task dialogue window opens
in the Editor view.

2. Enter the path to the text file name in the file field, or click the folder icon to the right of the field
and navigate to the text file.

3. Select one of the following options from the tableType drop-down list:

• IPAC for IPAC/IRSA files.

• SEXTRACTOR for SExtractor files.

• SPACES for space-separated files

4. Click Accept. The file is imported into a table dataset. For more information on table datasets, see
the Scripting Guide: Section 2.4 in Scripting Guide.

On the command line. Issue the following command in the Console view of HIPE, assuming that
myTable is the name of your new table dataset and /path/to/myTable.txt is the path to the
file you want to import:

myTable = asciiTableReader(file='/path/to/myTable.txt', tableType='IPAC')

Example 2.14. Read a table from an ASCII file, specifying the input format as IPAC.

The previous command works for an IPAC/IRSA file. For a SExtractor or space-separated file, replace
IPAC with SEXTRACTOR or SPACES, respectively.

For a full list of task parameters of the asciiTableReader task, see the User's Reference Manual:
Section 1.27 in HCSS User's Reference Manual.

Known issues. While reading space-separated or SExtractor files you may encounter the following
issues:

• Some SExtractor headers are not read successfully, due to an issue with the column position of units
in the file header. Workaround: read the file with the tableType parameter set to SPACES. You
can then fill any missing information by hand.

70

Saving data as text files Build 15.0.3244

• Some space-separated files are not read successfully, due to an issue with quoted cells with spaces.
Workaround when using Topcat: export the data from Topcat in FITS format, then read the FITS
file back into HIPE. For information about reading FITS files into HIPE, see Section 1.16.6.

2.9. Reading a generic ASCII table file into a
table dataset

Read this section if the type of file you want to read does not correspond to those described in Sec-
tion 2.6, Section 2.7, or in the worked examples at the beginning of this chapter.

In the graphical interface. Follow these steps:

1. Double click on the asciiTableReader task in the Tasks view. The task dialogue window
opens in the Editor view.

2. Enter the text file name in the file field, or click the folder icon to the right of the field and navigate
to the text file.

3. Change the tableType value to ADVANCED.

4. Click on the Advanced tab.

5. Change the options in the Advanced tab according to your needs (see Customisation options in this
section). In particular, you must change the value of the columnType parameter to something other
than GUESS_NONE.

6. Click Accept. HIPE imports the file contents into a table dataset.

On the command line. Assuming that /path/to/myFile.txt is the path to the file you want to
import, and myTable the name of the table dataset you want to create, start with this basic command:

myTable = asciiTableReader(file='/path/to/myFile.txt')

Example 2.15. Reading a table from an ASCII file, without specifying any input format.

Add options to the command according to your needs (see Customisation options in this section).

Customisation options
• Column names are provided with the file. See Section 2.14 for how to import them.

• You want HIPE to skip a number of lines at the top of the file. See Section 2.15.

• You want HIPE to ignore lines starting with certain characters. See Section 2.15.

• You want HIPE to delete all white space at the beginning and end of each line. See Sec-
tion 2.15.

• You want to specify the data types of the columns in the files. See Section 2.16.

• You want to specify how data values are separated in your file. See Section 2.17.

• You want to save the configuration of the task to use it again, or load a previously saved
configuration. See Section 2.18.

2.10. Writing a table dataset to a comma-sep-
arated-values (CSV) file

71

Saving data as text files Build 15.0.3244

This section shows how to save a table dataset like the one shown in Figure 2.13 to a comma-sepa-
rated-value text file.

Figure 2.13. A simple table dataset.

In the graphical interface. Follow these steps:

1. In the Variables view, right click on the variable name corresponding to the table dataset you want
to save, and choose Send to → Text file.

The asciiTableWriter task dialogue window opens in the Console view.

2. In the file text field, write the name of the text file you want to save the table dataset to.

3. Click Accept. The table dataset is saved to file. Moreover, HIPE writes the corresponding command
to the Console view.

On the command line. Issue the following command in the Console view of HIPE, assuming that
myTable is your table dataset variable and /path/to/myTable.txt is the full path to the file
you want to export the dataset to:

asciiTableWriter(table=myTable, file='/path/to/myTable.txt')

Example 2.16. Write a table to an ASCII file.

For a full list of parameters of the asciiTableWriter task, see the User's Reference Manual:
Section 1.28 in HCSS User's Reference Manual.

Resulting file. The table dataset shown in Figure 2.13 is saved in the following file:

First,Second,Third
Double,Integer,String
W,cm,
Power,Length,
1.2,3,One
4.3,7,Two
5.5,4,Three

• Data values are separated by commas.

72

Saving data as text files Build 15.0.3244

• A four-line header is added to the top of the text file. The four lines show the names, data types,
units of measurements and descriptions of each column. In case the unit of measurement or the
description of a column is not set, the corresponding space is left blank, as for the third column
in the example.

• No metadata is written to the file. The creator metadata parameter in Figure 2.13 does not appear
in the output file.

• HIPE gives you a warning if you are about to overwrite an existing file.

2.11. Writing a table dataset into a space-sep-
arated-value file

This section shows how to save a table dataset like the one shown in Figure 2.14 to a space-separat-
ed-value text file.

Figure 2.14. A simple table dataset.

In the graphical interface. Follow these steps:

1. In the Variables view, right click on the variable name corresponding to the table dataset you want
to save, and choose Send to → Text file.

The asciiTableWriter task dialogue window opens in the Console view.

2. In the file text field, write the name of the text file you want to save the table dataset to.

3. In the Console view, create a formatter with the following command:

formatter = CsvFormatter(delimiter=' ')

Example 2.17. Creating a formatter that separates values using a single space character.

4. Drag the formatter variable from the Variables view to the grey circle next to the formatter
label.

5. Click Accept. The table dataset is saved to file. Moreover, HIPE writes the corresponding command
to the Console view.

73

Saving data as text files Build 15.0.3244

On the command line. Issue the following commands in the Console view of HIPE, assuming that
myTable is your table dataset variable and /path/to/myTable.txt is the full path to the file
you want to export the dataset to:

formatter = CsvFormatter(delimiter=' ')
asciiTableWriter(table=myTable, file='/path/to/myTable.txt', formatter=formatter)

Example 2.18. Creating a space-separated formatter and using it to write a table as an ASCII file.

For a full list of parameters of the asciiTableWriter task, see the User's Reference Manual:
Section 1.28 in HCSS User's Reference Manual.

Resulting file. The table dataset shown in Figure 2.13 is saved in the following file:

First Second Third
Double Integer String
W cm
Power Length
1.2 3 One
4.3 7 Two
5.5 4 Three

• Data values are separated by spaces.

• A four-line header is added to the top of the text file. The four lines show the names, data types,
units of measurements and descriptions of each column. In case the unit of measurement or the
description of a column is not set, the corresponding space is left blank, as for the third column
in the example.

• No metadata is written to the file. The creator metadata parameter in Figure 2.13 does not appear
in the output file.

• HIPE gives you a warning if you are about to overwrite an existing file.

2.12. Writing a spectrum to an ASCII table file
Use the exportSpectrumToAscii in HCSS User's Reference Manual task to export a spectrum
from HIPE to a table in a text file. You can use this task on any spectrum implementing the Spec-
trumContainer interface, which in practice means all the main types of spectra used in HIPE.
You can also use this task on spectral cubes, to export one or more spectra extracted from the cube.
See Section 5.2 for more information on spectra in HIPE. See Section 6.2 for more information on
spectral cubes in HIPE.

Warning

See the warning in Section 2.2 for a known limitation regarding the error column
when using exportSpectrumToAscii. This is important for SPIRE and PACS data.

This section first describes how to use the task from the graphical interface and from the command
line. Then it lists the available customisations.

The task is available from the Spectrum Toolbox accessed via the Spectrum Explorer. This is probably
the quickest way to access it while you work on your spectra or cubes. You can also open the task
from the Tasks view; the dialogue window is the same, but there are some differences in behaviour
when selecting spectra or spectral segments.

For more information on the Spectrum Explorer, see Section 5.3 for spectra and Section 6.6 for spectral
cubes.

Input spectrum. The following HIFI spectrum (class WbsSpectrumDataset), made of four
segments, is used as an example of dataset you can export to text file with this task.

74

Saving data as text files Build 15.0.3244

Figure 2.15. Input spectrum for the exportSpectrumToAscii task.

Running from the spectrum/cube toolbox. Follow these steps:

1. Right click on the spectrum or cube in the Variables view and choose Open with → Spectrum Ex-
plorer.

The spectrum or cube opens in the Spectrum Explorer, in a new tab within the Editor view.

2.
In the Spectrum Explorer toolbar, click the toolbox icon .

The toolbox tab appears in the upper right area.

3. From the drop-down list at the top of the toolbox tab, select ExportSpectrumToAscii.

The task dialogue window appears inside the toolbox tab.

4. To save a whole spectrum or cube, drag the corresponding variable from the Variables view to the
grey circle next to the ds parameter. The ds parameter is the first in the list.

The circle becomes green. If the circle becomes red, the variable is not of the correct type.

• To save just a few segments from a spectrum, see Exporting a selection of segments from the
input spectrum under Customising task output later in this section.

• To save just a few spectra from a cube, see Exporting a selection of spectra from the input dataset
under Customising task output later in this section.

5. In the file text field, write the name of the text file you want to save the selected spectra to.

6. Click Accept.

HIPE saves the selected spectra to the specified text file. If you did not specify a full path, HIPE
saves the file in the directory it was started from.

Running from the Tasks view. Follow these steps:

1. In the Tasks view, open the All folder by double clicking on it. Type the first letters of the ex-
portSpectrumToAscii task name to jump close to its position in the list. Double click on
the task name. The task will also appear under Applicable if you have first highlighted a spectrum
dataset in the Variables view.

The task dialogue window opens in the Editor view.

2. From the Variables view, drag the variable corresponding to your spectrum or spectral cube to the
gray circle next to the ds input parameter in the task dialogue window. The ds parameter is the
first in the list.

The circle becomes green. If the circle becomes red, the variable is not of the correct type.

• To save just a few segments from a spectrum, see Exporting a selection of segments from the
input spectrum under Customising task output later in this section (grep for "Customising").

• To save just a few spectra from a cube, see Exporting a selection of spectra from the input dataset
under Customising task output later in this section.

3. In the file text field, write the name of the text file you want to save the spectrum or cube to.

75

Saving data as text files Build 15.0.3244

4. Click Accept.

HIPE saves the spectrum or cube to the specified text file. If you did not specify a full path, HIPE
saves the file in the directory it was started from.

Running on the command line. Issue the following commands in the Console view of HIPE,
assuming that mySpectrum is your spectrum variable and /path/to/mySpectrum.txt is the
full path to the file you want to export the spectrum to:

exportSpectrumToAscii(ds=mySpectrum, file='/path/to/mySpectrum.txt')

Example 2.19. Writing spectrum data to an ASCII file.

Resulting file. A portion of the resulting file is shown below:

Meta data {
type={description="Product Type Identification",
 string="herschel.ia.dataset.Product(...
creator={description="Generator of this product", string="SPG v8.2.1"}
...
usbfrequency_segm1_0,usbfrequency_segm2_0,usbfrequency_segm3_0,
 usbfrequency_segm4_0,flux_segm1_0,flux_segm2_0,flux_segm3_0,flux_segm4_0
Double,Double,Double,Double,Double,Double,Double,Double
GHz,GHz,GHz,GHz,K,K,K,K
Upper sideband frequency,Upper sideband frequency,Upper sideband frequency,
 Upper sideband frequency,Antenna Temperature,Antenna Temperature,
 Antenna Temperature,Antenna Temperature
499.256,500.2565,501.254,502.2535,1.0687267838317963E-4,0.003435710413794657,NaN,
 -0.03445117278045858
...

• The metadata associated with the spectrum are listed at the top of the file. Each metadata element
is on a different line, preceded by a # character.

• Following the metadata list are four lines of header with the following information about the data
columns:

• Names

• Data types (all Double in the previous example)

• Units (GHz and K in the previous example)

• Descriptions (Upper sideband frequency and Antenna Temperature in the previous example)

• Data values and items in the header are separated by commas.

Customising task output
Omitting metadata from the output file.

• In the graphical interface. Untick the meta checkbox.

• On the command line. Add the meta=False parameter to the command:

exportSpectrumToAscii(ds=mySpectrum, file='/path/to/mySpectrum.txt',\
meta=False)

Example 2.20. Writing spectrum data to an ASCII file without including metadata.

Including flags in the output file.

• In the graphical interface. Tick the flags checkbox.

76

Saving data as text files Build 15.0.3244

• On the command line. Add the flags=True parameter to the command:

exportSpectrumToAscii(ds=mySpectrum, file='/path/to/mySpectrum.txt',\
flags=True)

Example 2.21. Writing spectrum data to an ASCII file, including flags.

Including weights in the output file.

• In the graphical interface. Tick the weights checkbox.

• On the command line. Add the weights=True parameter to the command:

exportSpectrumToAscii(ds=mySpectrum, file='/path/to/mySpectrum.txt',\
weights=True)

Example 2.22. Writing spectrum data to an ASCII file, including weights.

Writing data of different segments in the same column. This option is useful only for HIFI
data. By default, data from different spectral segments are written to separate columns. For instance,
the example spectrum used earlier in this section has four segments, and the resulting file has eight
columns, corresponding to frequency and antenna temperature for each segment.

You can choose to merge the same type of data from each segment into a single column.

• In the graphical interface. Tick the concat checkbox.

• On the command line. Add the concat=True parameter to the command:

exportSpectrumToAscii(ds=mySpectrum, file='/path/to/mySpectrum.txt',\
concat=True)

Example 2.23. Writing spectrum data to an ASCII file, concatenating the spectral segments.

Exporting a selection of spectra from the input dataset. You can choose to save to file only a
few spectra from your input dataset, for instance just a few spaxels from a spectral cube.

Whether you run the task from the command line or have opened the dialogue window from the Tasks
view, you must create a variable representing the spectra you want to include, which you will then
input into the task.

• If you opened the task from the Spectrum Explorer (specifically the Spectrum Toolbox) you can
chose to identify the spectra to export using the Spectrum Explorer's standard spectrum selection
method, that is, clicking on the spectrum row or spaxel in the Data Selection panel of the Spectrum
Explorer. See Section 6.6.2 if working with a cube, and Section 5.3.1 otherwise.

• If you opened the task from the Tasks view, or are running from the command line, you need to
create a selection array to identify the indices of the spectra you wish to export. For anything but
cubes this is simply a matter of typing a list of the spectrum order (0,1,3,5,...) you want:

mySelection = [5, 12, 24]

For a cube, where spaxel coordinates are more natural (that is, 0,0 rather than 0), you will still need to
identify the spectrum indices that correspond to the spaxels you want, since the task does not accept
spaxel coordinates. You can do this with the Spectrum Explorer:

1. In the Data Selection Panel, click on the spaxels you want to select, if looking at a cube, or the
row, if looking at a non-cube multi-spectrum dataset.

HIPE plots the corresponding spectra in the Spectrum Panel. Make sure only the spectra you want
to select are displayed.

77

Saving data as text files Build 15.0.3244

2.
Click the icon in the toolbar.

The DataTree tab opens in the Data Selection Panel. Use this to identify the indices of the spectra
you have selected; particularly useful if you are working on a cube, since the task does not accept
spaxel coordinates.

3. Go to the DataTree tab.The spaxels you have selected are marked by coloured squares. The numeric
index of each spectrum is shown in the variable column.

4. You can now create the selection array, using the following command in the Console view:

mySelection = [5, 12, 24]

After creating a selection, follow these steps:

• In the graphical interface. Drag the selection array from the Variables view to the grey circle
next to the selection parameter.

• On the command line. Add the selection parameter to the command, giving your selection
array variable as value:

exportSpectrumToAscii(ds=myCube, file='/path/to/myCube.txt',\
selection=mySelection)

Example 2.24. Writing spectrum data to an ASCII file, specifying a selection of spectral indices.

You can also create the selection array directly, without creating a variable first:

exportSpectrumToAscii(ds=myCube, file='/path/to/myCube.txt',\
selection=[5, 12, 14])

Example 2.25. Writing spectrum data to an ASCII file, with a literal array of spectral indices.

And remember that running the task from the spectrum/cube toolbox,

you only need to select spectra in the Data Selection Panel: see links given above.

Exporting a selection of segments from the input spectrum. This option is useful only for HIFI
data. By default HIPE exports all the segments in a spectrum to the text file. You can choose which
segments to export by passing an array with their indices to the task. Note that cubes, including HIFI
cubes, contain only one segment per spaxel.

If you run the task from the command line or have opened the dialogue window from the Tasks view,
you must create a variable representing the segments you want to include. If you have opened the
task from the Spectrum Explorer you can chose to identify the spectra to export using the spectrum
selection method of the Spectrum Explorer (i.e. click to display): see Section 5.3.1. You can also use
the Spectrum Explorer to determine the indices corresponding to the segments you want to save: in
the Data Selection Panel, the column corresponding to each segment shows the index number. You
can then create the segments array with the following command:

mySegments = [1, 3]

Then,

• In the graphical interface. Drag the segments array from the Variables view to the grey circle
next to the segments parameter.

• On the command line. Add the segments parameter to the command, giving your segments
array variable as value:

78

Saving data as text files Build 15.0.3244

exportSpectrumToAscii(ds=mySpectrum,
file='/path/to/mySpectrum.txt',\
segments=mySegments)

Example 2.26. Writing spectrum data to an ASCII file, specifying a selection of spectral segments.

You can also create the segments array directly, without creating a variable first:

exportSpectrumToAscii(ds=mySpectrum,
file='/path/to/mySpectrum.txt',\
segments=[1, 3])

Example 2.27. Writing spectrum data to an ASCII file, specifying a literal array of spectral segments.

• And if running the task from the Spectrum Explorer,. then your selection is done using the
methods described in the link given above i.e. simply click to display the spectra you want to include.

Changing the data delimiter. By default, data values in the output file are separated by a comma.
To change the data delimiter, first you have to create a formatter, and that is then input into the task.
For example, the following is a formatter that changes the data delimiter to a space:

myFormatter = CsvFormatter(delimiter=' ')

Example 2.28. Creating a space-delimited formatter.

To use another character as delimiter, give it as value of the delimiter property, surrounded by
single or double quotes.

• In the graphical interface. Drag the formatter variable from the Variables view to the grey circle
next to the formatter parameter. This will work for the graphical interface accessed via Tasks or
via the Spectrum Explorer.

• On the command line. Add the formatter parameter to the command:

exportSpectrumToAscii(ds=mySpectrum, file='/path/to/mySpectrum.txt',\
formatter=myFormatter)

Example 2.29. Writing spectrum data to an ASCII file, specifying a space-delimited formatter.

2.13. Writing a table dataset to a generic
ASCII table file

Read this section if the type of file you want to write does not correspond to those described in Sec-
tion 2.10, Section 2.11 or Section 2.12.

In the graphical interface. Follow these steps:

1. In the Variables view, right click on the variable name corresponding to the table dataset you want
to save, and choose Send to → Text file.

The asciiTableWriter task dialogue window opens in the Console view.

2. In the file text field, write the name of the text file you want to save the table dataset to.

3. Change the other options according to your needs (see Customisation options in this section).

4. Click Accept. The table dataset is saved to file. Moreover, HIPE writes the corresponding command
to the Console view.

79

Saving data as text files Build 15.0.3244

On the command line. Assuming that myTable is your table dataset variable and /path/to/
myTable.txt is the full path to the file you want to export the dataset to, start with this basic
command in the Console view of HIPE:

asciiTableWriter(table=myTable, file='/path/to/myTable.txt')

Example 2.30. Writing a table to disk.

Add options to the command according to your needs (see Customisation options in this section).

Customisation options
• You want to add a header to the file. See Section 2.19.

• You want to add the table dataset metadata to the file. See Section 2.20.

• You want to define a custom prefix to denote commented lines. See Section 2.21.

• You want to specify how to separate data values. See Section 2.22.

• You want to save the configuration of the task to use it again, or to load a previously saved
configuration. See Section 2.23.

2.14. Reading column names from a file
Column names in a file must be on the first line and separated by the same character or set of characters
separating data values. For example, if data values are separated by commas, column names must be
separated by commas as well.

If you are reading a file with a four-line header, as explained in Section 2.6 or Section 2.7, column
names are read automatically. Column names are read also if listed on the first line of the file and
preceded by the # character, as explained in the same sections. In other cases, follow these steps.

In the graphical interface. In the Advanced tab of the asciiTableReader task dialogue win-
dow, tick the parseNames checkbox to read the column names.

On the command line. Add the parseNames=True parameter to the asciiTableReader
task command in order to read the column names, as in the following example:

myTable = asciiTableReader(file='myFile.txt', tableType='ADVANCED', columnType=18,
 parseNames=True)

Example 2.31. Reading a table from a file, specifying the ADVANCED type of table for parsing.

Warning

This option is ignored if the tableType parameter is set to CSV or SPACES:

In the graphical interface: In the asciiTableReader task dialogue window, set
the tableType drop-down list to ADVANCED. In the Advanced tab, set the columnType
parameter to something other than GUESS_NONE. See Section 2.16 for more details.

On the command line: Add the tableType='ADVANCED' parameter to the asci-
iTableReader task command, and the columnType parameter with an appropriate
value. See Section 2.16 for more details.

2.15. Defining which lines to ignore when
reading a file

80

Saving data as text files Build 15.0.3244

When reading data from a text file you can ignore lines, or portion of lines, in three ways:

• Ignoring a certain number of lines at the beginning of the file.

• Ignoring lines beginning with a certain character, or set of characters.

• Ignoring white space at the beginning and end of each line.

Ignoring lines at the beginning of the file
In the graphical interface. In the Advanced tab of the asciiTableReader task dialogue win-
dow, enter the number of lines to be ignored in the parserSkip text field.

On the command line. Add the parserSkip parameter to the asciiTableReader task com-
mand, as in the following example:

myTable = asciiTableReader(file='myFile.txt', tableType='ADVANCED', columnType=18,
 parserSkip=3)

Example 2.32. Reading a table from a file, specifying the ADVANCED table type for parsing and skipping
header lines.

Warning

This option is ignored if the tableType parameter is set to CSV or SPACES:

In the graphical interface: In the asciiTableReader task dialogue window, set
the tableType drop-down list to ADVANCED. In the Advanced tab, set the columnType
parameter to something other than GUESS_NONE. See Section 2.16 for more details.

On the command line: Add the tableType='ADVANCED' parameter to the asci-
iTableReader task command, and the columnType parameter with an appropriate
value. See Section 2.16 for more details.

Ignoring lines beginning with a certain character, or
set of characters.

In the graphical interface. In the Advanced tab of the asciiTableReader task dialogue win-
dow, choose one option from the ignorePattern drop-down list, or enter your own characters in the
text field.

Hover your mouse pointer on each of the options in the command line to see a tooltip explaining what
it does. The three available options ignore lines beginning with #, empty lines or both.

If you want to ignore lines beginning by //, for example, enter // in the ignorePattern text field.

If you want HIPE to write a warning each time it ignores a line, set the ignoreWarn parameter to True.

On the command line. Add the ignorePattern parameter to the asciiTableReader task
command, as in the following example:

myTable = asciiTableReader(file='myFile.txt', tableType='ADVANCED', columnType=18,
 ignorePattern='//')

Example 2.33. Reading a table from an ASCII file, with ADVANCED type and character ignore options
for the parser.

The previous command causes HIPE to ignore all lines beginning with // when reading the file.

If you want HIPE to write a warning each time it ignores a line, add the ignoreWarn=True to the
asciiTableReader task command.

81

Saving data as text files Build 15.0.3244

Warning

This option is ignored if the tableType parameter is set to CSV or SPACES:

In the graphical interface: In the asciiTableReader task dialogue window, set
the tableType drop-down list to ADVANCED. In the Advanced tab, set the columnType
parameter to something other than GUESS_NONE. See Section 2.16 for more details.

On the command line: Add the tableType='ADVANCED' parameter to the asci-
iTableReader task command, and the columnType parameter with an appropriate
value. See Section 2.16 for more details.

Ignoring white space at the beginning and end of each
line.

This option is useful when the data values are separated by spaces, and additional spaces at the begin-
ning and end of lines could confuse HIPE. To do this, you should specify an ignorePattern (see
above) that removes or ignores whitespaces.

myTable = asciiTableReader(file='myFile.txt', tableType='ADVANCED', columnType=18,
 ignorePattern='^\s*')

Example 2.34. Reading a table from an ASCII file, with ADVANCED type and an ignore pattern that trims
spaces at the beginning.

Warning

This option is ignored if the tableType parameter is set to CSV or SPACES:

In the graphical interface: In the asciiTableReader task dialogue window, set
the tableType drop-down list to ADVANCED. In the Advanced tab, set the columnType
parameter to something other than GUESS_NONE. See Section 2.16 for more details.

On the command line: Add the tableType='ADVANCED' parameter to the asci-
iTableReader task command, and the columnType parameter with an appropriate
value. See Section 2.16 for more details.

2.16. Specifying the data types when reading
a file

You can let HIPE guess the types of data values in a file, you can specify a single data type or you
can specify multiple data types via a table template.

In the graphical interface. Make the following changes in the Advanced tab of the asci-
iTableReader task dialogue window.

• To let HIPE guess the data types: From the columnType drop-down list choose GUESS_TRY
(HIPE guess based on the first 100 lines of the file) or GUESS_ALL (HIPE guess based on the
whole file).

• To select a single type for all data values: From the columnType drop-down list choose AL-
L_STRING, ALL_BOOLEAN or one of the other similar options.

• To define a different data value for each column of the file: From the columnType drop-down
list choose GUESS_NONE. Create a table template as described in Section 2.25. Drag the variable
representing the template from the Variables view to the grey circle next to the template label.

On the command line. Make the following changes to the command calling the asci-
iTableReader task. Note that you have to issue the command from herschel.ia.io.ascii

82

Saving data as text files Build 15.0.3244

import AsciiParser (once for each HIPE session is enough) for the asciiTableReader
call to work.

• To let HIPE guess the data types: Set the columnType parameter to AsciiParser.GUESS_TRY
(HIPE guess based on the first 100 lines of the file) or AsciiParser.GUESS_ALL (HIPE guess based
on the whole file), as in the following example:

from herschel.ia.io.ascii import AsciiParser
myTable = asciiTableReader(file='myFile.txt', tableType='ADVANCED',
 columnType=AsciiParser.GUESS_ALL)

Example 2.35. Reading a table from an ASCII file, with ADVANCED type and guessing all value types.

• To select a single type for all data values: Set the columnType parameter to AsciiParser.AL-
L_BOOLEAN, AsciiParser.ALL_BYTE or one of the other similar options, as in the following ex-
ample:

from herschel.ia.io.ascii import AsciiParser
myTable = asciiTableReader(file='myFile.txt', tableType='ADVANCED',
 columnType=AsciiParser.ALL_DOUBLE)

Example 2.36. Reading a table from an ASCII file, with ADVANCED type and parsing all values as
doubles.

• To define a different data value for each column of the file: Create a table template as de-
scribed in Section 2.25. Assuming that myTableTemplate is the variable representing your tem-
plate, add the template=myTableTemplate parameter to the asciiTableReader task
command, as in the following example:

myTable = asciiTableReader(file='myFile.txt', tableType='ADVANCED',
 template=myTableTemplate)

Example 2.37. Reading a table from an ASCII file, with ADVANCED type and a custom table template.

Warning

This option is ignored if the tableType parameter is set to CSV or SPACES:

In the graphical interface: In the asciiTableReader task dialogue window, set
the tableType drop-down list to ADVANCED.

On the command line: Add the tableType='ADVANCED' parameter to the asci-
iTableReader task command.

2.17. Specifying how data values are separat-
ed when reading a file

Data values in the ASCII table file you are trying to read could be separated by commas, spaces or
other characters. Columns could have fixed or variable width. You can tell HIPE in detail how your
data values are separated.

In the graphical interface. In the Advanced tab of the asciiTableReader task dialogue win-
dow, set the delimiter parameter to the characters separating data values in your file. You can write
them directly in the text field or choose one of the available options:

• Comma. Data values are separated by a single comma.

• \s+. Data values are separated by one or more spaces.

• \t+. Data values are separated by one or more tab characters.

83

Saving data as text files Build 15.0.3244

If your data values are organised in fixed-width columns, or are separated in more complicated ways
you cannot express with the delimiter parameter, you can create a parser as described in Section 2.26.
Then drag the variable representing your parser from the Variables view to the grey circle next to the
parser parameter in the Advanced tab of the asciiTableReader task dialogue window.

On the command line. Add the delimiter parameter to the asciiTableReader task com-
mand, as shown in the following example:

myTable = asciiTableReader(file='/path/to/myFile.txt', tableType='ADVANCED',
 columnType=18, delimiter=' ')

Example 2.38. Reading a table from an ASCII file, with ADVANCED type and assuming 18 character-wide
columns and space separators.

If your data values are organised in fixed-width columns, or are separated in more complicated ways
you cannot express with the delimiter parameter, you can create a parser as described in Sec-
tion 2.26. Assuming that myParser is the name of the parser you have created, add it to the asci-
iTableReader task command, as shown in the following example:

myTable = asciiTableReader(file='/path/to/myFile.txt', tableType='ADVANCED',
 columnType=18, parser=myParser)

Example 2.39. Reading a table from an ASCII file, with ADVANCED type and providing a fully customised
parser.

Warning

This option is ignored if the tableType parameter is set to CSV or SPACES:

In the graphical interface: In the asciiTableReader task dialogue window, set
the tableType drop-down list to ADVANCED. In the Advanced tab, set the columnType
parameter to something other than GUESS_NONE. See Section 2.16 for more details.

On the command line: Add the tableType='ADVANCED' parameter to the asci-
iTableReader task command, and the columnType parameter with an appropriate
value. See Section 2.16 for more details.

2.18. Saving and loading a configuration for
reading from file

You can save all the configuration options you set when reading a file, so that you can load them in
one step when loading other files with the same formatting.

Saving a configuration file
Follow these instructions to save a configuration file when you read an ASCII table file.

In the graphical interface. In the Advanced tab of the asciiTableReader task dialogue win-
dow, write a file name in the writeConfigFile text field, optionally with a full path. Alternatively, click
the folder icon to the right of the text field to navigate to the directory where you want to save the file.

On the command line. Assuming that myConfig.conf is the name you want to give to
your configuration file, add the writeConfigFile=myConfig.conf parameter to the asci-
iTableReader task command, as in the following example:

myTable = asciiTableReader(file='myFile.txt', tableType='ADVANCED',
 writeConfigFile='myConfig.conf')

Example 2.40. Reading a table from an ASCII file while writing the parsing configuration to a file for reuse.

84

Saving data as text files Build 15.0.3244

You can specify a full path instead of just the file name.

The configuration file is in binary format and cannot be modified with a text editor. You can leave the
file name without extension or give it any extension you like, such as .conf.

If you specify the file name without a path, the file is saved in the directory from where HIPE was
started. For ease of retrieval you should always specify a full path.

Warning

This option is ignored if the tableType parameter is set to CSV or SPACES:

In the graphical interface: In the asciiTableReader task dialogue window, set
the tableType drop-down list to ADVANCED. In the Advanced tab, set the columnType
parameter to something other than GUESS_NONE. See Section 2.16 for more details.

On the command line: Add the tableType='ADVANCED' parameter to the asci-
iTableReader task command, and the columnType parameter with an appropriate
value. See Section 2.16 for more details.

Loading a configuration file
Follow these instructions to use the options in a configuration file when reading an ASCII table file.

In the graphical interface. In the Advanced tab of the asciiTableReader task dialogue win-
dow, write the configuration file path and name in the readConfigFile text field. Alternatively, click
the folder icon to the right of the text field to navigate to the file.

On the command line. Assuming that /path/to/myConfig.conf is the full path and name of
your configuration file, add the writeConfigFile=/path/to/myConfig.conf parameter
to the asciiTableReader task command, as in the following example:

myTable = asciiTableReader(file='myFile.txt', tableType='ADVANCED',
 readConfigFile='/path/to/myConfig.conf')

Example 2.41. Reading a table from an ASCII file, specifying a parsing configuration file.

2.19. Adding a header to an ASCII table file
In the graphical interface. In the asciiTableWriter task dialogue window, set the write-
Header parameter to True.

On the command line. Adding a header is the default, so you do not need to add anything to the
asciiTableWriter task command. To add no header, add the writeHeader=False param-
eter to the asciiTableWriter task command, as in the following example:

asciiTableWriter(table=myTable, file='/path/to/myFile.txt', writeHeader=False)

Example 2.42. Writing a table to an ASCII file without a header.

2.20. Adding table dataset metadata to an
ASCII table file

In the graphical interface. In the asciiTableWriter task dialogue window, set the writeMeta-
data parameter to True.

On the command line. Add the writeMetadata=True parameter to the asciiTableWrit-
er task command, as in the following example:

85

Saving data as text files Build 15.0.3244

asciiTableWriter(table=myTable, file='/path/to/myFile.txt', writeMetadata=True)

Example 2.43. Writing a table to an ASCII file including metadata.

Metadata are written to the ASCII table file as commented lines. Commented lines begin by default
with the # character. To define a custom character, or series of characters, see Section 2.21.

2.21. Defining a custom prefix for commented
lines

Commented lines contain information that can be read by humans but is ignored by HIPE or other
software when reading back the ASCII table file. For example, if you write to file the metadata of a
table dataset, as described in Section 2.20, these are written as comments.

The default character defining commented lines is #. You may want to define a different one if you
want to read your ASCII table file with software other than HIPE, following different conventions.

In the graphical interface. In the asciiTableWriter task dialogue window, write the new
character, or series of characters, in the metadataPrefix text field.

On the command line. Add the metadataPrefix parameter to the asciiTableWriter task
command, with the prefix character of series of characters. In the following example the prefix for
commented lines is redefined as //:

asciiTableWriter(table=myTable, file='/path/to/myFile.txt', \
writeMetadata=True, metadataPrefix='//')

Example 2.44. Writing a table to an ASCII file including metadata with a custom prefix.

2.22. Choosing how to separate data values
By default, data values in ASCII table files written with the asciiTableWriter are separated by
commas. You can define a different character to separate data values, or you can define a fixed width
for the data columns in the file. In case of fixed-width columns, data values are always separated by
spaces.

In the graphical interface. Create a formatter as described in Section 2.27. Drag the variables
representing the formatter from the Variables view to the grey circle next to the formatter label in the
asciiTableWriter task graphical interface.

On the command line. Create a formatter as described in Section 2.27. Add the formatter
parameter to the asciiTableWriter task command. In the following example, myFormatter
is the variable corresponding to the formatter:

asciiTableWriter(table=myTable, file='/path/to/myFile.txt', formatter=myFormatter)

Example 2.45. Writing a table to an ASCII file with a custom formatter.

Warning

If you set any of the parameters affecting the formatter, such as writeHeader, these will
override whatever is specified in the formatter.

2.23. Saving and loading options for writing
to file

86

Saving data as text files Build 15.0.3244

You can save all the configuration options you set when writing a file, so that you can load them in
one step when writing other files with the same formatting.

Saving a configuration file
Follow these instructions to save a configuration file when you write an ASCII table file.

In the graphical interface. In the asciiTableWriter task dialogue window, write a file name
in the writeConfigFile text field, optionally with a full path. Alternatively, click the folder icon to the
right of the text field to navigate to the directory where you want to save the file.

On the command line. Assuming that myConfig.conf is the name you want to give to your
configuration file, add the writeConfigFile='myConfig.conf' parameter to the asci-
iTableWriter task command, as in the following example:

asciiTableWriter(table=myTable, file='myFile.txt', writeConfigFile='myConfig.conf')

Example 2.46. Writing a table to an ASCII file saving the writing configuration to another file.

You can specify a full path instead of just the file name.

The configuration file is in binary format and cannot be modified with a text editor. You can leave the
file name without extension or give it any extension you like, such as .conf.

If you specify the file name without a path, the file is saved in the directory from where HIPE was
started. For ease of retrieval you should always specify a full path.

Loading a configuration file
Follow these instructions to use the options in a configuration file when reading an ASCII table file.

In the graphical interface. In the asciiTableWriter task dialogue window, write the config-
uration file path and name in the readConfigFile text field. Alternatively, click the folder icon to the
right of the text field to navigate to the file.

On the command line. Assuming that /path/to/myConfig.conf is the full path and name of
your configuration file, add the readConfigFile='/path/to/myConfig.conf' parameter
to the asciiTableWriter task command, as in the following example:

myTable = asciiTableWriter(table = myTable, file='myFile.txt', readConfigFile='/
path/to/myConfig.conf')

Example 2.47. Writing a table to an ASCII file, specifying a previously-saved writing configuration file.

2.24. Parsers, formatters and templates
Parsers, formatters and templates are three tools you use to write data to text files and read data back
from text files:

• Parsers. A parser defines rules to read a text file into HIPE. See Section 2.26 for the available
types of parser, their features and how to configure them.

• Formatters. A formatter defines rules to write data from HIPE into a text file. See Section 2.27
for the available types of formatter, their features and how to configure them.

• Table templates. A table template describes the data to be read from, or written to, a text file. It
defines the number of columns in the file, their name, the type and description of the data. While
the parser defines general formatting rules, such as the character used to separate data values, the
table template describes the data themselves. See Section 2.25 for how to create and configure a
table template.

87

Saving data as text files Build 15.0.3244

2.25. Creating and configuring table tem-
plates

A table template describes the number of columns in a text file, their titles, and the types, units and
descriptions of the data they contain.

Creating a table template. To create a table template you have to specify at least the number of
columns in the table. The following example creates a table template with three columns:

myTableTemplate = TableTemplate(3)

Example 2.48. Creating a TableTemplate with 3 columns.

Customising a table template. The following example shows how to customise a table template
by providing column names and data types, units and descriptions. In each case you provide a list with
the same number of elements as the number of columns in the table.

Setting column names
myTableTemplate.names = ["Frequency", "Flux", "Error"]
Setting data types
myTableTemplate.types = ["Double", "Double", "Double"]
Setting data units
myTableTemplate.units = ["GHz", "mJy", "mJy"]
Setting data descriptions
myTableTemplate.descriptions = ["Spectrum frequency", \
 "Spectrum flux", "Error on flux"]

Example 2.49. Customising a TableTemplate with column names, types, units and descriptions.

You can leave some of the values blank by passing empty strings:

myTableTemplate.descriptions = ["Spectrum frequency", "", ""]

Example 2.50. Setting column descriptions for a partial set of columns.

Note that no check is done on the data types and units you provide. If you input an invalid name, you
will likely encounter problems when reading data into HIPE using the table template, or when using
the imported data.

• For data types, use one of the following: Boolean, Byte, Short, Integer, Long, Float,
Double or String. For more information on these variable types and their ranges, see the Script-
ing Guide: Section 1.5.2 in Scripting Guide.

• For data units, use a name or abbreviation that HIPE can recognise. You can check whether HIPE
recognises a unit name like this:

from herschel.share.unit import *
myUnit = Unit.parse("eV")
print myUnit.isKnown()

Example 2.51. Creating a unit variable and checking if it is built in the system.s

If the result is False, HIPE cannot recognise the unit.

For more information on measurement units, see the Scripting Guide: Section 2.6 in Scripting Guide.

Creating and configuring a table template in one step. You can also create and configure a table
template in a single step, as shown by the following example:

template = TableTemplate(3, \
 names = ["Frequency", "Flux", "Error"], \
 types = ["Double", "Double", "Double"], \

88

Saving data as text files Build 15.0.3244

 units = ["GHz", "mJy", "mJy"], \
 descriptions = ["Spectrum frequency", \
 "Spectrum flux", "Error on flux"])

Example 2.52. Creating and customising a TableTemplate in one step.

You can include all the additional parameters (names, types and so on) or just some of them.

2.26. Creating and configuring parsers for
reading in data

A parser describes how each line of an ASCII file is broken up into table cell data, as well as which
lines are ignored altogether. You use a parser only for reading an ASCII file into a table dataset, not
for writing a table dataset to file. With a parser you can customise the following:

• How data values are separated in the file: what characters act as data delimiters, and whether data
columns have fixed width or not.

• Whether to ignore lines beginning with a certain character or series of characters. These lines are
said to be commented out.

• Whether to skip a number of lines at the beginning of the file.

• Whether to ignore white space at the beginning and end of each line.

Defining how data values are separated. There are three main cases, each corresponding to a
different type of parser: CsvParser, FixedWidthParser and RegexParser.

• Data values are separated by a single character. Create your parser like in the following ex-
ample, where the delimiter character is a comma:

myParser = CsvParser(delimiter=',')

Example 2.53. Creating a comma-separated CSV parser.

If the same character used as data separator also appears as part of some data value, HIPE will
mistakenly interpret it as two data values. For example, if the data separator is a comma and a data
value is 35,7, HIPE will interpret it as two data values, 35 and 7. You can surround the data value
with double quotes, as in "35,7", to tell HIPE to interpret it as a single value. To use a different
character to "quote" data values, add the quote parameter:

myParser = CsvParser(delimiter=',', quote='$')

Example 2.54. Creating a CSV parser with a dollar sign for quoting values.

In this case a quoted data value would look like $35,7$.

• Data values are organised in fixed-width columns. Create your parser like in the following
example, which defines three columns of three, seven and five characters:

myParser = FixedWidthParser(sizes=[3, 7, 5])

Example 2.55. Creating a parser that specifies the widths of the columns.

• Data values are separated by more than one character, and column sizes are not fixed. Cre-
ate your parser like in the following example:

myParser = RegexParser(delimiter='\s+')

Example 2.56. Creating a parser based on a regular expression.

89

Saving data as text files Build 15.0.3244

The value of the delimiter parameter is a regular expression. Regular expressions are a power-
ful way to describe complicated patterns of characters. You can find more information on regular
expressions in Section 2.28. Here are a couple of examples:

• The expression \s+ means "one or more spaces".

• The expression \t+ means "one or more tab characters".

Defining the prefix used for commented lines. The default prefix for commented lines is #. To
change it, create a parser with the ignore parameter defined. The following example defines // as
prefix for commented lines:

myParser = CsvParser(ignore='//')

Example 2.57. Creating a CSV parser that ignores line starting with a specific string.

This parameter is accepted by CsvParser, FixedWidthParser and RegexParser.

Defining the number of lines to ignore at the beginning of the file. This option is useful if the
file has a header with information you want HIPE to ignore. To define the number of lines to ignore,
create a parser with the skip parameter defined. The following parser will ignore the first five lines
of the file it reads:

myParser = FixedWidthParser(sizes=[7, 9], skip=5)

Example 2.58. Creating a fixed width parser that skips a number of header lines.

This parameter is accepted by CsvParser, FixedWidthParser and RegexParser.

Defining whether to ignore white space at the beginning and end of lines. This option is useful
when data values are separated by spaces, and additional spaces at the beginning and end of lines could
confuse the parser. Create a parser with the trim=True parameter:

myParser = RegexParser(delimiter='\s+', trim=True)

Example 2.59. Create a parser based on a regular expression that trims the lines of the file.

This parameter is accepted by CsvParser, FixedWidthParser and RegexParser.

2.27. Creating and configuring formatters for
writing data

A table formatter controls how a table dataset is written to an ASCII file. With a table formatter you
can customise the following:

• The character separating data values from each other.

• Whether columns in the file have a variable or fixed width.

• Whether to add a four-line header to the top of the file, with information on column names, data
types, units and descriptions.

• Whether to add commented lines with the metadata of the table dataset.

• What character, or series of characters, to use for marking commented lines.

Defining the character separating data values. Creating a formatter like in the following example:

90

Saving data as text files Build 15.0.3244

myFormatter = CsvFormatter(delimiter = ' ')

Example 2.60. Creating a CSV formatter that specifies a space character as a delimiter.

The previous example defines a single space as the character separating data values (the delimiter
parameter). Note that you cannot specify more than one character. If you create a formatter without
setting the delimiter parameter, a comma is used as default separating character:

myFormatter = CsvFormatter()

Example 2.61. Creating a CSV formatter with the default options.

Tip

To define a tab character as delimiter, use the following syntax

myFormatter = CsvFormatter(delimiter='\t')

Example 2.62. Creating a CSV formatter that uses a tab as a delimiter.

Defining whether columns have fixed with. To define columns with a fixed with you can create
a FixedWidthFormatter instead of the CsvFormatter used in the previous example:

myFormatter = FixedWidthFormatter(sizes=[4,7,12])

Example 2.63. Creating a fixed width formatter.

The previous example defines three columns with a width of four, seven and twelve characters, re-
spectively.

When columns are of fixed width, data values are always separated by spaces. To define columns of
variable width, create a CsvFormatter instead of a FixedWidthFormatter.

Adding a four-line header to the file. The four lines show the names, data types, units of mea-
surements and descriptions of each column. In case the unit of measurement or the description of
a column is not set, the corresponding space is left blank. Create the formatter with the parameter
header=True:

myFormatter = CsvFormatter(header=True)

Example 2.64. Creating a CSV formatter that includes a header.

This parameter is accepted by CsvFormatter and FixedWidthFormatter.

Adding commented lines with table dataset metadata. Create the formatter with the parameter
commented=True:

myFormatter = FixedWidthFormatter(commented=True)

Example 2.65. Creating a fixed width formatter with commented metadata.

This parameter is accepted by CsvFormatter and FixedWidthFormatter.

Defining the prefix used for commented lines. The default prefix for commented lines is #. To
change it, create a formatter with the commentPrefix parameter defined. The following example
defines // as prefix for commented lines:

myFormatter = CsvFormatter(commentPrefix='//')

Example 2.66. Creating a CSV formatter with a custom comment prefix.

This parameter is accepted by CsvFormatter and FixedWidthFormatter.

91

Saving data as text files Build 15.0.3244

Examples. The following examples combine all the features described in this section.

Define a formatter for writing a file with a four-line header, data values separated by spaces and
metadata on commented lines prefixed by $$$:

myFormatter = CsvFormatter(header=True, delimiter=' ', commented=True,
 commentPrefix='$$$ ')

Example 2.67. Creating a CSV formatter that includes a header, delimited with spaces and with comments
with a custom prefix.

Define a formatter for writing a file with a four-line header and four columns of five, seven, five and
ten characters of width:

myFormatter = FixedWidthFormatter(header=True, sizes=[5,7,5,10])

Example 2.68. Creating a fixed width formatter.

2.28. Regular expressions
A regular expression is a concise and flexible means to match strings of text, such as particular char-
acters or patterns of characters. Regular expressions are used to specify which lines of a file to skip,
as discussed in Section 2.15, and with the RegexParser for specifying the delimiter between data
fields (for example, to specify multiple spaces or tabs).

A detailed treatment of regular expressions is beyond the scope of this manual. The following table
gives some examples to cover the cases you are most likely to need.

Table 2.1. Regular expressions.

Expression Description

\s Matches one whitespace character.

\d Matches a digit.

\w Matches an alphanumeric character, or an underscore character.

[a-z] Matches a lowercase letter.

[^x] Matches any character except x. For example, [^\d] matches anything except a
digit.

x? Matches zero or one occurrence of x.

x* Matches zero or more occurrences of x.

x+ Matches one or more occurrences of x.

x{n} Matches exactly n occurrences of x.

x{n,} Matches at least n occurrences of x.

x{n, m} Matches at least n but no more than m occurrences of x.

^x Matches x at the beginning of a string.

x$ Matches x at the end of a string.

| OR operator. For example, \d|\s matches a digit or a whitespace character.

If you want to match a character that has a special meaning in regular expressions, put a backslash
before it. For example, \$ represents a dollar character, not the end of a string.

The following example shows some practical applications:

Matches a line starting with one or more spaces followed by three hash characters.
^\s+#{3}
Matches two uppercase letters separated by a comma.

92

Saving data as text files Build 15.0.3244

[A-Z],[A-Z]
Matches a colon followed by three or more characters different from a digit.
:[^\d]{3,}
Matches a completely empty line, filled at most with whitespace characters.
^\s*$
Matches an empty line, or a line starting with zero or more spaces
followed by a hash character.
^\s*$|^\s*#

93

Build 15.0.3244

Chapter 3. Plotting
3.1. Getting started

This chapter provides several examples that show you how to create and customise plots from the
command line and from the HIPE graphical interface.

Figure 3.1 summarises the main features of the plot packages. Additional features not shown in this
image are, for example, plotting histograms and using custom axis types (logarithmic, right ascension
and declination, and so on).

Figure 3.1. Some of the features of HIPE plots. If you are reading the HTML version of this manual, click
on any of the blue labels to jump straight to the relevant section.

See Section 3.30 for the script used to generate this plot.

3.2. Creating a plot
Creating plots is done mainly from the command line in the Console view or via scripts in the Editor
view. Data for plots must be of type Numeric1d , which includes one-dimensional arrays of numbers
of any type (Int1d , Float1d or Double1d). The following two lines create two input arrays,
containing the x and y coordinates of the data points to be plotted:

x = Double1d.range(11) # Creates array with values from 0.0 to 10.0
y = x*x

Example 3.1. Creating a double array and populating with a range of values.

Of course in real cases you will mostly use arrays with data from your observations rather than creating
them from scratch.

The following example creates an empty plot and adds a layer of data. Each set of data in a plot
corresponds to a layer.

94

Plotting Build 15.0.3244

myPlot = PlotXY()
myLayer = LayerXY(x,y)
myPlot.addLayer(myLayer)

Example 3.2. Creating a plot and adding layers to it in two steps.

You can also create the plot and the layer in one step:

myPlot = PlotXY(x, y)

Example 3.3. Creating a plot and adding a layer to it in one step.

Warning

For performance reasons, plots do not keep a copy of the data used to generate them. This
means that you should not change the values after adding them to a plot. Otherwise, when
the plot updates for any reason, for example due to a change of the window size, the plot
will be corrupted.

The plot engine uses separate threads of execution to prevent HIPE from becoming unre-
sponsive when large data sets are plotted. This means that, when a Jython script is running
in batch mode, the rendering of the plot may finish after all or part of the script has run.

Resizing the plot. You can resize the window with the mouse or you can specify the desired
window size once you have added layers to the plot. In the following example, the plot myPlot is
resized to a width of 400 pixels and a height of 300 pixels:

myPlot.width = 400
myPlot.height = 300

Example 3.4. Setting the dimensions of the plot.

Tip

Why does my plot become huge after I add a layer? This happens when you create
an empty plot and specify the width and height parameters without setting the au-
toAdjustWindowSize property to 0, for example by issuing:

plot = PlotXY(width=600, height=400)

Example 3.5. Creating a plot with initial dimensions.

instead of:

plot = PlotXY(width=600, height=400, autoAdjustWindowSize=0)

Example 3.6. Creating a plot with initial dimensions and auto-adjust.

To avoid this problem, change the plot size only after having added all the layers.

3.3. Customising title and subtitle
Change the plot title and subtitle as in the following example:

myPlot.titleText = "Example plot"
myPlot.subtitleText = "Example subtitle"

Example 3.7. Setting title and subtitle text in a plot.

If you don't want to have plot title and subtitle you can switch them off:

myPlot.title.visible = 0

95

Plotting Build 15.0.3244

myPlot.subtitle.visible = 0

Example 3.8. Setting the visibility for a plot's title and subtitle.

Set these values to anything other than zero to switch title and subtitle back on.

About the Label and Title classes

There are multiple levels of a plot that can have a label or title, so it is important to dis-
tinguish between:

• Plot title and subtitle, both implemented in class PlotTitle.

• Note that instances of SubPlot don't have title nor subtitle.

• Layer name, displayed in the legend, is a field of class LayerXY.

• Axis labels or titles, implemented in class AxisTitle to avoid confusion with axis
tick labels (below).

• Axis tick labels, implemented in class AxisTickLabel.

• Other plot labels, which are called Annotations throughout the documentation and code,
so they should not be confused with any other type of label or title.

Methods. The title of a plot is modelled by the PlotTitle class. For more information see the
developer's documentation for PlotTitle .

Procedure 3.1. Useful methods of the PlotTitle class. See Section 3.29 for the conventions used in this
table.

1. setText(String text)

Java style
myTitle.setText("A title")
Jython style
myTitle.text = "A title"

Example 3.9. Sets the text to be displayed.

2. setHalign(PComponentEngine.HAlign hAlign)

from herschel.ia.gui.plot import PlotTitle
Java style
myTitle.setHalign(PlotTitle.LEFT)
Jython style
myTitle.halign = PlotTitle.LEFT

Example 3.10. Sets the horizontal alignment. Possible values are LEFT, CENTER and RIGHT.

3. setValign(PComponentEngine.VAlign vAlign)

from herschel.ia.gui.plot import PlotTitle
Java style
myTitle.setValign(PlotTitle.MIDDLE)
Jython style
myTitle.valign = PlotTitle.MIDDLE

Example 3.11. Sets the vertical alignment. Possible values are MIDDLE, TOP and BOTTOM.

4. setPosition (PlotTitleEngine.Position position)

from herschel.ia.gui.plot import PlotTitle
Java style
myTitle.setPosition(PlotTitle.BOTTOMLEFT)
Jython style

96

../../hcss_drm/api/herschel/ia/gui/plot/PlotTitle.html

Plotting Build 15.0.3244

myTitle.position = PlotTitle.BOTTOMLEFT

Example 3.12. Sets the position of the title. Possible values are BOTTOMCENTER, BOTTOM-
LEFT, BOTTOMRIGHT, TOPCENTER, TOPLEFT, TOPRIGHT and CUSTOMIZED. If set to
CUSTOMIZED, the title position is controlled by the setLocation method.

5. setLocation(double x , double y)

myTitle.setLocation(5.5, 12.0)

Example 3.13. Sets the x and y location of the title, automatically switching the position to CUS-
TOMIZED.

6. setX(double x)

Java style
myTitle.setX(12.5)
Jython style
myTitle.x = 12.5

Example 3.14. Sets the x position of the title.

7. setXy(double[] xy)

Java style
myTitle.setXy([12.5, 7.0])
Jython style
myTitle.xy = [12.5, 7.0]

Example 3.15. Sets the x and y position of the title. Equivalent to setLocation .

Note

The setVAlign method sets the position of the title within the title area , not within the
entire plot. In other words, setVAlign(PlotTitle.BOTTOM) will not put the title
at the bottom of the plot. To achieve that effect use the setPosition method.

3.4. Managing layers
You can create and add other layers on top of the first one:

Create the dataset
x1 = 10.0*Double1d.range(11)/10.0 - 5.0
y1 = x1**3.0
Create and add the layer
myLayer2 = LayerXY(x1,y1)
myPlot.addLayer(myLayer2)

Example 3.16. How to create an additional layer in a plot.

The axis ranges are adjusted automatically and the new layer is given a different colour.

Accessing layers. You can access the layers of a plot as you would with the elements of an array:

firstLayer = myPlot[0]

Renaming layers. Use the following command:

myLayer.name = "New name"

Removing layers. To remove one, some or all layers from a plot do the following:

myPlot.removeLayer(0) # Remove the first layer
myPlot.removeLayers([0, 1]) # Remove the first and second layer

97

Plotting Build 15.0.3244

myPlot.clearLayers() # Remove all layers

Methods. Some of the methods that work on layers are listed in the tables below. For more infor-
mation see the developer's documentation for the LayerXY class .

Procedure 3.2. Miscellaneous setters of the LayerXY class. See Section 3.29 for the conventions used in
this table.

1. setName(text)

Java style
myLayer.setName("A layer")
Jython style
myLayer.name = "A layer"

Example 3.17. Changes the name (and thus the legend) of the layer.

2. setLine(Style line)

Java style
myLayer.setLine(Style.DASHED) # Name
myLayer.setLine(3) # Number
Jython style
myLayer.line = Style.DASHED # Name
myLayer.line = 3 # Number

Example 3.18. Sets the line style of the layer. Possible values are NONE, SOLID, MARKED, DASHED
and MARK_DASHED. You can also use the numbers 0, 1, 2, 3 and 4.

3. setSymbolSize(double size)

Java style
myLayer.setSymbolSize(5.0)
Jython style
myLayer.symbolSize = 5.0

Example 3.19. Sets the size of the layer symbols, in points.

4. setSymbolShape(SymbolShape shape)

Java style
myLayer.setSymbolShape(SymbolShape.FTRIANGLE) # Name
myLayer.setSymbolShape(15) # Number
Jython style
myLayer.symbolShape = SymbolShape.FTRIANGLE # Name
myLayer.symbolShape = 15 # Number

Example 3.20. Sets the shape of the symbol. See Table 3.2 for the names and numbers of available
symbols.

5. setStroke(float stroke)

Java style
myLayer.setStroke(5.0)
Jython style
myLayer.stroke = 5.0

Example 3.21. Sets the line thickness, in points. Only for line plots.

6. setStyle(Style style)

myStyle = Style(line = Style.NONE, symbol = Style.FSQUARE, symbolSize=3.5, \
color = java.awt.Color.blue)
Java style
myLayer.setStyle(myStyle)
Jython style

98

../../hcss_drm/api/herschel/ia/gui/plot/LayerXY.html

Plotting Build 15.0.3244

myLayer.style = myStyle

Example 3.22. Sets the style of the layer. The input parameter is an instance of the Style class. For
more information on creating styles see Section 3.9 .

Procedure 3.3. Other methods of the LayerXY class. See Section 3.29 for the conventions used in this table.

1. addPoint(double x , double y)

myLayer.addPoint(1.5, 2.8)

Example 3.23. Adds a point to the layer.

2. addPoints(Ordered1dData x , Ordered1dData y)

pointsX = Double1d([5.5, 6.0, 6.5])
pointsY = Double1d([2.8, 3.0, 3.1])
myLayer.addPoints(pointsX, pointsY)

Example 3.24. Adds a set of points to the layer.

3. getCoords()

Java style
print myLayer.getCoords()
Jython style
print myLayer.coords

Example 3.25. Waits for mouse click and returns the coordinates of the pointer. Returns a double[]
.

4. getCoords(int n)

print myLayer.getCoords(2)

Example 3.26. Like the previous method, but this one does the job for n successive clicks. Returns a
double[][] , that is, an array of double arrays. Each array holds the coordinates of a mouse click.

5. getDataCoords()

Java style
print myLayer.getDataCoords()
Jython style
print myLayer.dataCoords

Example 3.27. The difference with respect to the previous two methods is that this time the coordi-
nates of the layer point closer to the mouse pointer are returned. Returns a double[] .

6. getDataCoords(int n)

print myLayer.getDataCoords(2)

Example 3.28. Like the previous method, but this one does the job for n successive clicks. Returns a
double[][] , that is, an array of double arrays. Each array holds the coordinates of the data point
closest to each mouse click.

7. getPglid()

Java style
print myLayer.getPglid()
Jython style
print myLayer.pglid

Example 3.29. Returns an int representing the index of the current layer inside the PlotXY .

99

Plotting Build 15.0.3244

8. setInLegend(boolean)

Java style
print myLayer.setInLegend(True)
Jython style
print myLayer.inLegend = True

Example 3.30. Sets whether the layer is shown in the legend. Getter method isInLegend available.

3.5. Showing and customising a legend
You can show or hide a legend showing the name of layers next to the symbol and line styles used
to plot the corresponding data:

myPlot.legend.visible = 1 # Show the legend
myPlot.legend.visible = 0 # Hide the legend

Changing the legend name for a layer. In the following example, the data of layer myLayer
is shown in the legend under the label My data :

myLayer.name = "My data"

Removing a layer from the legend. In the following example, the layer myLayer is removed
from the legend:

myLayer.inLegend = 0

Showing or hiding the legend border. Use the following commands:

myPlot.legend.borderVisible = 1 # Show the border
myPlot.legend.borderVisible = 0 # Hide the border

Setting the number of columns. You can set the number of columns in which layers are organised
in the legend, or let HIPE decide:

myPlot.legend.columns = 2 # Two columns
myPlot.legend.autoColumns = 1 # Automatic

Changing the position of the legend. To move the legend to another position, hover on it so that
the mouse pointer turns to a four-arrows icon. Then click and drag. From the command line, use one
of the following commands:

myPlot.legend.x = 3.0
myPlot.legend.y = 1.5
myPlot.legend.xy = [3.0, 1.5]
myPlot.legend.setLocation(3.0, 1.5)

from herschel.ia.gui.plot.renderer.PlotLegendEngine import Position
myPlot.legend.position = Position.TOPCENTER

Numeric values are in physical coordinates, not in plot coordinates. This means that the legend will
not change position if you change the zoom level of the plot.

Possible values for Position are BOTTOMCENTER , BOTTOMLEFT , BOTTOMRIGHT , LEFT-
BOTTOM , LEFTMIDDLE , LEFTTOP , RIGHTBOTTOM , RIGHTMIDDLE , RIGHTTOP , TOPCEN-
TER , TOPLEFT and TOPRIGHT .

Methods. The plot legend is modelled by the PlotLegend class. This class shares all the posi-
tioning methods listed in Procedure 3.1 . For more information see the developer's documentation .

3.6. Customising plot properties

100

../../hcss_drm/api/herschel/ia/gui/plot/PlotLegend.html

Plotting Build 15.0.3244

Once you have created a plot, you can customise it by changing the properties of its components.

The most common way to do so is via the command line, and the rest of this chapter describes in detail
all the available commands to change the appearance of your plot.

If you prefer to change properties via a graphical interface, you can use Property Panel window. To
open this window, right-click on the plot and choose Properties from the context menu. Alternatively,
invoke the props() method on your plot:

myPlot.props()

Figure 3.2. The Property Panel window.

The previous image shows the properties window for the plot created in Section 3.2 . The left-hand
panel shows a tree structure with all the plot elements. As you add more elements (for example, addi-
tional layers) the tree is automatically updated. Click on any tree element to display the related prop-
erties in the right-hand panel.

Depending on the type of property, you can make changes by editing a text field, choosing a value
from a drop-down list, ticking a checkbox or accessing an additional dialogue window. Most changes
are immediately reflected in the plot. When you change the value of a text field, you have to press
Enter or click elsewhere in the properties window for the change to appear.

3.6.1. Command line equivalents
When you change a plot property from the Property Panel window, HIPE writes the corresponding
command to the Console view. For example, if you change the title of the plot, you will see an output
like this in the Console view:

logger.info("myPlot.getTitle().setText(u'Another title')")

This is not the plot command, however. Instead, this command writes the plot command to the session
log. If you switch to the Log view, you will see something like the following:

05 Nov 2012 15:51:41.788 INFO: myPlot.getTitle().setText(u'Another title')

After the INFO: label you have a command you can copy and paste to a script.

Tip

The u just before the 'Another title' string makes it a Unicode string. This is
optional unless your string includes symbols outside the ASCII character set.

Note that the command used in the previous example could be made more compact as follows:

101

Plotting Build 15.0.3244

myPlot.title.text = 'Another title'

These two styles are entirely equivalent and only a matter of preference. For more information see
Section 3.29 .

3.7. Setting margins
Margins determine the space between the plot and the edges of the plot window. Margins are set auto-
matically by HIPE, but you can change them, for example if you need more space to insert annotations
outside the plot area.

The following example shows how to change the top margin of a plot called myPlot :

myPlot.getSubPlot(0).margin.autoMarginTop = False
myPlot.getSubPlot(0).margin.marginTop = 0.7

HIPE automatically resizes the plot window as margin sizes are changed.

You first have to set the autoMarginTop property to False . Set it back to True to reset the
margin to its default value.

You can set the margins on the other three sides of the plot by using Bottom , Right and Left
instead of Top .

Note that you do not operate on the plot directly, but get a subplot via the getSubPlot method.
If you are working with a single plot, then you have one subplot with index 0. If you are creating
multiple plots in the same window, as explained in Section 3.24 , you have several subplots and can
set the margins of each one separately.

3.8. Saving and printing
To save a plot, right-click on it and choose Save as from the context menu. You can save the plot in
PNG, EPS, PDF and JPEG formats. You can also do it via the command line:

myPlot.saveAsJPG("myfile.jpg") # JPEG format
myPlot.saveAsEPS("myfile.eps") # Encapsulated PS
myPlot.saveAsPNG("myfile.png") # PNG format
myPlot.saveAsPDF("myfile.pdf") # PDF format

To print a plot, right-click on it and choose either of these options from the context menu:

• Print sends data in vector format to the printer. This guarantees a high-quality result, but could take
a long time for plots with many data points.

• Print image converts the plot to a bitmap image before sending it to the printer. This lowers the
quality of the result, but guarantees fast printing even with a very high number of data points.

3.9. Setting line and symbol styles
To change the line style for a layer use this command:

myLayer.line = Style.NONE

You can also use a number instead of the style name:

myLayer.line = 0

The following table shows the available styles and corresponding numbers:

102

Plotting Build 15.0.3244

Table 3.1. Plot line styles

Name Number Description

Style.NONE 0 Symbols only

Style.SOLID 1 Solid line, no symbols

Style.MARKED 2 Symbols connected by solid line

Style.DASHED 3 Dashed line

Style.MARK_DASHED 4 Symbols connected by dashed line

To set the stroke thickness of a line use this command:

myLayer.style.stroke = 5.0

To change the plotting symbol and its size use this command:

myLayer.symbol = Style.FSQUARE
myLayer.symbolSize = 10

The available symbols are listed in the following table. A grey frame is drawn around the smaller
symbols (dot and small arrows) to help gauge their size and position with respect to the data point.
The frame is not part of the symbols.

Table 3.2. Symbol codes and images.

Name Number Image Name Number Image

DOT 1 FSQUARE 16

VCROSS 2 FDIAMOND 17

DCROSS 3 FOCTAGON 18

VDCROSS 4 UARROW 19

CIRCLE 5 DARROW 20

TRIANGLE 6 RARROW 21

UTRIANGLE 7 LARROW 22

SQUARE 8 DARROW_LARGE 23

SQUARE_CROSS 9
UARROW_TRIAN-
GLE

24

DIAMOND 10
DARROW_TRIAN-
GLE

25

DIAMOND_CROSS 11 UARROW_TAIL 26

103

Plotting Build 15.0.3244

Name Number Image Name Number Image

OCTAGON 12 DARROW_TAIL 27

STAR 13 RARROW_TAIL 28

FCIRCLE 14 LARROW_TAIL 29

FTRIANGLE 15

Note

You can use either the code or the numeric value for the symbol. That is, symbol =
Style.FSQUARE is equivalent to symbol = 16 .

You can change shapes and sizes of symbols, line patterns and colours with a single command by
using the Style class.

x = Double1d(range(100))
y = x*x
myPlot = PlotXY(x, y)
myPlot.style = Style(line = Style.NONE, symbol = Style.FSQUARE, symbolSize=3.5, \
 color = java.awt.Color.blue)

Example 3.31. Customising the appearance of the different plot symbols.

In the above example the style is automatically applied to the first layer of the plot. For plots with
multiple layers, you can apply the style to one specific layer:

y2 = x*2
Adding a layer
myPlot.addLayer(LayerXY(x, y2))
Applying a style to the second layer of the plot.
This style only changes the line pattern and thickness.
myPlot[1].style = Style(line = Style.DASHED, stroke = 0.5)

3.10. Customising axes
To initialise a plot with zeroed data and a sample axis, so you can work with the examples below,
the following two lines are enough. Take into account that some of the examples require importing
additional classes and are thus not self-contained.

Initialise the plot and the x-axis
myPlot=LayerXY(Double1d(0),Double1d(0))
myPlot.xaxis=Axis(range=[5e13,3e17], titleText="radius (cm)")

Example 3.32. Adding a customised range and title to a plot axis.

Changing the axis labels:

myPlot.xaxis.titleText = "X-values"
myPlot.yaxis.titleText = "Y-values"

Changing the axis ranges:

myPlot.xaxis.range = [-2.0,2.0]
myPlot.yaxis.range = [-10.0,10.0]

To go back to the auto range:

104

Plotting Build 15.0.3244

myPlot.xaxis.autoRange = 1
myPlot.yaxis.autoRange = 1

Changing the spacing of the tick marks:

myPlot.xaxis.tick.interval = 3.0
myPlot.yaxis.tick.interval = 30.0

Changing the number of minor ticks between each couple of major ticks:

myPlot.xaxis.tick.minorNumber = 4
myPlot.yaxis.tick.minorNumber = 5

Changing the axis from linear to logarithmic:

myPlot.xaxis.setAxisType(AxisType.LOG)
myPlot.xaxis.setAxisType(AxisType.LINEAR)

Note

Any negative values are ignored when converting an axis to logarithmic. Negative values
are plotted again when returning to linear.

Methods. Some methods that work on axes are listed in the tables below. For a complete reference
see the developer's documentation for the Axis class .

Procedure 3.4. Useful methods of the Axis class. See Section 3.29 for the conventions used in this table.

1. setAutoRange(boolean flag)

Java style
myAxis.setAutoRange(True)
Jython style
myAxis.autoRange = True

Example 3.33. If flag is true, adjusts the range of the specified axis so that all data points will be
shown.

2. setRange(double low, double high)

myAxis.setRange(10.0, 30.0)

Example 3.34. Sets the range of the axis. The lower and upper limit are passed as separate double
parameters. Note that there is no "Jython style" example because lists and tuples in Jython use the
same syntax. See the row just below for the example.

3. setRange([lower, upper])

Java style
myAxis.setRange([10.0, 30.0])
Jython style
myAxis.range = [10.0, 30.0]

Example 3.35. Set the range of the specified axis to values between lower and upper. Note that instead
of two arguments for the lower and upper limits, there is one array argument containing both values.

4. setGridLines(boolean flag)

Java style
myAxis.setGridLines(True)
Jython style
myAxis.getTick().setGridLines(True)

Example 3.36. Show grid lines for the specified axis if flag is true, hide the grid lines otherwise.

105

../../hcss_drm/api/herschel/ia/gui/plot/Axis.html

Plotting Build 15.0.3244

5. setType(AxisConstants.Type type)

Java style
myAxis.setType(Axis.LOG)
Jython style
myAxis.type = Axis.LOG

Example 3.37. Sets the axis type. Available types are LINEAR , LOG , DATE , RIGHT_ASCENSION
and DECLINATION .

6. getOrientation()

Java style
print myAxis.getOrientation()
Jython style
print myAxis.orientation

Example 3.38. Gets the axis orientation, either HORIZONTAL or VERTICAL . Setter method not avail-
able.

7. setLinear()

myAxis.setLinear()

Example 3.39. Sets the axis to a linear scale. Equivalent to setType(Axis.LINEAR) .

8. setLog()

myAxis.setLog()

Example 3.40. Sets the axis to a logarithmic scale. Equivalent to setType(Axis.LOG) .

9. setInverted(boolean flag)

Java style
myAxis.setInverted(True)
Jython style
myAxis.inverted = True

Example 3.41. Sets whether values on the axis are displayed in inverted order (for instance, right to
left for the abscissa).

10. setPosition (AxisConstants.Position position)

Java style
myAxis.setPosition(Axis.BOTTOM)
Jython style
myAxis.position = Axis.BOTTOM

Example 3.42. Sets the position of the axis with respect to the plot. Possible values are TOP or BOTTOM
for abscissa axis and LEFT or RIGHT for ordinate axis. Get method available.

The title of an axis is modelled by the AxisTitle class. For more information see the developer's
documentation for AxisTitle .

Procedure 3.5. Useful methods of the AxisTitle class. See Section 3.29 for the conventions used in this
table.

• setText(String text)

Java style
myTitle.setText("A title")
Jython style

106

../../hcss_drm/api/herschel/ia/gui/plot/AxisTitle.html

Plotting Build 15.0.3244

myTitle.text = "A title"

Example 3.43. Sets the text to be displayed.

Ticks are modelled by the AxisTick class. Usually you access the ticks from an Axis object:

myTicks = myAxis.getTick() # Java style
myTicks = myAxis.tick # Jython style

For more information see the developer's documentation of the AxisTick class .

Procedure 3.6. Some methods of the AxisTick class. See Section 3.29 for the conventions used in this
table.

1. setHeight(double size)

Java style
myTicks.setHeight(2.0)
Jython style
myTicks.height = 2.0

Example 3.44. Sets the physical height of the major ticks.

2. setInterval(double interval)

Java style
myTicks.setInterval(0.3)
Jython style
myTicks.interval = 0.3

Example 3.45. Sets the interval between major ticks, in axis units.

3. setSide(AxisTickSide side)

Java style
myTicks.setSide(AxisTickSide.BOTH)
Jython style
myTicks.side = AxisTickSide.BOTH

Example 3.46. Sets the side of the axis on which the ticks are drawn. Possible values are INWARD ,
OUTWARD and BOTH .

4. setMinorNumber(int number)

Java style
myTicks.setMinorNumber(3)
Jython style
myTicks.minorNumber = 3

Example 3.47. Sets the number of minor ticks displayed between two major ticks.

5. setAutoAdjustNumber(boolean flag)

Java style
myTicks.setAutoAdjustNumber(True)
Jython style
myTicks.autoAdjustNumber = True

Example 3.48. Sets whether the number of ticks on the axis is adjusted automatically to avoid over-
lapping labels. Getter method isAutoAdjustNumber available.

6. setGridLines(boolean flag)

Java style
myTicks.setGridLines(True)
Jython style

107

../../hcss_drm/api/herschel/ia/gui/plot/AxisTick.html

Plotting Build 15.0.3244

myTicks.gridLines = True

Example 3.49. Sets whether grid lines are displayed for major ticks. Getter method isGridLines
available.

Tick labels are modelled by the AxisTickLabel class. Usually you access the tick labels from an
AxisTick object:

myTickLabels = myTicks.getLabel() # Java style
myTickLabels = myTicks.label # Jython style

For more information see the developer's documentation of the AxisTickLabel class .

Procedure 3.7. Some methods of the AxisTickLabel class. See Section 3.29 for the conventions used
in this table.

1. setColor(java.awt.Color colour)

Java style
myTickLabels.setColor(java.awt.Color.green)
Jython style
myTickLabels.color = java.awt.Color.green

Example 3.50. Sets the colour of labels.

2. setFont(java.awt.Font font)

myFont = java.awt.Font("Arial", java.awt.Font.PLAIN, 15)
Java style
myTickLabels.setFont(myFont)
Jython style
myTickLabels.font = myFont

Example 3.51. Sets the font of labels.

3. setFontSize(double size)

Java style
myTickLabels.setFontSize(12.0)
Jython style
myTickLabels.fontSize = 12.0

Example 3.52. Sets the physical size of labels.

4. setInterval(int value)

Java style
myTickLabels.setInterval(2)
Jython style
myTickLabels.interval = 2

Example 3.53. Sets the interval (in ticks) between successive labels. For example, a value of two dis-
plays a label on every other tick.

5. setOrientation(int value)

myTickLabels.setOrientation(1)

Example 3.54. Sets the orientation of the labels (0 for horizontal, 1 for vertical).

6. setFixedStrings(String[] labels)

Java style
myTickLabels.setFixedStrings(["One", "Two", "Three"])
Jython style

108

../../hcss_drm/api/herschel/ia/gui/plot/AxisTickLabel.html

Plotting Build 15.0.3244

myTickLabels.fixedStrings = ["One", "Two", "Three"]

Example 3.55. Replaces the current labels with the values in an array of String objects.

7. setSide(AxisLabelSide size)

from herschel.ia.gui.plot.renderer import AxisLabelSide
Java style
myTickLabels.setSide(AxisLabelSide.INWARD)
Jython style
myTickLabels.side = AxisLabelSide.INWARD

Example 3.56. Sets the side of the axis on which the labels are drawn. Possible values are INWARD
and OUTWARD .

The LayerXY class also has methods related to axes. These are listed in the following table. All the
methods listed in the table can equally be applied to the y-axis by replacing X with Y .

Procedure 3.8. Axis-related methods of the LayerXY class. See Section 3.29 for the conventions used in
this table.

1. setXaxis(Axis axis)

Java style
myLayer.setXaxis(myAxis)
Jython style
myLayer.xaxis = myAxis

Example 3.57. Sets the x axis to the specified Axis instance. The x axis will be reinstantiated with
its default settings plus whatever is indicated in the Axis instance. So any prior manipulations of
the axis are lost.

2. setXrange(double[] range)

Java style
myLayer.setXrange([-2.0, 10.5])
Jython style
myLayer.xrange = [-2.0, 10.5]

Example 3.58. Sets the range of the x axis.

3. setXtitle(String title)

Java style
myLayer.setXtitle("A title")
Jython style
myLayer.xtitle = "A title"

Example 3.59. Sets the title of the x axis.

4. setXtype(AxisConstants.Type type)

Import statement not needed if using numeric values
from herschel.ia.gui.plot.renderer.axtype import AxisType
Java style
myLayer.setXAxisType(AxisType.LOG) # Name
Jython style
myLayer.setXAxisType(AxisType.LOG) # Name

Example 3.60. Sets the type of the x axis. Available types are LINEAR and LOG.

5. setXy(Ordered1dData[] xy)

New X values are 1.0, 2.0, 3.0. New Y values are 2.5, 2.8, 3.1.
Java style
myLayer.setXy([Double1d([1.0, 2.0, 3.0]), Double1d([2.5, 2.8, 3.1])])

109

Plotting Build 15.0.3244

Jython style
myLayer.xy = [Double1d([1.0, 2.0, 3.0]), Double1d([2.5, 2.8, 3.1])]

Example 3.61. Sets the x and y values, passed as elements of an "array of arrays" of size two. Get
method available. Note that there is no setYx method!

6. setXy(Ordered1dData x, Ordered1dData y)

New X values are 1.0, 2.0, 3.0. New Y values are 2.5, 2.8, 3.1.
myLayer.setXy(Double1d([1.0, 2.0, 3.0]), Double1d([2.5, 2.8, 3.1]))

Example 3.62. Sets the x and y values, passed as two separate arrays. Note that there is no setYx
method!

7. setY(Ordered1dData y)

New Y values are 2.5, 2.8, 3.1.
Java style
myLayer.setY(Double1d([2.5, 2.8, 3.1]))
Jython style
myLayer.y = Double1d([2.5, 2.8, 3.1])

Example 3.63. Sets the ordinate values. Get method available. Note there is a getX method but not
a setX method.

8. shareXaxis(Axis axis)

myLayer.shareXaxis(myAxis)

Example 3.64. Removes the x axis and uses the given axis as a shared x axis.

3.11. Drawing grid lines
Enable grid lines as in the following example:

myPlot.xaxis.tick.gridLines = 1
myPlot.yaxis.tick.gridLines = 1

Set the gridLines value to zero to disable grid lines.

Grid lines are drawn at major tick marks.

3.12. Managing annotations
The following example shows how to add, modify and remove annotations:

Add an annotation at x = 6.5, y = -10, with text "My text".
The coordinates correspond to the lower left corner of the annotation.
myPlot.addAnnotation(Annotation(6.5,-10,"My text",color=java.awt.Color.GREEN))
List all the annotations of the plot (just one in this case).
print myPlot.getAnnotations()
array(herschel.ia.gui.plot.Annotation, [Annotation 0])
Every annotation is identified by an index, starting from zero.
Print the text of an annotation given its index.
print myPlot.getAnnotation(0).text # My text
Modify an annotation
myAnnotation = myPlot.getAnnotation(0)
myAnnotation.text = "Another text" # Change text
myAnnotation.x = 7.3 # Change coordinates
myAnnotation.y = -5
Delete an annotation given its index.
myPlot.removeAnnotation(0)

Methods. The following table lists methods of the Annotation class. For more information see
the developer's documentation .

110

../../hcss_drm/api/herschel/ia/gui/plot/Annotation.html

Plotting Build 15.0.3244

Procedure 3.9. Methods of the Annotation class. See Section 3.29 for the conventions used in this table.

1. Annotation()

myAnnotation = Annotation()

Example 3.65. Creates an empty annotation.

2. Annotation(String text)

myAnnotation = Annotation("My text")

Example 3.66. Creates an annotation with the given text.

3. Annotation(double x , double y , String text)

myAnnotation = Annotation(1.5, 10.0, "My text")

Example 3.67. Creates an annotation with the given position and text.

4. setAngle(double angle)

Java style
myAnnotation.setAngle(40.0)
Jython style
myAnnotation.angle = 40.0

Example 3.68. Sets the position angle, in degrees, counterclockwise.

5. setHalign(PComponentEngine.HAlign hAlign)

from herschel.ia.gui.plot.renderer import PComponentEngine
Java style
myAnnotation.setHalign(PComponentEngine.HAlign.LEFT)
Jython style
myAnnotation.halign = PComponentEngine.HAlign.LEFT
Accepted values: LEFT, RIGHT and CENTER.

Example 3.69. Sets the horizontal alignment.

6. setValign(PComponentEngine.VAlign vAlign)

from herschel.ia.gui.plot.renderer import PComponentEngine
Java style
myAnnotation.setValign(PComponentEngine.VAlign.BOTTOM)
Jython style
myAnnotation.valign = PComponentEngine.VAlign.BOTTOM
Accepted values: TOP, BOTTOM and MIDDLE.

Example 3.70. Sets the vertical alignment.

7. setX(double x)

Java style
myAnnotation.setX(12.5)
Jython style
myAnnotation.x = 12.5

Example 3.71. Sets the x position.

8. setXy(double x , double y)

myAnnotation.setXy(12.5, -3.5)

Example 3.72. Sets the x and y position.

111

Plotting Build 15.0.3244

9. setText(String text)

Java style
myAnnotation.setText("Alternative text")
Jython style
myAnnotation.text = "Alternative text"

Example 3.73. Sets the text of the annotation.

10. int getId()

Java style
print myAnnotation.getId()
Jython style
print myAnnotation.id

Example 3.74. Gets the unique id of the annotation. No setter available.

The PlotXY class also has methods for handling annotations. These are listed in the following table.

Procedure 3.10. Methods of the PlotXY class for handling annotations. See Section 3.29 for the conven-
tions used in this table.

1. addAnnotation(Annotation annotation)

myAnnotation = Annotation(6.5,-10,"My text",color=java.awt.Color.GREEN)
myPlot.addAnnotation(myAnnotation)

Example 3.75. Adds an Annotation object to the layer.

2. addAnnotations(Annotation[] annotations)

firstAnnotation = Annotation(6.5,-10,"My text",color=java.awt.Color.GREEN)
secondAnnotation = Annotation(3.5,-5,"Another text",color=java.awt.Color.BLUE)
myPlot.addAnnotations([firstAnnotation, secondAnnotation])

Example 3.76. Adds several Annotation objects to the layer. The input Annotations are passed as
an array.

3. setAnnotation(int id , Annotation annotation)

myAnnotation = Annotation(6.5,-10,"My text",color=java.awt.Color.GREEN)
myPlot.setAnnotation(1, myAnnotation)

Example 3.77. Sets an annotation to a given id, replacing what was there before.

4. setAnnotations(Annotation[] annotations)

firstAnnotation = Annotation(6.5,-10,"My text",color=java.awt.Color.GREEN)
secondAnnotation = Annotation(3.5,-5,"Another text",color=java.awt.Color.BLUE)
myPlot.setAnnotations([firstAnnotation, secondAnnotation])

Example 3.78. Replaces all the annotations with the ones provided in the array.

5. getAnnotation(int i)

myAnnotation = myPlot.getAnnotation(1)

Example 3.79. Retrieves one annotation from the layer.

6. getAnnotations()

Java style
myAnnotations = myPlot.getAnnotations()
Jython style

112

Plotting Build 15.0.3244

myAnnotations = myPlot.annotations

Example 3.80. Retrieves all the annotations from the layer. The annotations are returned as an array.

7. removeAnnotation(int id)

myPlot.removeAnnotation(1)

Example 3.81. Removes the annotation with the specified id.

8. clearAnnotations()

myPlot.clearAnnotations()

Example 3.82. Removes all the annotations.

3.13. Drawing filled areas
To enable area filling for a layer, use the following command, assuming that layer is a variable
representing your layer:

myLayer.style.fillEnabled = 1

Set this property to zero to disable area filling.

Fill closure. You can determine the area to be filled by setting the fill closure type :

from herschel.ia.gui.plot.renderer import FillClosureType
myLayer.style.fillClosureType = FillClosureType.TOP

There are five options available: SELF , TOP , BOTTOM , LEFT and RIGHT .

The SELF option is the default. The filled area is defined by the plot curve and a straight line con-
necting the first and last points of the curve.

The effects of the five options are shown in the following image:

Figure 3.3. Available filling closure types.

Fill colour. The area is filled with a light grey colour by default. To change the colour, issue the
following command:

myLayer.style.fillPaint = java.awt.Color.YELLOW

113

Plotting Build 15.0.3244

For more information on the java.awt.Color class see Section 3.25 .

Hatching. You can use a hatched pattern for filling by defining a LineHatchPaint object:

paint = LineHatchPaint(55) # Lines tilted 55 degrees
myLayer.style.fillPaint = paint

There are various ways to create a LineHatchPaint object:

LineHatchPaint(angle)
LineHatchPaint(width, angle, spacing)
LineHatchPaint(color, width, dash, angle, spacing)

Angles are measured in degrees, widths and spacings in pixels. The colour parameter must be of
type java.awt.Color , while the dash parameter is an array of lengths in pixels describing the
dash pattern. The following examples clarifies the syntax:

LineHatchPaint(55)
LineHatchPaint(3, 75, 5)
LineHatchPaint(java.awt.Color.RED, 1, [5, 3, 1], 55, 5)

The results are shown in the following figure:

Figure 3.4. The filling patterns produced by the three LineHatchPaint objects shown in the previous
example.

3.13.1. Drawing filled areas between curves
To fill areas between curves, the required code is more complex. Following you can find a complete
example that fills the area between the curves sinc(x)+0.5 and sinc(x)-0.5 with a gray colour. It also
strokes the curve sinc(x) in blue with a brush 3 pixels wide.

from herschel.ia.gui.plot.renderer import FillClosureType
from java.awt import Color

x = -4*Math.PI + 8.0*Math.PI*Float1d.range(101)/100.0
y = SINC(x)
yerr = 0.5
yUp = y + yerr
yDo = y - yerr

plot = PlotXY()

fill area
ax=x.copy().append(REVERSE(x))
ay=yUp.copy().append(REVERSE(yDo))
there is no way to omit lines and symbols together, so we set symbols to a very
 small size
la=LayerXY(ax,ay,line=Style.NONE, symbolSize=0.01)
la.style.fillClosureType=FillClosureType.SELF
la.style.fillPaint=Color(234,234,234)
la.style.fillEnabled=1
plot.addLayer(la)
l1 = LayerXY(x,y)
l1.setStroke(3)
l1up = LayerXY(x,yUp)

114

Plotting Build 15.0.3244

l1up.setColor(java.awt.Color.GRAY)
l1do = LayerXY(x,yDo)
l1do.setColor(java.awt.Color.GRAY)
plot.addLayer(l1)
plot.addLayer(l1up)
plot.addLayer(l1do)

Example 3.83. Filling the areas between the curves.

The result of this code is displayed in the following figure:

Figure 3.5. The filled area between the sinc(x) curves.

3.14. Drawing a straight line
Use the LineAnnotation class to add a horizontal or vertical line to a layer of your plot, as shown
by the following example:

Creating two horizontal lines at Y = 10 and 12
hline_a = LineAnnotation (LineAnnotation.YLINE, 10)
hline_b = LineAnnotation (LineAnnotation.YLINE, 12)
Creating a vertical line at X = 15.5
vline = LineAnnotation (LineAnnotation.XLINE, 15.5)
Adding all three lines to a layer
myLayer.addLineAnnotation(hline_a)
myLayer.addLineAnnotation(hline_b)
myLayer.addLineAnnotation(vline)

Each line is identified by an integer number, starting from zero. In the above example, hline_a
is identified by 0, hline_b by 1 and vline by 2. You need to refer to these numbers if you
want to modify or delete a line, as shown in the following examples.

LineAnnotation objects accept all the methods for colours, fonts and visibility described in Sec-
tion 3.26 . In addition, you can change the line width and dash pattern as shown by the following
example:

115

Plotting Build 15.0.3244

Changing line width to 2.0 in plot units
hline_a.lineWidth = 2.0
Applying changes (hline_a is number 0)
myLayer.setLineAnnotation(1, hline_a)
Setting dashes of length 2.0 with gaps of length 1.0
hline_b.dashArray = [2.0, 1.0]
Applying changes (hline_b is number 1)
myLayer.setLineAnnotation(0, hline_b)

Use removeLineAnnotation to delete a line:

Removing vline, identified by number 2
myLayer.removeLineAnnotation(2)

3.14.1. Drawing an arbitrarily-positioned straight line
LineAnnotation objects can only be plotted vertically or horizontally. To arbitrarily position a
straight line you need to employ the stroke property of LayerXY . See below for a minimal ex-
ample.

from java.awt.Color import *

x = Double1d.range(11)
y = x*x
myPlot = PlotXY()
myPlot.autoBoxAxes = 1
myLayer = LayerXY(x, y)
myPlot.addLayer(myLayer, 0, 0)
x1_begin = 2.0
y1_begin = 2.0
x1_end = 6.0
y1_end = 8.0
l1 =
 LayerXY(Double1d([x1_begin,x1_end]),Double1d([y1_begin,y1_end]),color=java.awt.Color.RED,stroke
 = 2)
myPlot.addLayer(l1,0,0)
x2_begin = 7.0
y2_begin = 60.0
x2_end = 9.0
y2_end = 75.0
l2 =
 LayerXY(Double1d([x2_begin,x2_end]),Double1d([y2_begin,y2_end]),color=java.awt.Color.BLUE,stroke
 = 2)
myPlot.addLayer(l2,0,0)

Example 3.84. Drawing an arbitrarily-positioned straight line using LayerXY.

3.15. Customising auxiliary axes
Auxiliary axes are those that appear opposite the plot main axes. The X axis at the top of the plot and
the Y axis on the right side of the plot are auxiliary axes.

You can get hold of an auxiliary axis with the getAuxAxis method. The following example shows
how to set different units and ticks for the auxiliary axes. The main X axis is a wavelength measured
in micrometers and the top X axis is changed to show the wavenumber (1/wavelength) in cm -1 .

STEP 1 - Create a plot
x = 100.0 + 6*Double1d.range(100)
y = x*x
myPlot = PlotXY()
myLayer = LayerXY(x,y)
myPlot.addLayer(myLayer)
myPlot.xaxis.titleText = "Wavelength ($\\mu$m)"
myPlot.yaxis.titleText = "F$_\\lambda$ (Jy)"

STEP 2

116

Plotting Build 15.0.3244

Get the auxiliary axis (top X).
xaux = myPlot.xaxis.getAuxAxis(0)
Make it free so that ticks do not have to be identical to the main axis.
xaux.tickIdentical = 0
Remove the autoadjustment of the ticks.
xaux.tick.autoAdjustNumber = 0
Make the axis title visible and set the title text.
xaux.title.visible = 1
xaux.titleText = "Wavenumber (cm$^{-1}$)"

STEP 3
Get the top axis labels and make them visible.
xauxlab = xaux.tick.label
xauxlab.visible = 1
Set the new values for major and minor ticks.
Major ticks: 10, 20, 30, 40, 50.
vals = Double1d(range(10,51,10))
Minor ticks: 15, 25, 35, 45.
valsMinor = Double1d(range(15,50,10))
Convert the wavenumbers to wavelength in microns.
wl_vals = 1.0e4/vals
wl_valsMinor = 1.04/valsMinor
xaux.tick.setFixedValues(wl_vals, wl_valsMinor)
Create strings from values to act as tick labels.
svals = ['%.1f'%v for v in vals]
xauxlab.fixedStrings = svals

This is the resulting plot:

Figure 3.6. Plot with a customised auxiliary axis.

There is an easy way to construct the auxiliary axis if it is reciprocal to the main axis. Continuing
from the end of step one, you can show the frequency in GHz, which is c/wavelength, where c is the
speed of light in vacuum:

c = 299792458.0 # m/s
xaux = ReciprocalAuxAxis(1.0e-3*c)
myPlot.getXaxis().removeAuxAxis(0)
myPlot.getXaxis().addAuxAxis(xaux)
xaux.setTitleText("Frequency (GHz)")
xaux.getTick().setMinorNumber(4)

This way the ticks are automatically adjusted. The argument of ReciprocalAuxAxis is the factor
used to convert from the main axis with its unit to the auxiliary axis and its unit. That is: 1 GHz =
(1.0e-3*c)/µm.

117

Plotting Build 15.0.3244

3.16. Changing the thickness of axes
The following example shows how to change the thickness of the X axis of a plot called myPlot.
The first two commands set the thickness of the main X axis and of its ticks to three pixels. The third
and fourth commands do the same for the auxiliary X axis.

myPlot.xaxis.setLineWidth(3)
myPlot.xaxis.getTick().setLineWidth(3)
myPlot.xaxis.getAuxAxis(0).setLineWidth(3)
myPlot.xaxis.getAuxAxis(0).getTick().setLineWidth(3)

You can do the same for the main and auxiliary Y axes by replacing xaxis with yaxis.

3.17. Adding error bars
To add vertical and/or horizontal error bars, you first need to create arrays containing the error values,
as shown by the following example:

Creating arrays with error values
xerr = SQRT(x)
yerrup = SQRT(y)
yerrlow = SQRT(y) / 2.0

Setting error bars
myLayer.errorX = [xerr, xerr] # Setting the left and right error values
myLayer.errorY = [yerrlow, yerrup] # Setting the lower and upper error values

Note how, in the previous example, the error values at each side of the data points are the same for
horizontal error bars but different for vertical error bars.

The arrays containing the error values do not need to be the same size as the arrays containing the data
points. If there are more errors values than data points, the surplus error values are ignored. If there
are fewer error values than data points, no error is set for the surplus data points.

In the latter case, you can add error values to the ones already set:

Creating dummy additional error values
xerraddleft = Double1d([0.3, 0.8])
xerraddright = Double1d([0.7, 0.4])
yerradd = Double1d([0.7, 0.2])

Appending error bars
myLayer.appendErrorX(xerraddleft, xerraddright)
myLayer.appendErrorY(yerradd, yerradd)

Procedure 3.11. Methods for handling error bars in layers. See Section 3.29 for the conventions used in
this table.

1. appendErrorX(double low, double high)

myLayer.appendErrorX(1.2, 0.6)

Example 3.85. Appends a low and high error value of x.

2. appendErrorX(Ordered1dData low, Ordered1dData high)

lowErrors = Double1d([1.2, 1.4, 0.9])
highErrors = Double1d([0.6, 1.1, 0.4])
myLayer.appendErrorX(lowErrors, highErrors)

Example 3.86. Appends a set of low and high error values of x.

118

Plotting Build 15.0.3244

3. setErrorX(Ordered1dData [] error)

errors = Double1d([1.2, 1.4, 0.9])
Java style
myLayer.setErrorX(errors)
Jython style
myLayer.errorX = errors

Example 3.87. Sets low and high error values of x.

4. setErrorX(Ordered1dData low, Ordered1dData high)

lowErrors = Double1d([1.2, 1.4, 0.9])
highErrors = Double1d([0.6, 1.1, 0.4])
myLayer.setErrorX(lowErrors, highErrors)

Example 3.88. Sets the low and high error values of x.

5. getErrorX()

Java style
print myLayer.getErrorX()
Jython style
print myLayer.errorX

Example 3.89. Returns an array of Ordered1dData with length equal to 2.

3.18. Switching to histogram mode
The following example shows how to change the myLayer layer to histogram mode. You need
to be in MARKED or SOLID line style for this mode to work:

myLayer.line = Style.MARKED
myLayer.style.chartType = Style.HISTOGRAM

Three chart types are available:

• HISTOGRAM : the data point is in the middle of the histogram horizontal bar.

• HISTOGRAM_EDGE : the data point is on the edge of the histogram horizontal bar.

• LINECHART : the data points are connected with lines (default setting).

Figure 3.7. The same data set plotted as LINECHART (default) and HISTOGRAM.

To produce data sets for histogram plots you can use the Histogram and BinCentres functions
of the HIPE Numeric library. For more information and examples see the corresponding entries in the
User's Reference Manual :

• Section 1.184 in HCSS User's Reference Manual

119

Plotting Build 15.0.3244

• Section 1.37 in HCSS User's Reference Manual

3.19. Adding subplots
You can draw a smaller plot inside your main plot, as shown by the following example. The example
also shows how to change the axis ranges of the subplot:

Setting up dummy data
n = 10000
x = (Double1d.range(n)+1)/(n/100)
y = SIN(x)/x

Creating main plot
myPlot = PlotXY()
You have to follow this additional step for a plot to accept subplots.
myPlot.setLayout(PlotOverlayLayout())

myLayer0 = LayerXY(x,y)
myPlot.addLayer(myLayer0)

Creating and adding subplot
Here you define the area occupied by the subplot. The four numbers are
the distances of the subplot boundaries from the top, left, bottom and right
axes of the main plot, respectively. The units are the lengths of the main
plot axes. In this example, the top boundary of the subplot is separated
from the top axis of the main plot by 0.05 times the length of the
vertical axis of the main plot. Run the example with different values
to get a feel for the effects of these values.
mySubplot = SubPlot(SubPlotBoundsConstraints(0.05, 0.4, 0.5, 0.07))
myLayer1 = LayerXY(x, y)
You add layers to a subplot in the same way as to a plot.
mySubplot.addLayer(myLayer1)
myPlot.addSubPlot(mySubplot)

Modifying axis ranges
You cannot access axes directly from the subplot. You have to get them
through a layer. This is why this line and the following one use baseLayerXY
to get the first layer in the subplot. Then you can set the range property to
change the axis range.
mySubplot.baseLayerXY.xaxis.range = [0, 100]
mySubplot.baseLayerXY.yaxis.range = [-0.2, 0.2]

Example 3.90. How to add and customise a subplot inside a main plot.

The following figure shows the plot created by the previous example:

Figure 3.8. Plot with embedded subplot.

120

Plotting Build 15.0.3244

If you open the properties panel of the plot (see Section 3.6) you will see a Subplot 1 entry, from
which you can change the properties of the subplot.

Since subplots use layers just like main plots, all the methods described in Section 3.4 also apply to
subplots. Subplots also accept all the methods for colours, fonts and visibility described in Section 3.26
.

3.20. Embedding monochromatic images in
plots

There are several steps required in order to add an image to a plot. First, you should not use a Sim-
pleImage but the image dataset (or extension) inside a SimpleImage. This is a two-dimensional
array like a Float2d:

plotImage = myImage.image # myImage is a SimpleImage
myLayer = LayerImage(myImage) # Gives an error
myLayer = LayerImage(plotImage) # Correct

As the WCS data stored in the SimpleImage object is not yet in the layer along with the dataset,
you should now transfer it. Please note that if the source data do not use a cylindrical projection you
should manually correct it (see the warning below):

wcs = myImage.wcs # Extracting the WCS from the SimpleImage
crpix1 = wcs.crpix1
crpix2 = wcs.crpix2

crval1 = wcs.crval1
crval2 = wcs.crval2

cdelt1 = wcs.cdelt1
cdelt2 = wcs.cdelt2

naxis1 = wcs.naxis1
naxis2 = wcs.naxis2

cosd = Math.cos(Math.toRadians(crval2))

Set the origin and the scale of the axes so that they coincide with the WCS.
myLayer.xcdelt = cdelt1/cosd
myLayer.ycdelt = cdelt2

myLayer.xcrpix = crpix1
myLayer.ycrpix = crpix2

myLayer.xcrval = crval1
myLayer.ycrval = crval2

Warning

LayerImage assumes a cylindrical projection, where moving up/down changes only the
declination, and moving left/right changes only the right ascension. This is not the case
in a real map which should have a gnomonic projection ("TAN"). For small images, the
gnomonic projection is approximately cylindrical.

LayerImage assumes the image is small, and that a cylindrical approximation is valid.
This causes differences in the world coordinates of pixels far from the reference pixel in
large maps

The following example shows a workaround to ensure the projection is correct at the target
position:

Convert source coordinates (raNominal, decNominal) to pixel
coordinates using the input map:
xNominal = inputMap.wcs.getPixelCoordinates(raNominal, decNominal)
[1]

121

Plotting Build 15.0.3244

yNominal = inputMap.wcs.getPixelCoordinates(raNominal, decNominal)
[0]

Set up the LayerImage:
myPlot = PlotXY()
myPlot.addLayer(LayerImage(inputMap.image))

Set the origin and the scale of the axes so they coincide with
the WCS of the input image, amending the centre with the new
reference coordinates
myPlot[0].xcdelt = inputMap.wcs.cdelt1/
COS(decNominal*Math.PI/180.)
myPlot[0].ycdelt = inputMap.wcs.cdelt2
myPlot[0].xcrpix = xNominal+1
myPlot[0].ycrpix = yNominal+1
myPlot[0].xcrval = raNominal
myPlot[0].ycrval = decNominal

The following example shows how to set the colour and intensity tables:

Set the colour table
myLayer.colorTable = "Ramp"
Print available values for the colour table
print myLayer.style.getColorTableNames()
Set the intensity table
myLayer.intensityTable = "Negative"
Print available values for the intensity table
print myLayer.style.getIntensityTableNames()

Finally, add the LayerImage object with image and wcs information to a plot:

myLayer = LayerImage(plotImage)
myPlot.addLayer(myLayer)

See also Section 3.30 for an example script in which an image from a Herschel observation is used
to create a plot.

3.21. Embedding RGB images in plots
To add an RGB image to a plot, add a LayerRgbImage layer, like you would do with a normal
LayerXY :

myLayer = LayerRgbImage(redImage, greenImage, blueImage)
myPlot.addLayer(myLayer)

Each of the three images you have to pass to a LayerRgbImage is not a SimpleImage but a two-
dimensional Numeric array such as Float2d . You can extract the three components of an Rgb-
SimpleImage in the correct format as follows:

red = myRgbImage.redByteImage
green = myRgbImage.greenByteImage
blue = myRgbImage.blueByteImage

The following example creates a plot with an RGB image obtained from public Herschel archive data.

The script connects to the Herschel Science Archive to retrieve data, so you must be connected to
the Internet and logged in. For more information on logging in to the Herschel Science Archive, see
Section 1.4.1 .

from java.awt import Color
from java.lang import Math
from herschel.ia.gui.plot import LayerRgbImage

122

Plotting Build 15.0.3244

Get a public SPIRE observation
myobs = getObservation(obsid=1342183475, useHsa=True)

Extract the PSW (250µm band) map
map = myobs.browseProduct

Extract the image array and the WCS
red = map["red"].data
green = map["green"].data
blue = map["blue"].data

wcs = map.wcs

Extract some information from the WCS
cdelt1 = wcs.cdelt1
cdelt2 = wcs.cdelt2
crpix1 = wcs.crpix1
crpix2 = wcs.crpix2
crval1 = wcs.crval1
crval2 = wcs.crval2
naxis1 = wcs.naxis1
naxis2 = wcs.naxis2
cosd = Math.cos(Math.toRadians(crval2))

Create the layer with the image
layIma = LayerRgbImage(red, green, blue)

Set the origin and the scale of the axes
so that they coincide with the WCS.
Note that you cannot rotate the image.
layIma.xcdelt = cdelt1/cosd
layIma.ycdelt = cdelt2

layIma.xcrpix = crpix1
layIma.ycrpix = crpix2

layIma.xcrval = crval1
layIma.ycrval = crval2

Create a plot
myPlot = PlotXY()

Add the image layer to the plot
myPlot.addLayer(layIma)

Change the axis type to have ticks in degrees, min, sec
myPlot.xaxis.type = Axis.RIGHT_ASCENSION
myPlot.yaxis.type = Axis.DECLINATION
myPlot.xaxis.titleText = "Right Ascension (J2000)"
myPlot.yaxis.titleText = "Declination (J2000)"

Set the axes ranges so that the image fills
the plotting area
myPlot.xrange = [crval1-(crpix1-0.5)*cdelt1/cosd,\
 crval1-(crpix1-naxis1-0.5)*cdelt1/cosd]
myPlot.yrange = [crval2-(crpix2-0.5)*cdelt2,\
 crval2-(crpix2-naxis2-0.5)*cdelt2]

Change the size of the plotting area so that image pixels
are as on the sky
myPlot.setPlotSize(4.0,4.0*(naxis2*-cdelt2)/(naxis1*cdelt1))

Example 3.91. How to manually combine three bands to create an RGB image, respecting WCS informa-
tion.

The following image shows the plot produced by the script:

123

Plotting Build 15.0.3244

Figure 3.9. RGB image in a plot.

3.22. Inserting math and special symbols
You can use TeX-like formatting of strings in plots. In particular, entering math mode using a $ symbol
it is possible to insert Greek characters, for instance using \\alpha or \\beta . Superscripts are
preceded by the ^ symbol and subscripts by the _ symbol. For example, the following two lines set
the labels of the two axes:

myPlot.xaxis.title.text="$A_{1.3}^{b-3/2}$"
myPlot.yaxis.title.text="$\\alpha_{1.3}^{\\beta-3/2}$"

The following figure shows the resulting plot:

Figure 3.10. Using special characters for labels.

Note that it is necessary to use "\\" to escape the "\" symbol from the command line . A single backslash
should be used in the Property Panel window instead.

124

Plotting Build 15.0.3244

Warning

Not all special symbols are available. If the symbol is not available it will be treated as
normal text by the interpreter. For example, $\\Alpha$ will be rendered as \Alpha .

The following special symbols are available:

• All the lower-case Greek letters.

• The following upper-case Greek letters: \Gamma, \Delta, \Theta, \Lambda, \Xi,
\Pi, \Sigma, \Upsilon, \Phi, \Psi, \Omega .

• The \angstrom and \micro symbols.

To insert other symbols you can use the Unicode escape sequence \uxxxx , where xxxx is the
hexadecimal code of the symbol. For example, \u2299 corresponds to the circle dot operator , which
can also be used as symbol for the Sun.

For a list of Unicode sequences see for example http://www.utf8-chartable.de/ .

3.23. Creating a plot in batch mode
HIPE tries to batch automatically plot statements to obtain the best performance. There is nothing to
be configured or specified to take advantage of this. If you have a script like the one below, written
for older versions of HIPE, you should remove the .batch assignments to avoid warning messages
like this:

WARNING: herschel.ia.gui.plot.PlotXY.setBatch is deprecated. This method has no
 effect. Please remove it.

x = Int1d([1,2,3])
x1 = x2 = x3 = y = y1 = y2 = y3 = x
myPlot = PlotXY()
myPlot.batch = 1
myLayer1 = LayerXY(x,y)
myLayer2 = LayerXY(x1,y1)
myLayer3 = LayerXY(x2,y2)
myLayer4 = LayerXY(x3,y3)
myPlot.addLayer(myLayer1, 0, 0)
myPlot.addLayer(myLayer2, 0, 1)
myPlot.addLayer(myLayer3, 1, 0)
myPlot.addLayer(myLayer4, 1, 1)
myPlot.batch = 0
del (x, y, x1, y1, x2, y2, x3, y3)

Example 3.92. Batching several plots to improve speed.

3.24. Drawing multiple plots per window
When you add layers to a plot, you can specify their position on a grid. The following example places
four layers onto a 2x2 grid (running indices from 0, 0 to 1, 1).

x = Int1d([1,2,3])
x1 = y = y1 = x
myPlot = PlotXY()
myLayer1 = LayerXY(x,y)
myLayer2 = LayerXY(x1,y1)
myLayer3 = LayerXY(x1,y1/5.0)
myLayer4 = LayerXY(x1/5.0,y1)
myPlot.addLayer(myLayer1, 0, 0) # top left
myPlot.addLayer(myLayer2, 0, 1) # bottom left
myPlot.addLayer(myLayer3, 1, 0) # top right
myPlot.addLayer(myLayer4, 1, 1) # bottom right
del (x, y, x1, y1)

Example 3.93. Distributing layers inside a main plot.

125

http://www.utf8-chartable.de/

Plotting Build 15.0.3244

You can change the properties of layers via the Property Panel window or via the command line. See
Section 3.4 for details.

See also Section 3.32 for an example of creating a plot with multiple panels.

3.25. Colours in plots
You can set colours for all the main plot components (layers, axes, titles and so on). You specify
colours as objects of type java.awt.Color (note the US spelling of Color).

You can set a colour when you create a component or afterwards:

At creation time
myLayer = LayerXY(x, y, color=java.awt.Color.orange)
Setting on existing component
myLayer.color = java.awt.Color.red

The following thirteen predefined colours are available:

• black

• blue

• cyan

• darkGray

• gray

• green

• lightGray

• magenta

• orange

• pink

• red

• white

• yellow

You can get any other colour by specifying the red, green and blue values in ranges from 0 to 255:

myLayer.color = java.awt.Color(0,250,20)

You can add an import statement to avoid writing the java.awt. prefix every time:

Writing the prefix
myLayer.color = java.awt.Color.red
Importing the Color class
from java.awt import Color
Prefix no longer needed
myLayer.color = Color.red

3.26. Methods for colours, fonts and visibility
The methods in the following table apply to all main components of a plot: the plot itself, layers, axes,
titles, annotations and subplots. Ticks (AxisTick class) only implement setVisible , although
tick labels (AxisTickLabel class) implement all these methods.

126

Plotting Build 15.0.3244

Procedure 3.12. Common methods to customise colours, fonts and visibility. See Section 3.29 for the con-
ventions used in this table.

1. setVisible(boolean visible)

Java style
myAxis.setVisible(True)
Jython style
myAxis.visible = True

Example 3.94. Sets whether the component is visible.

2. setColor(Color color)

Java style
myAnnotation.setColor(java.awt.Color.red)
Jython style
myAnnotation.color = java.awt.Color.red

Example 3.95. Sets the foreground colour of the component.

3. setFont(Font font)

myFont = java.awt.Font("Arial", java.awt.Font.PLAIN, 15)
Java style
myLabel.setFont(myFont)
Jython style
myLabel.font = myFont

Example 3.96. Sets the font of the component. You can specify a font by giving a name, style and
point size. Available font styles are PLAIN , BOLD and ITALIC . You can also use the numbers 0,
1 and 2, respectively.

4. setFontName(String name)

Java style
myTitle.setFontName("Courier")
Jython style
myTitle.fontName = "Courier"

Example 3.97. Sets the name of the font of the component.

5. setFontSize(float size)

Java style
myAnnotation.setFontSize(12)
Jython style
myAnnotation.fontSize = 12

Example 3.98. Sets the size of the font of the component.

6. setFontStyle(int style)

Java style
myAnnotation.setFontStyle(java.awt.Font.BOLD) # Name
myAnnotation.setFontStyle(1) # Number
Jython style
myAnnotation.fontStyle = java.awt.Font.BOLD # Name
myAnnotation.fontStyle = 1

Example 3.99. Sets the style of the font of the component. Possible values are PLAIN , BOLD and
ITALIC . You can also use the numbers 0, 1 and 2, respectively.

3.27. Invisible plots
127

Plotting Build 15.0.3244

You can create a plot without showing it on screen. This is useful if you want to show the plot at a
later time, or if you just want to save it to file.

Create the plot with a single command, setting the visible attribute to zero:

Create plot data
x = Double1d(range(100))/10.0
y = x*x
Create the plot
myPlot = PlotXY(x, y, titleText = "Invisible plot", visible = 0)

Example 3.100. Creating a plot that is not drawn on the screen.

The plot window will briefly flash and then disappear. To make the plot visible use the following
command:

myPlot.visible = 1

Note

If you create an empty invisible plot, the plot window may be shown even if the plot itself
remains invisible. To make the window disappear, set the visible attribute to 1 and
then back to 0.

3.28. Getting mouse coordinates on plots
You can obtain the coordinates of mouse clicks on your plots, in units of the x and y axes. Use the
getCoords method to obtain the exact coordinates of mouse clicks:

coords = myPlot.getCoords(3)

The above example gets the coordinates of the next three clicks on plot myPlot and stores them in the
coords variable. Note that you have to do the mouse clicks before you can issue other commands
in the Console view of HIPE.

You can then store the x and y coordinates of the mouse clicks into two arrays:

xcoords = Double1d(coords[0])
ycoords = Double1d(coords[1])

The getDataCoords method gets the coordinates of the data point nearest to the mouse click, rather
than the coordinates of the mouse click itself:

coords = myPlot.getDataCoords(3)

You can then obtain two arrays of x and y coordinates as with the getCoords method.

3.29. More on plot methods
Given the size and complexity of the plot package, not all the available commands are described in
this chapter. For a complete list please refer to the related Javadoc documentation for the her-
schel.ia.gui.plot package.

The tables in this chapter follow these conventions:

• When a method with " X " in its name is listed, there is also a method with " Y ", doing the same
thing for the Y axis, unless specified otherwise . For example, there is a setYtitle method in
addition to setXtitle .

• Methods whose name begins with set are called setters and are used to set a value. For every setter
there is usually a getter , a method whose name begins with get and whose job is to retrieve a
value. The tables only list setters; for every setter it is implicit that a getter exists, unless specified

128

../../hcss_drm/api/herschel/ia/gui/plot/package-summary.html

Plotting Build 15.0.3244

otherwise . A getter is called without input parameters and its return value is of the same type as the
input parameter of the corresponding setter. For example, the setXaxis(Axis axis) setter
has a corresponding getXaxis() getter returning an object of class Axis .

• When a setter method takes a boolean variable as argument (that is, a variable with only two possible
values, True or False), the corresponding getter begins by is rather than get . For instance,
setVisible and isVisible , not getVisible .

• Getter and setter Java methods have a simplified syntax in Jython. This syntax was used in all the
examples in this chapter and is shown by the following example:

myLayer.setColor(java.awt.Color.RED) # Java style for setter
myLayer.color = java.awt.Color.RED # Simplified Jython style for setter
myColor = myLayer.getColor() # Java style for getter
myColor = myLayer.color # Simplified Jython style for getter

Commands written in Java or Jython style have the same effect. Which style you choose is a matter
of personal preference.

• The name of a method can offer useful clues about its behaviour. For example, the method set-
Something will replace the preexisting Something, while appendSomething or addSome-
thing will add SomethingElse to the existing Something.

• Methods with the same name as a class are called constructors and are used to create an object from
that class. For example, using the PlotXY() constructor to create a myPlot object from the
PlotXY class:

myPlot = PlotXY()

For more information on classes and methods see the Scripting Guide : Section 1.29 in Scripting Guide
.

The following image shows the classes you are most likely to use when designing plots on the com-
mand line.

Figure 3.11. Classes involved in plot operations.

3.30. Worked example: Plot with an image

129

Plotting Build 15.0.3244

The following is a commented example of how to produce a plot of an image taken from a public
Herschel observation. Many features of the plot package are illustrated, including advanced axes cus-
tomisation, annotations, subplots and a technique to add contour levels.

Note

For a simplified script that makes use of the Display class from the herschel.ia.gui.im-
age package, please see below this script.

The script connects to the Herschel Science Archive to retrieve data, so you must be connected to
the Internet and logged in. For more information on logging in to the Herschel Science Archive, see
Section 1.4.1 .

The following image shows the plot produced by the script:

Figure 3.12. The result of the commented plot example presented in this section.

#
Advanced example script to show how to display images in PlotXY.

This script shows how to produce a "publication-ready" figure of a Herschel map.
Run in HIPE 8 or newer.
#
Author: Pasquale Panuzzo, CEA Saclay Irfu/SAp
pasquale.panuzzo@cea.fr
#
Version: 9 June 2011
#

Import some useful classes
from java.awt import Color
from java.lang import Math
from herschel.share.fltdyn.math import SexagesimalFormatter
from herschel.share.fltdyn.math.SexagesimalFormatter import Mode

Get a public SPIRE observation
myobs=getObservation(1342183475L, useHsa=True)

Extract the PSW (250 µm band) map
map=myobs.level2.refs["psrcPSW"].product

Extract the image data
image=map.image

Create the layer with the image
layIma=LayerImage(image)

Create a PlotXY object

130

Plotting Build 15.0.3244

myPlot=PlotXY()

Add the image layer to the plot
myPlot.addLayer(layIma)

Coordinates

The image will be plotted in a reference system with origin in the lower-left
corner of the image pixel [0,0] and with pixel size of 1x1.
#
It is possible to change the position of the image respect to the PlotXY axes
and change the pixel size, so that the PlotXY axes will show the
Right Ascension and the Declination coordinates.
#
The LayerImage provides methods to set the position of the image and the
pixel size with a system similar to the FITS WCS.
#
Please note:
1) PlotXY CANNOT rotate the image, so if you need to plot a map that
is not aligned with the North on RA and Dec axis, you will need to rotate it
before plotting it. In this script we assume that the map is aligned with
the North.
#
2) The PlotXY axis system assumes that coordinates are a linear
transformation of pixel coordinates. So coordinates on the plotted axes
are not fully correct in some projections. They are correct only for small
angles near the projection reference.

Extract the WCS of the map and put some WCS info into variables
wcs=map.wcs

crpix1=wcs.crpix1
crpix2=wcs.crpix2

crval1=wcs.crval1
crval2=wcs.crval2

cdelt1=wcs.cdelt1
cdelt2=wcs.cdelt2

naxis1=wcs.naxis1
naxis2=wcs.naxis2

cos(Dec)
cosd=Math.cos(Math.toRadians(crval2))

Set the origin and the scale of the axes so that they coincide with the WCS.
myPlot[0].xcdelt=cdelt1/cosd # note the cos(Dec)!!!
myPlot[0].ycdelt=cdelt2

myPlot[0].xcrpix=crpix1
myPlot[0].ycrpix=crpix2

myPlot[0].xcrval=crval1
myPlot[0].ycrval=crval2

Change the axis type so that we have ticks in degrees/hours, min, sec
and the RA growing toward the left.
myPlot.xaxis.type=Axis.RIGHT_ASCENSION
myPlot.yaxis.type=Axis.DECLINATION
myPlot.xaxis.titleText="Right Ascension (J2000)"
myPlot.yaxis.titleText="Declination (J2000)"
Adjust ticks to be nicer
myPlot.xaxis.tick.autoAdjustNumber=0
myPlot.xaxis.tick.number=5
myPlot.xaxis.tick.minorNumber=3
myPlot.xaxis.getAuxAxis(0).tick.autoAdjustNumber=0
myPlot.xaxis.getAuxAxis(0).tick.number=5
myPlot.xaxis.getAuxAxis(0).tick.minorNumber=3
myPlot.yaxis.tick.autoAdjustNumber=0
myPlot.yaxis.tick.number=5
myPlot.yaxis.tick.minorNumber=3

131

Plotting Build 15.0.3244

myPlot.yaxis.getAuxAxis(0).tick.autoAdjustNumber=0
myPlot.yaxis.getAuxAxis(0).tick.number=5
myPlot.yaxis.getAuxAxis(0).tick.minorNumber=3

Set the axes ranges so that the image fills completely the plotting area
xrange=[crval1-(crpix1-0.5)*cdelt1/cosd,\
 crval1-(crpix1-naxis1-0.5)*cdelt1/cosd]
myPlot.xrange=xrange
yrange=[crval2-(crpix2-0.5)*cdelt2,\
 crval2-(crpix2-naxis2-0.5)*cdelt2]
myPlot.yrange=yrange

Change the size of the plotting area so that proportions are as on the sky
myPlot.setPlotSize(4.0,4.0*(naxis2*-cdelt2)/(naxis1*cdelt1))

Colours and intensity manipulation

Set the colour table to have a grey image and the intensity table to have
sources in black and empty sky in white
myPlot[0].colorTable="Ramp"
myPlot[0].intensityTable="Negative"

Set the intensity range
highCut=0.25
lowCut=-0.05
myPlot[0].highCut=highCut
myPlot[0].lowCut=lowCut

Coordinate grid

We can draw a coordinate grid on the image. PlotXY doesn't provide a built-in
way to generate a coordinate grid, so we need to compute in the script the
positions of a number of meridians and parallels and draw them as LayerXY.

Parallels every 5', meridians every 1'
deltaDec=5.0/60.0
deltaRa=1.0*15.0/60.0

Compute the nearest parallel and meridian to the projection center
decCenter=(Math.round(crval2/deltaDec))*deltaDec
raCenter=(Math.round(crval1/deltaRa))*deltaRa

Estimate how many parallels and meridians shall be drawn on each side
ndec=Integer(Math.round((yrange[1]-yrange[0])/deltaDec)).intValue()
ndec=1+ndec/2
nra=Integer(Math.round((xrange[0]-xrange[1])/deltaRa)).intValue()
nra=1+nra/2

Draw parallels
dd=10
nn=(2*nra)*dd+1
for i in range(2*ndec+1):
 # Coordinates of parallels in the sky coordinates
 raPara=raCenter+(Float1d.range(nn)-nra*dd)*deltaRa/dd
 decPara=Float1d(nn)+decCenter+(i-ndec)*deltaDec
 # Coordinates of parallels in the pixels coordinates
 xpixPara=Float1d(nn)
 ypixPara=Float1d(nn)
 for j in range(nn):
 ypixPara[j],xpixPara[j]=wcs.getPixelCoordinates(raPara[j],decPara[j])
 pass
 # Coordinates of parallels in the plot axes coordinates
 xplotPara=(xpixPara-crpix1+1.0)*cdelt1/cosd+crval1
 yplotPara=(ypixPara-crpix2+1.0)*cdelt2+crval2
 layPara=LayerXY(xplotPara,yplotPara,color=Color.red,stroke=1)
 myPlot.addLayer(layPara)
pass

Draw meridians
nn=(2*ndec)*dd+1
for i in range(2*nra+1):
 raMeri=Float1d(nn)+raCenter+(i-nra)*deltaRa

132

Plotting Build 15.0.3244

 decMeri=decCenter+(Float1d.range(nn)-ndec*dd)*deltaDec/dd
 xpixMeri=Float1d(nn)
 ypixMeri=Float1d(nn)
 for j in range(nn):
 ypixMeri[j],xpixMeri[j]=wcs.getPixelCoordinates(raMeri[j],decMeri[j])
 pass
 xplotMeri=(xpixMeri-crpix1+1.0)*cdelt1/cosd+crval1
 yplotMeri=(ypixMeri-crpix2+1.0)*cdelt2+crval2
 layMeri=LayerXY(xplotMeri,yplotMeri,color=Color.red,stroke=1)
 myPlot.addLayer(layMeri)
pass

We can note now that meridians and parallels don't cross the axes exactly
at the ticks positions. That's because axes are linear with respect to pixels,
while sky coordinates are not (with the exception of some projections).

We want now put ticks to coincide with meridians and parallels. To do this
we need to compute the plot coordinates where meridians and parallels cross
the plot axes; we will impose these positions as tick locations and we will
set the correct labels.

Setting up formatters for Right Ascension and Declination
format_ra = SexagesimalFormatter(Mode.RA_HMS_LOWER)
format_ra.decimals = 0
format_dec = SexagesimalFormatter(Mode.DEC_DMS_SYMBOL)
format_dec.decimals = 0

Compute again the location of parallels and find where they cross the Y axes
nn=(2*nra)*dd+1
ycrossPara0=Double1d(2*ndec+1,Float.NaN)
ycrossPara1=Double1d(2*ndec+1,Float.NaN)
decCross=String1d(2*ndec+1)
for i in range(2*ndec+1):
 raPara=raCenter+(Float1d.range(nn)-nra*dd)*deltaRa/dd
 decPara=Float1d(nn)+decCenter+(i-ndec)*deltaDec
 decCross[i]=format_dec.formatDegrees(decCenter+(i-ndec)*deltaDec)
 xpixPara=Float1d(nn)
 ypixPara=Float1d(nn)
 for j in range(nn):
 ypixPara[j],xpixPara[j]=wcs.getPixelCoordinates(raPara[j],decPara[j])
 pass
 xplotPara=(xpixPara-crpix1+1.0)*cdelt1/cosd+crval1
 yplotPara=(ypixPara-crpix2+1.0)*cdelt2+crval2
 xplotPara0=xplotPara-xrange[0]
 xplotPara1=xplotPara-xrange[1]
 for j in range(nn-1):
 if xplotPara0[j]*xplotPara0[j+1] <= 0.0:
 ycrossPara0[i]=(yplotPara[j]*xplotPara0[j+1]-yplotPara[j
+1]*xplotPara0[j])/ \
 (xplotPara0[j+1]-xplotPara0[j])
 if xplotPara1[j]*xplotPara1[j+1] <= 0.0:
 ycrossPara1[i]=(yplotPara[j]*xplotPara1[j+1]-yplotPara[j
+1]*xplotPara1[j])/ \
 (xplotPara1[j+1]-xplotPara1[j])
pass

iii0=ycrossPara0.where(IS_FINITE(ycrossPara0))
iii1=ycrossPara0.where(IS_FINITE(ycrossPara1))
myPlot.yaxis.tick.setFixedValues(ycrossPara0[iii0])
myPlot.yaxis.tick.label.fixedStrings=decCross[iii0].toArray()
myPlot.yaxis.getAuxAxis(0).tick.setFixedValues(ycrossPara1[iii1])

Remove minor ticks
myPlot.yaxis.tick.minorNumber=0
myPlot.yaxis.getAuxAxis(0).tick.minorNumber=0

Compute the location of meridians and find where they cross the X axes
nn=(2*ndec)*dd+1
xcrossMeri0=Double1d(2*nra+1,Double.NaN)
xcrossMeri1=Double1d(2*nra+1,Double.NaN)

133

Plotting Build 15.0.3244

raCross=String1d(2*nra+1)
for i in range(2*nra+1):
 raMeri=Float1d(nn)+raCenter+(i-nra)*deltaRa
 decMeri=decCenter+(Float1d.range(nn)-ndec*dd)*deltaDec/dd
 raCross[i]=format_ra.formatDegrees(raCenter+(i-nra)*deltaRa)
 xpixMeri=Float1d(nn)
 ypixMeri=Float1d(nn)
 for j in range(nn):
 ypixMeri[j],xpixMeri[j]=wcs.getPixelCoordinates(raMeri[j],decMeri[j])
 pass
 xplotMeri=(xpixMeri-crpix1+1.0)*cdelt1/cosd+crval1
 yplotMeri=(ypixMeri-crpix2+1.0)*cdelt2+crval2
 yplotMeri0=(yplotMeri-yrange[0])
 yplotMeri1=(yplotMeri-yrange[1])
 for j in range(nn-1):
 if yplotMeri0[j]*yplotMeri0[j+1] <= 0.0:
 xcrossMeri0[i]=(xplotMeri[j]*yplotMeri0[j+1]-xplotMeri[j
+1]*yplotMeri0[j])/ \
 (yplotMeri0[j+1]-yplotMeri0[j])
 if yplotMeri1[j]*yplotMeri1[j+1] <= 0.0:
 xcrossMeri1[i]=(xplotMeri[j]*yplotMeri1[j+1]-xplotMeri[j
+1]*yplotMeri1[j])/ \
 (yplotMeri1[j+1]-yplotMeri1[j])
pass

iii0=xcrossMeri0.where(IS_FINITE(xcrossMeri0))
iii1=xcrossMeri0.where(IS_FINITE(xcrossMeri1))
myPlot.xaxis.tick.setFixedValues(xcrossMeri0[iii0])
myPlot.xaxis.tick.label.fixedStrings=raCross[iii0].toArray()
myPlot.xaxis.getAuxAxis(0).tick.setFixedValues(xcrossMeri1[iii1])
myPlot.xaxis.tick.minorNumber=0
myPlot.xaxis.getAuxAxis(0).tick.minorNumber=0

Contours

We want to draw level contours. We don't have (yet) a specialized layer for
contours, so we will need to plot each contour segment.

Generate the contours
contours = automaticContour(image=map,levels=4,min=0.05,max=0.2,distribution=0)

Plot the contours as
keys=contours.keySet()
for key in keys:
 if key.startswith("Contour"):
 cont=contours[key]
 keysc=cont.keySet()
 for keyc in keysc:
 x=(cont[keyc].data[:,1]-crpix1+1.0)*cdelt1/cosd+crval1
 y=(cont[keyc].data[:,0]-crpix2+1.0)*cdelt2+crval2
 myPlot.addLayer(LayerXY(x,y,color=Color.green))
pass

Annotations

Let's plot a circle around the observed source. This will be done with a
classical LayerXY

Radius of the circle (60")
radius=60.0/3600.
phase=Float1d.range(101)*2.0*Math.PI/100.0

Position of the source as entered in HSPOT
raNom=map.meta["raNominal"].value
decNom=map.meta["decNominal"].value

Coordinates of the circle
xx=radius*COS(phase)/cosd+raNom
yy=radius*SIN(phase)+decNom

Add the circle
myPlot.addLayer(LayerXY(xx,yy,color=Color.blue,stroke=2))

134

Plotting Build 15.0.3244

And let's put an annotation with the name of the observed source
ann=Annotation(raNom-0.015,decNom+0.015,map.meta["object"].value.upper())
ann.fontSize=12
ann.color=Color.blue
myPlot.addAnnotation(ann)

We want also to put a line to show the angle scale
xx2=Float1d([0,-120./3600/cosd])+myPlot.xrange[1]-0.02
yy2=Float1d(2)+myPlot.yrange[0]+0.03
myPlot.addLayer(LayerXY(xx2,yy2,color=Color.blue,stroke=2))
ann=Annotation(myPlot.xrange[1]-0.027,myPlot.yrange[0]+0.032,"2"+unichr(0x2032))
ann.fontSize=12
ann.color=Color.blue
myPlot.addAnnotation(ann)

Finally add the wavelength
annText="%3.0f"%map.meta["wavelength"].value
annText=annText+map.meta["wavelength"].unit.dialogName
ann=Annotation(myPlot.xrange[0]+0.25,myPlot.yrange[0]+0.032,annText)
ann.fontSize=12
ann.color=Color.blue
myPlot.addAnnotation(ann)

Colour bar

We now want to create a colour bar on the right side of the plot.
The colour bar is just another image in a subplot.

Create an overlay layout so that we can plot the colour bar
layout=PlotOverlayLayout(marginRight=1.0)
myPlot.setLayout(layout)

The colour bar is just a subplot showing an image,
create the SubPlot where we put the colour bar
the numbers here define the position of the bar respect to the main plot
spBar = SubPlot(SubPlotBoundsConstraints(0.0, 1.02, 0.0, -0.07))

Here we construct the colour bar image data
lenBar=2561
barIma=Float2d(lenBar,1)
barIma[:,0]=(Float1d.range(lenBar)*(highCut-lowCut)/lenBar)+lowCut
Construct a LayerImage with it
layBar = LayerImage(barIma)
layBar.colorTable=myPlot[0].colorTable
layBar.intensityTable=myPlot[0].intensityTable
layBar.highCut=highCut
layBar.lowCut=lowCut
layBar.ycdelt=(highCut-lowCut)/lenBar
layBar.ycrval=lowCut
layBar.ycrpix=+0.5
layBar.yrange=[lowCut,highCut]
layBar.xrange=[0,1]
Add the layer to the subplot
spBar.addLayer(layBar)

Put the colour bar on the plot
myPlot.addSubPlot(spBar)

Adjust the axes characteristics
The X axis
xaxis=spBar.baseLayer.xaxis
xaxis.titleText=""
xaxis.tick.label.visible=0
xaxis.tick.autoAdjustNumber=0
xaxis.tick.minorNumber=0
xaxis.tick.height=0.0
xaxis.getAuxAxis(0).tick.height=0.0
The Y axis
yaxis=spBar.baseLayer.yaxis
yaxis.titleText=""

135

Plotting Build 15.0.3244

yaxis.tick.label.visible=0
yaxis.tick.autoAdjustNumber=0
yaxis.tick.number=5
yaxis.tick.minorNumber=0
yaxis.tick.height=0.04
yaxis.getAuxAxis(0).tick.label.visible=1
yaxis.getAuxAxis(0).titleText="Flux (Jy/beam)"
yaxis.getAuxAxis(0).title.visible=1
yaxis.getAuxAxis(0).tick.height=0.04
yaxis.getAuxAxis(0).tick.number=5
yaxis.getAuxAxis(0).tick.minorNumber=0

Save

Finally, save the figure to PDF
myPlot.saveAsPDF(map.meta["object"].value.upper()+".pdf")

End of the example.

Example 3.101. Complete example that demonstrates the use of the PlotXY class.

The previous script is intended as an exhaustive tutorial for the PlotXY class. The utility class Dis-
play has many features built-in, so the resulting scripts are much shorter. This is the same image,
with the following minor differences:

• The grid cannot be aligned to whole minutes.

• The labels of the y axis cannot be formatted to sexagesimal syntax.

This is due to limitations in the ImageAxis component of the Display class. You can find the
corresponding script below the image.

Figure 3.13. The result of the plot example created with the simplified version of the script.

from java.awt import Color

Get a public SPIRE observation
myobs = getObservation(1342183475L, useHsa=True)

Extract the PSW (250 um band) imgmap
imgmap = myobs.level2.refs["psrcPSW"].product

Extract the WCS of the imgmap
wcs = imgmap.wcs

Display the imgmap
d = Display(imgmap)

Set to grayscale and reverse intensity
d.setColortable("Ramp", "Negative")
Set cut levels
d.setCutLevelsMin(0.05)
d.setCutLevelsMax(0.25)

136

Plotting Build 15.0.3244

d.setCutLevelsPercentage(99.5)

Dimensions of the image in pixels
imgWidth = d.getImage().getWidth()
imgHeight = d.getImage().getHeight()

Generate the contours
contours = automaticContour(image = imgmap,levels = 4, min = 0.05, max = 0.2,
 distribution = 0)

Plot the contours as
keys = contours.keySet()
for key in keys:
 if key.startswith("Contour"):
 cont = contours[key]
 keysc = cont.keySet()
 for keyc in keysc:
 d.addContour(contours[key][keyc], Color.green)
pass

Draw the parallels every 5'
originWcs = wcs.getWorldCoordinates(0, 0)
Calculate delta on the right edge of the image (y-axis)
rightBottomWcs = wcs.getWorldCoordinates(0, imgWidth)
dispRightEdge = rightBottomWcs[1]-originWcs[1]
Calculate delta on the top edge of the image (x-axis)
topLeftWcs = wcs.getWorldCoordinates(imgHeight, 0)
dispTopEdge = originWcs[0]-topLeftWcs[0]
xDelta = wcs.cdelt1
pixelDispX = dispTopEdge/10*xDelta
pixelDispOne = 1/10./xDelta
maxLinesX = int(-imgWidth/pixelDispOne)

Draw the meridians from right to left
for col in range(maxLinesX+1):
 d.addLine(0, (imgWidth-1)+col*pixelDispOne, imgHeight,\
 (imgWidth-1)+pixelDispX+col*pixelDispOne, 1.0, Color.red)

Draw the parallels from bottom up
yDelta = wcs.cdelt2
pixelDispY = dispRightEdge/yDelta
pixelDispFive = 1/12./yDelta
maxLinesY = int(imgHeight/pixelDispFive)

for row in range(maxLinesY):
 d.addLine(0+row*pixelDispFive, 0, pixelDispY+row*pixelDispFive,\
 imgWidth, 1., Color.red)

Add annotations (on top of the grid)
Radius of the annotation circle (10 pixels)
radius = 10.

Position of the source as entered in HSPOT
raNom = imgmap.meta["raNominal"].value
decNom = imgmap.meta["decNominal"].value

Translate to row/column format
center = d.getPixelCoordinates(raNom, decNom)

Draw the circle
d.addEllipse(center[0], center[1], radius*2.0, radius*2.0, 4.0,\
java.awt.Color(0, 0, 255))

Put an annotation with the name of the observed source
d.setAnnotationFontColor(Color.blue)
d.addAnnotation(imgmap.meta["object"].value, center[0]-10., center[1]+10.)
d.setAnnotationFont(center[0]-10., center[1]+10., 24)

Annotate the angle scale with a line below to illustrate the scale
d.addArcSecs(120, 10, 10, 4, Color.blue)

Annotate the wavelength

137

Plotting Build 15.0.3244

annText = "%3.0f"%imgmap.meta["wavelength"].value
annText = annText+imgmap.meta["wavelength"].unit.dialogName
d.addAnnotation(annText, 10, imgWidth-60)
d.setAnnotationFont(10, imgWidth-60, 12)

Get the axes
leftAxis = d.getLeftaxis()
bottomAxis = d.getBottomaxis()
rightAxis = d.getRightaxis()
Add X axis
bottomAxis.enable()
bottomAxis.setWorldCoordinates(True)
bottomAxis.setLabel("Right Ascension (J2000)")
Add Y axis
leftAxis.enable()
leftAxis.setWorldCoordinates(True)
leftAxis.setDecimalDegrees(True)
leftAxis.setLabel("Declination (J2000)")
Add colour table
rightAxis.showColorTable(True)
rightAxis.setLabel("Flux (Jy/beam)")

Example 3.102. Version of the example above using the Display class.

3.31. Worked example: Initial plot of this
chapter

The following script reproduces the plot in Section 3.1 .

x = Double1d.range(11) # Creates array with values from 0.0 to 10.0
y = x*x
x1 = x
y1 = ABS(SIN(x1))*100
x2 = 10.0*Double1d.range(11)/10.0 - 5.0
y2 = x2**3.0
x2err = SQRT(ABS(x2))
y2err = SQRT(ABS(y2))
myPlot = PlotXY()
myPlot.autoBoxAxes = 1
Create the dataset
myLayer = LayerXY(x, y)
myLayer.name = "One layer"
myLayer1 = LayerXY(x1, y1)
myLayer1.name = "Another layer"
myLayer2 = LayerXY(x2, y2)
myLayer2.name = "Third one"
myPlot.addLayer(myLayer, 0, 0) # top left
myPlot.addLayer(myLayer1, 0, 0) # top right
myPlot.addLayer(myLayer2, 1, 0) # top right
Title and subtitle
myPlot.titleText = "Custom plot title"
myPlot.title.font = java.awt.Font("Arial", java.awt.Font.PLAIN, 15)
myPlot.subtitleText = "Custom plot subtitle"
myPlot.subtitle.font = java.awt.Font("Courier", java.awt.Font.ITALIC, 15)
Legend
myPlot.legend.visible = 1
Ticks
myPlot.xaxis.tick.interval = 3.0
myPlot.yaxis.tick.interval = 30.0
myPlot.xaxis.tick.minorNumber = 10
myPlot.yaxis.tick.minorNumber = 5
Error bars
myLayer2.errorX = [x2err, x2err/2] # Setting the upper and lower error limits
myLayer2.errorY = [y2err, y2err*2]
Axes
myPlot.xaxis.titleText = "Custom axis title"
myPlot[2].yaxis.title.text = "$\\alpha + \\beta^{-3/2}$"
Symbols and line styles
myPlot.line = Style.DASHED

138

Plotting Build 15.0.3244

myPlot.style.stroke = 3
myPlot[1].line = Style.MARKED
myPlot[1].symbol = Style.FDIAMOND
myPlot[1].symbolSize = 10
myPlot[2].color = java.awt.Color.RED
myPlot[2].line = Style.NONE
myPlot[2].symbol = Style.FCIRCLE
Grid lines
myPlot[2].yaxis.tick.gridLines = 1
Annotations
myPlot[2].addAnnotation(Annotation(-5,80,"Custom
 annotation",color=java.awt.Color.BLUE))
myPlot[2].getAnnotation(0).fontSize = 12
myPlot[2].getAnnotation(0).angle = 30
Auxiliary axis
xaux = myPlot[2].xaxis.getAuxAxis(0)
xaux.setTickIdentical(False)
xaux.tick.autoAdjustNumber = 0
xaux.title.visible = 1
xaux.titleText = "Auxiliary axis"
xauxlab = xaux.tick.label
xauxlab.visible = 1
vals = Double1d([-5.0, -2.0, 1.0, 3.0, 5.0]) # These are the wavenumbers we want to
 show
xaux.tick.setFixedValues(vals)
String values to each label
svals = ["Minus five","Minus two","One","Three","Five"]
xauxlab.fixedStrings = svals
xaux.tick.height = 0.3

Example 3.103. Plotting the figure that appears at the beginning of this chapter.

3.32. Worked example: Multi-panel plot
The following script creates a plot made of six panels, as shown in the following image:

Figure 3.14. A plot with four panels.

from java.awt import Color
A plot with different panels

Set up some dummy data to plot
freq = Double1d(range(500, 1600, 10))
line = EXP(-(freq-1000)**2/30.0**2) + RandomUniform(0.1)(freq)-0.05
lineStrength = [0.5, 0.2, 0.4, 0.3, 0.7, 0.9]

Initialise the plot
p = PlotXY()

139

Plotting Build 15.0.3244

Specify the plot dimensions on the screen
p.plotSize=(2,2)
Set the positions for the subplots in a grid layout
topLeft = SubPlot(SubPlotGridConstraints(0,0))
bottomLeft = SubPlot(SubPlotGridConstraints(0,1))
topMid = SubPlot(SubPlotGridConstraints(1,0))
bottomMid = SubPlot(SubPlotGridConstraints(1,1))
topRight = SubPlot(SubPlotGridConstraints(2,0))
bottomRight = SubPlot(SubPlotGridConstraints(2,1))
Fill the sub-plots
bottomLeft.addLayer(LayerXY(freq, lineStrength[0]*line, color=Color.BLACK, \
 stroke=1.5, chartType=Style.HISTOGRAM))
bottomMid.addLayer(LayerXY(freq, lineStrength[1]*line, color=Color.GRAY, \
 stroke=1, chartType=Style.HISTOGRAM))
bottomRight.addLayer(LayerXY(freq, lineStrength[2]*line, color=Color.BLACK, \
 stroke=1, chartType=Style.HISTOGRAM))
topLeft.addLayer(LayerXY(freq, lineStrength[3]*line, color=Color.BLACK, \
 stroke=1, chartType=Style.HISTOGRAM))
topMid.addLayer(LayerXY(freq, lineStrength[4]*line, color=Color.GRAY, \
 stroke=1, chartType=Style.HISTOGRAM))
topRight.addLayer(LayerXY(freq, lineStrength[5]*line, color=Color.BLACK, \
 stroke=1, chartType=Style.HISTOGRAM))
#
Set the tick label and ranges for each subplot, and add it to the main plot
for subP in [topLeft, topRight, bottomLeft, bottomRight, topMid, bottomMid]:
 # Remove all axes labels to start with (add needed ones later)
 subP.baseLayerXY.xaxis.tick.labelVisible = 0
 subP.baseLayerXY.xaxis.title.visible = 0
 subP.baseLayerXY.yaxis.tick.labelVisible = 0
 subP.baseLayerXY.yaxis.title.visible = 0
 # Set axis ranges to be the same for all sub-plots
 subP.baseLayerXY.xaxis.range = [400.0, 1600.0]
 subP.baseLayerXY.yaxis.range = [-0.1, 1.1]
 # Set the ticks for the xaxis to be at nice intervals
 subP.baseLayerXY.xaxis.tick.setFixedValues(Double1d([500, 1000, 1500]), \
 Double1d(range(400, 1600, 100)))
 p.addSubPlot(subP)
Set the gap between the sub-plots to be zero (i.e. plots touching each other)
p.gridLayout.setGap(0, 0)

Set the titles for the left hand axes of left hand plots
and make the tick labels visible on these axes
topLeft.baseLayerXY.yaxis.title.visible = 1
topLeft.baseLayerXY.yaxis.titleText = "Flux Density"
topLeft.baseLayerXY.yaxis.tick.labelVisible = 1
bottomLeft.baseLayerXY.yaxis.title.visible = 1
bottomLeft.baseLayerXY.yaxis.titleText = "Flux Density"
bottomLeft.baseLayerXY.yaxis.tick.labelVisible = 1
Make the tick labels visible on the lower xaxis
bottomLeft.baseLayerXY.xaxis.tick.labelVisible = 1
bottomMid.baseLayerXY.xaxis.tick.labelVisible = 1
bottomRight.baseLayerXY.xaxis.tick.labelVisible = 1
Use the upper xaxis for a title for each column
topLeft.baseLayerXY.xaxis.getAuxAxis(0).titleText = "CRL 618"
topLeft.baseLayerXY.xaxis.getAuxAxis(0).title.visible = 1
topMid.baseLayerXY.xaxis.getAuxAxis(0).titleText = "M83"
topMid.baseLayerXY.xaxis.getAuxAxis(0).title.visible = 1
topRight.baseLayerXY.xaxis.getAuxAxis(0).titleText = "Orion Bar"
topRight.baseLayerXY.xaxis.getAuxAxis(0).title.visible = 1
Set some annotations
topLeft.baseLayerXY.setAnnotation(1, Annotation(500, 0.9, "(a)", fontSize=14))
topMid.baseLayerXY.setAnnotation(1, Annotation(500, 0.9, "(b)", fontSize=14))
topRight.baseLayerXY.setAnnotation(1, Annotation(500, 0.9, "(c)", fontSize=14))
bottomLeft.baseLayerXY.setAnnotation(1, Annotation(500, 0.9, "(d)", fontSize=14))
bottomMid.baseLayerXY.setAnnotation(1, Annotation(500, 0.9, "(e)", fontSize=14))
bottomRight.baseLayerXY.setAnnotation(1, Annotation(500, 0.9, "(f)", fontSize=14))
Use the plot subtitle to contain a single label for all 3 x-axes
p.subtitle.text = "Frequency (GHz)"
p.subtitle.fontSize = p.title.fontSize
from herschel.ia.gui.plot import PlotTitle

140

Plotting Build 15.0.3244

p.subtitle.position = PlotTitle.BOTTOMCENTER

Example 3.104. Distributing multiple plots using panels.

3.33. Worked example: Error bars
The example in this section creates a plot with horizontal and vertical error bars. Figure 3 in J. A.
Rodón et al., A&A 518, L80 (2010) .

Figure 3.15. A plot with horizontal and vertical error bars.

from java.awt.geom import Point2D
from java.awt import Color
from herschel.ia.gui.plot import PlotLegend
from herschel.ia.gui.plot.renderer.axtype import AxisType

linex=(Double1d.range(601)/10).add(10)
lineAy=1/(0.4+8e-3*linex)
lineBy=11.5*pow(linex,-0.66)

Dashed line A
dal=LayerXY(linex,lineAy)
dal.style=Style(line=3, color=Color.BLACK, dashArray=[1,3])
dal.name="Dupac et. al (2003)"
dal.xaxis=Axis(range=[10,70], titleText="$\\mathrm{T_{dust}}$ [K]")
dal.xaxis.setAxisType(AxisType.LINEAR)
dal.xaxis.title.fontSize=10
dal.yaxis=Axis(range=[0.5, 2.5], titleText="Emissivity index ($\\mathrm{\\beta}$)")
dal.yaxis.setAxisType(AxisType.LINEAR)
dal.yaxis.title.fontSize=10
dal.xaxis.tick.interval=10
dal.yaxis.tick.interval=0.5

Dashed line B
dbl=LayerXY(linex,lineBy)
dbl.style=Style(line=3, color=Color.BLACK, dashArray=[4,4])
dbl.name="Desert et. al (2008)"

Dots
x=Double1d([24.7200,42.7600,39.0100,47.3600,34.9700,16.7400,20.3900,22.3700, \
 23.3100,21.6100,22.2100,23.7200,24.6200,25.9800,28.5000])
xe=Double1d([3.40000,12.2300,9.27000,14.8800,7.61000,1.67000,2.30000,2.75000, \
 3.07000,2.58000,2.70000,3.16000,3.39000,3.85000,4.55000])
y=Double1d([1.50000,1.20000,1.30000,1.00000,1.30000,1.70000,1.70000,1.70000, \
 1.70000,1.50000,1.50000,1.80000,1.70000,1.70000,1.80000])
ye=Double1d([0.300000,0.400000,0.300000,0.400000,0.400000,0.400000,0.400000, \

141

http://dx.doi.org/10.1051/0004-6361/201014609
http://dx.doi.org/10.1051/0004-6361/201014609

Plotting Build 15.0.3244

 0.300000,0.400000,0.300000,0.300000,0.300000,0.300000,0.400000,0.300000])
l=LayerXY(x,y)
l.errorX=[xe,xe]
l.errorY=[ye,ye]
l.style=Style(line=0, color=Color.BLACK, symbolShape=SymbolShape.FCIRCLE,
 symbolSize=4)
l.inLegend=0

p=PlotXY()
p.addLayer(dal)
p.addLayer(dbl)
p.addLayer(l)

p.legend.visible=1
p.legend.columns=1
p.legend.position=PlotLegend.CUSTOMIZED
p.legend.setLocation(3.0,3.1)
p.legend.halign=PlotLegend.LEFT
p.legend.valign=PlotLegend.BOTTOM

Example 3.105. Plotting horizontal and vertical error bars.

3.34. Worked example: Auxiliary axes
The example in this section creates a plot with three layers and customised auxiliary axes.

Figure 3.16. A plot with three layers and customised auxiliary axes.

from java.awt.geom import Point2D
from java.awt import Color
from herschel.ia.gui.plot import PlotLegend
from herschel.ia.gui.plot.renderer.axtype import AxisType

SiC2 and X_bottom and Y left axis
xb=LayerXY(Double1d(0),Double1d(0))
xb.xaxis=Axis(range=[5e13,3e17], titleText="r (cm)")
xb.xaxis.setAxisType(AxisType.LOG)
xb.xaxis.title.fontSize=12
xb.xaxis.tick.label.format="%.0m"
xb.yaxis=Axis(range=[3e-10,7e-7], titleText="X")
xb.yaxis.setAxisType(AxisType.LOG)
xb.yaxis.title.fontSize=12
xb.yaxis.tick.label.format="%.0m"

SiC2 values and annotation
sicx=Double1d([5e13, 1e16, 2e16, 7e16, 1e17, 2.1e17])
sicy=Double1d([2e-7, 2e-7, 5e-7, 2e-7, 5e-8, 3e-10])
sic=LayerXY(sicx,sicy)
sic.style=Style(line=1, stroke = 1.5, color=Color.RED)
sic.addAnnotation(Annotation(2e16, 1e-7, "SiC$\\mathrm{_2}$", fontSize=12,
 color=Color.RED))

142

Plotting Build 15.0.3244

sic.yaxis=xb.yaxis

Plot X_bottom and Y left axis
p=PlotXY()
p.autoBoxAxes=0
p.setPlotSize(3.7,2.2)
p.addLayer(xb)

Plot SiC2
p.addLayer(sic)

SiC2 LTE values
ltex=Double1d([5e13, 6e13, 9e13, 1.3e14, 2e14, 2.1e14, 2.7e14])
ltey=Double1d([5e-8, 3e-7, 1.8e-7, 3e-7, 4e-8, 6e-8, 3e-10])
ltel=LayerXY(ltex,ltey)
ltel.style=Style(line=1, stroke = 1.5, color=Color.GREEN)
ltel.addAnnotation(Annotation(7e13, 3e-9, "SiC$\\mathrm{_2}$\nLTE", fontSize=12,
 color=Color.GREEN))
ltel.yaxis=xb.yaxis

Plot SiC2 LTE
p.addLayer(ltel)

Tk and X_bottom and Y right axis
yr=LayerXY(Double1d(0),Double1d(0))
yr.yaxis=Axis(range=[0,1200], position=Axis.RIGHT, titleText="$\\mathrm{T_K}$")
yr.yaxis.setAxisType(AxisType.LINEAR)
yr.yaxis.title.fontSize=12
yr.yaxis.tick.label.format="%.0f"
yr.yaxis.tick.interval=500
yr.yaxis.tick.minorNumber=4

Plot Y right axis
p.addLayer(yr)

Tk values
tkx=Double1d([1.1e14, 1e15, 1e16, 1e17])
tky=Double1d([1200, 360, 80, 0])
tkl=LayerXY(tkx,tky)
tkl.style=Style(line=1, stroke = 1.5, color=Color.BLUE)
tkl.addAnnotation(Annotation(5e14, 600, "T$\\mathrm{_K}$", fontSize=12,
 color=Color.BLUE))
tkl.yaxis=yr.yaxis

Plot TK
p.addLayer(tkl)

X_top axis
xt=LayerXY(Double1d(0),Double1d(0))
xt.xaxis=Axis(range=[2.8e-2,2E2], titleText="r (\u2033)")
xt.xaxis.setAxisType(AxisType.LOG)
xt.xaxis.title.fontSize=12
xt.xaxis.tick.label.format="%.0m"

Plot X_top axis
p.addLayer(xt)

p.saveAsPDF("test-1.pdf")
p.saveAsEPS("test-1.eps")
p.saveAsPNG("test-1.png")
p.saveAsJPG("test-1.jpg")
You can do all this from the property panel menu.

Example 3.106. Adding multiple layers and customised auxiliary axes to a plot.

3.35. Worked example: Histograms
The example in this section creates a plot with three panels, each containing superimposed histograms.
Figure 1 in L. Shao et al., A&A 518, L26 (2010) .

143

http://dx.doi.org/10.1051/0004-6361/201014606

Plotting Build 15.0.3244

Figure 3.17. A plot with three panels, each containing superimposed histograms.

from java.awt import Color
from herschel.ia.gui.plot.renderer.axtype import AxisType

p=PlotXY()
p.plotSize=(4,1)
p.gridLayout.vgap=0

z_grid=Double1d([0.00000,0.100000,0.200000,0.330000,0.480000,0.630000, \
 0.800000,1.00000,1.20000,1.40000,1.65000,1.90000,2.20000,2.50000,2.85000, \
 3.20000,3.60000,4.05000,4.55000,5.10000,5.70000])
p1_all= Double1d([0,0,3,7,12,12,28,19,9,8,2,5,5,6,5,4,1,1,0,1,0])
p1_both=Double1d([0,0,1,1, 3, 3, 6, 3,3,3,1,1,0,0,0,0,0,0,0,0,0])
p1_100 =Double1d([0,0,1,1, 5, 3, 7, 4,4,3,1,1,0,0,0,0,0,0,0,0,0])
p1_160 =Double1d([0,0,1,1, 5, 5,10, 6,4,3,1,1,0,1,0,0,0,0,0,0,0])

p1=SubPlot()
p.addSubPlot(p1)

p1L_all=LayerXY(z_grid, p1_all, name="GOODS-N AGNs",color=Color.BLACK)
p1L_all.style=Style(chartType=Style.HISTOGRAM_EDGE)
p1L_all.xaxis=Axis(range=[0.16,6])
p1L_all.xaxis.setAxisType(AxisType.LOG)
p1L_all.yaxis=Axis(range=[0,35])
p1L_all.xaxis.tick.setFixedValues(Double1d([0,1,2,3,4,5,6]))
p1L_all.xaxis.getTick().setLineWidth(1)
p1L_all.xaxis.getTick().setHeight(0.05)
#p1L_all.xaxis.tick.visible=0
p1L_all.xaxis.tick.label.visible=0
p1L_all.xaxis.title.visible=0
p1L_all.yaxis.tick.label.fontSize=8
p1L_all.yaxis.title.text="Number"
p1L_all.yaxis.title.fontSize=8
p1.addLayer(p1L_all)
p1L_all.xaxis.auxAxes[0].tick.visible=0

p1L_160=LayerXY(z_grid, p1_160, name="160$\\micro$m detected
 only",color=Color.GREEN)
p1L_160.style=Style(chartType=Style.HISTOGRAM_EDGE, fillEnabled=1,
 fillPaint=Color.GREEN)
p1.addLayer(p1L_160)

p1L_100=LayerXY(z_grid, p1_100, name="100$\\micro$m detected only",color=Color.BLUE)
p1L_100.style=Style(chartType=Style.HISTOGRAM_EDGE, fillEnabled=1,
 fillPaint=Color.BLUE)
p1.addLayer(p1L_100)

144

Plotting Build 15.0.3244

p1L_both=LayerXY(z_grid, p1_both, name="Detected in both bands",color=Color.GRAY)
p1L_both.style=Style(chartType=Style.HISTOGRAM_EDGE, fillEnabled=1,
 fillPaint=Color.GRAY)
p1.addLayer(p1L_both)

p2_all =Double1d([0,0,0,1,0,0,3,7,17,17,17,15,7,4,4,3,1,0,0,0,0])
p2_both=Double1d([0,0,0,0,0,0,0,0, 0, 1, 1, 1,0,0,0,0,0,0,0,0,0])
p2_100 =Double1d([0,0,0,0,0,0,0,0, 1, 1, 1, 1,0,0,0,0,0,0,0,0,0])
p2_160 =Double1d([0,0,0,0,0,0,0,0, 2, 2, 1, 2,0,0,1,0,0,0,0,0,0])

p2=SubPlot(SubPlotGridConstraints(0,1))
p.addSubPlot(p2)

p2L_all=LayerXY(z_grid, p2_all,color=Color.BLACK)
p2L_all.style=Style(chartType=Style.HISTOGRAM_EDGE)
p2L_all.inLegend=0
p2L_all.xaxis=Axis(range=[0.16,6])
p2L_all.xaxis.setAxisType(AxisType.LOG)
p2L_all.yaxis=Axis(range=[0,34])
p2L_all.xaxis.tick.setFixedValues(Double1d([0,1,2,3,4,5,6]))
p2L_all.xaxis.getTick().setLineWidth(1)
p2L_all.xaxis.getTick().setHeight(0.05)
p2L_all.xaxis.tick.label.visible=0
p2L_all.xaxis.title.visible=0
p2L_all.yaxis.tick.label.fontSize=8
p2L_all.yaxis.title.text="Number"
p2L_all.yaxis.title.fontSize=8
p2.addLayer(p2L_all)
p2L_all.xaxis.auxAxes[0].tick.visible=0

p2L_160=LayerXY(z_grid, p2_160,color=Color.GREEN)
p2L_160.style=Style(chartType=Style.HISTOGRAM_EDGE, fillEnabled=1,
 fillPaint=Color.GREEN)
p2L_160.inLegend=0
p2.addLayer(p2L_160)

p2L_100=LayerXY(z_grid, p2_100,color=Color.BLUE)
p2L_100.style=Style(chartType=Style.HISTOGRAM_EDGE, fillEnabled=1,
 fillPaint=Color.BLUE)
p2L_100.inLegend=0
p2.addLayer(p2L_100)

p2L_both=LayerXY(z_grid, p2_both)
p2L_both.style=Style(chartType=Style.HISTOGRAM_EDGE, fillEnabled=1,
 fillPaint=Color.GRAY)
p2L_both.inLegend=0
p2.addLayer(p2L_both)

p3_all =Double1d([0,0,3,8,12,12,31,26,26,25,19,20,12,10,9,7,2,1,0,1,0])
p3_both=Double1d([0,0,1,1, 3, 3, 6, 3, 3, 4, 2, 2, 0, 0,0,0,0,0,0,0,0])
p3_100 =Double1d([0,0,1,1, 5, 3, 7, 4, 5, 4, 2, 2, 0, 0,0,0,0,0,0,0,0])
p3_160 =Double1d([0,0,1,1, 5, 5,10, 6, 6, 5, 2, 3, 0, 1,1,0,0,0,0,0,0])

p3=SubPlot(SubPlotGridConstraints(0,2))
p.addSubPlot(p3)

p3L_all=LayerXY(z_grid, p3_all,color=Color.BLACK)
p3L_all.style=Style(chartType=Style.HISTOGRAM_EDGE)
p3L_all.inLegend=0
p3L_all.xaxis=Axis(range=[0.16,6])
p3L_all.xaxis.setAxisType(AxisType.LOG)
p3L_all.xaxis.tick.setFixedValues(Double1d([0,1,2,3,4,5,6]))
p3L_all.xaxis.getTick().setLineWidth(1)
p3L_all.xaxis.getTick().setHeight(0.05)
p3L_all.yaxis=Axis(range=[0,34])
p3L_all.xaxis.tick.visible=1
p3L_all.xaxis.tick.label.fontSize=8
p3L_all.xaxis.title.text="Redshift"
p3L_all.xaxis.title.fontSize=8
p3L_all.yaxis.tick.label.fontSize=8
p3L_all.yaxis.title.text="Number"
p3L_all.yaxis.title.fontSize=8

145

Plotting Build 15.0.3244

p3.addLayer(p3L_all)
p3L_all.xaxis.auxAxes[0].tick.visible=0

p3L_160=LayerXY(z_grid, p3_160,color=Color.GREEN)
p3L_160.style=Style(chartType=Style.HISTOGRAM_EDGE, fillEnabled=1,
 fillPaint=Color.GREEN)
p3L_160.inLegend=0
p3.addLayer(p3L_160)

p3L_100=LayerXY(z_grid, p3_100,color=Color.BLUE)
p3L_100.style=Style(chartType=Style.HISTOGRAM_EDGE, fillEnabled=1,
 fillPaint=Color.BLUE)
p3L_100.inLegend=0
p3.addLayer(p3L_100)

p3L_both=LayerXY(z_grid, p3_both,color=Color.GRAY)
p3L_both.style=Style(chartType=Style.HISTOGRAM_EDGE, fillEnabled=1,
 fillPaint=Color.GRAY)
p3L_both.inLegend=0
p3.addLayer(p3L_both)

Legend
p.legend.visible=1
p.legend.columns=1
p.legend.position=PlotLegend.CUSTOMIZED
p.legend.setLocation(2.8,3.0)
p.legend.halign=PlotLegend.LEFT
p.legend.valign=PlotLegend.BOTTOM
p.legend.borderVisible = False
p.addAnnotation(Annotation(0.2,28,"Spec-z",color=Color.BLACK,fontSize=11))
p.addAnnotation(Annotation(0.2,-8,"Phot-z",color=Color.BLACK,fontSize=11))
p.addAnnotation(Annotation(0.2,-42,"All",color=Color.BLACK,fontSize=11))

Example 3.107. Using several panels with histograms.

3.36. Worked example: Styles
The example in this section creates a plot using several styles and colours for lines and plot symbols.
Figure 7 in C. Gruppioni et al., A&A 518, L27 (2010) .

Figure 3.18. A plot using several styles and colours for lines and plot symbols.

from java.awt import Color
from herschel.ia.gui.plot.renderer.axtype import AxisType

x=Double1d([0.00000,0.100000,0.200000,0.300000,0.400000,0.500000,0.600000, \
 0.700000,0.800000,0.900000,1.00000,1.10000,1.20000,1.30000,1.40000,1.50000, \
 1.60000,1.70000,1.80000,1.90000,2.00000,2.10000,2.20000,2.30000,2.40000, \
 2.50000,2.60000,2.70000,2.80000,2.90000,3.00000,3.10000,3.20000,3.30000, \
 3.40000,3.50000,3.60000,3.70000,3.80000,3.90000,4.00000,4.10000,4.20000, \

146

http://dx.doi.org/10.1051/0004-6361/201014608

Plotting Build 15.0.3244

 4.30000,4.40000,4.50000,4.60000,4.70000,4.80000,4.90000])

GAL
galy=Double1d([1.03222,1.25094,1.49081,1.74462,2.01059,2.28914,2.57141,2.84729, \
 3.10365,3.33465,3.53097,3.68335,3.78715,3.83992,3.84221,3.79946,3.71873,3.61091, \
 3.48488,3.34745,3.20485,3.06281,2.92494,2.79436,2.67321,2.56291,2.46347,2.37459, \
 2.29566,2.22629,2.16592,2.11373,2.06849,2.02944,1.99586,1.96725,1.94287,1.92241, \
 1.90535,1.89116,1.87969,1.87064,1.86369,1.85858,1.85505,1.85300,1.85217,1.85245, \
 1.85373,1.85584])
gall=LayerXY(x,galy)
gall.style=Style(line=3, color=Color.GREEN, stroke=2, dashArray=[4,4])
gall.xaxis=Axis(range=[0,4], titleText="z")
gall.xaxis.setAxisType(AxisType.LINEAR)
gall.xaxis.title.fontSize=10
gall.xaxis.tick.interval=1
gall.xaxis.tick.minorNumber=9
gall.yaxis=Axis(range=[0.4,7], titleText="$\\mathrm{S_160/S_100}$")
gall.yaxis.setAxisType(AxisType.LOG)
gall.yaxis.title.fontSize=10

STARB
starby=Double1d([0.912616,1.06472,1.21351,1.35387,1.48253,1.59905,1.70259,1.79352, \
 1.86953,1.93058,1.97602,2.00531,2.02072,2.02515,2.02118,2.01191,2.00092,1.99176, \
 1.98598,1.98427,1.98757,1.99676,2.01133,2.02998,2.05105,2.07340,2.09615,2.11933, \
 2.14282,2.16651,2.19010,2.21347,2.23635,2.25868,2.28044,2.30127,2.32095,2.33888, \
 2.35458,2.36749,2.37679,2.38218,2.38364,2.38127,2.37430,2.36275,2.34753,2.33303, \
 2.31973,2.30573])
starbl=LayerXY(x,starby)
starbl.style=Style(line=3, color=Color.CYAN, stroke=2, dashArray=[1,2,4,2])

COMP
compy=Double1d([0.501706,0.562159,0.620910,0.686251,0.746177,0.796718,0.848579, \
 0.907463,0.973662,1.04519,1.11828,1.19289,1.26902,1.34396,1.41677,1.48817, \
 1.55816,1.62519,1.68898,1.74984,1.80912,1.86740,1.92393,1.97873,2.03165,2.08255, \
 2.13060,2.17504,2.21671,2.25848,2.30272,2.35204,2.40766,2.46871,2.53245,2.59683, \
 2.66079,2.72436,2.78559,2.84441,2.89868,2.94720,2.98878,3.02225,3.04582,3.05892, \
 3.06194,3.05405,3.03615,3.00939])
compl=LayerXY(x,compy)
compl.style=Style(line=3, color=Color.MAGENTA, stroke=2, dashArray=[1,3])

AGN2
agn2y=Double1d([0.760343,0.857363,0.938720,1.00954,1.09040,1.19802,1.33700,1.50992,
 \
 1.71970,1.96892,2.25033,2.53001,2.79015,3.02753,3.24030,3.42664,3.58853,3.72476, \
 3.83835,3.92658,3.99002,4.03012,4.05141,4.06144,4.06581,4.06756,4.06678,4.06253, \
 4.05450,4.04236,4.02581,4.00460,3.97868,3.94816,3.91312,3.87413,3.83128,3.78502, \
 3.73568,3.68375,3.62957,3.57363,3.51634,3.45818,3.39824,3.33743,3.27520,3.21520, \
 3.15798,3.10293])
agn2L=LayerXY(x,agn2y)
agn2L.style=Style(line=1, color=Color.RED, stroke=2)

AGN1
agn1y=Double1d([0.857343,0.951230,1.01367,1.04761,1.06091,1.06239,1.05883,1.05450, \
 1.05286,1.05524,1.06168,1.07179,1.08492,1.10048,1.11786,1.13652,1.15561,1.17397, \
 1.19142,1.20795,1.22359,1.23840,1.25238,1.26561,1.27814,1.29005,1.30133,1.31218, \
 1.32266,1.33314,1.34376,1.35463,1.36581,1.37737,1.38929,1.40153,1.41405,1.42675, \
 1.43960,1.45255,1.46554,1.47853,1.49147,1.50432,1.51704,1.52957,1.54183,1.55370, \
 1.56498,1.57554])
agn1L=LayerXY(x,agn1y)
agn1L.style=Style(line=3, color=Color.BLUE, stroke=2, dashArray=[6,4])

GAL Dots
galdx=Double1d([0.458000,0.253000,0.210000,0.189000,0.278000,0.120000,0.437000, \
 0.200000,0.0500000,0.233000,0.0790000,0.519000,0.136000,0.299000,0.254000, \
 0.211000,0.438000,0.556000,0.136000,0.337000,0.562000,0.348000,0.114000, \
 0.224000,0.377000,0.0870000,0.456000,0.0700000,0.299000,0.286000,0.520000, \
 0.139000,0.278000,0.954000,0.207000,0.561000,0.638000,0.114000,0.845000, \
 0.202000,0.517000,0.478000,0.105000,1.14600,0.377000,0.560000,0.642000, \
 0.253000,0.639000,0.560000,0.557000,0.562000,0.377000,0.206000,0.561000, \
 0.457000,0.476000,0.848000,0.423000,0.534000,0.354000,0.410000,0.559000])
galdy=Double1d([1.19983,1.40916,3.97851,1.54511,1.64740,1.62750,2.01484,1.39483, \
 1.31159,2.37443,1.08603,1.71949,1.33610,1.17804,1.71285,1.15963,1.43642, \

147

Plotting Build 15.0.3244

 5.52177,2.52000,1.94232,3.49881,3.03669,1.54654,4.35791,1.95578,1.08363, \
 1.63426,0.619898,1.24222,2.34942,2.12971,0.751623,2.06348,2.41457,1.54825, \
 1.93624,2.67497,0.776319,2.51536,0.894211,1.86535,2.19948,1.85952,2.46762, \
 2.38978,1.88730,2.33775,2.24698,2.19522,2.18212,1.67340,1.58139,2.13363, \
 1.55927,1.11779,1.21026,1.96498,1.92929,1.42285,1.84178,1.46110,1.74453,1.62121])
galdyel=Double1d(63)
galdyeh=Double1d([0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,Double.POSITIVE_INFINITY, \
 0,0,0,0,0,Double.POSITIVE_INFINITY,0,0,0,0,0,0,0,0,0,0,0,0, \
 Double.POSITIVE_INFINITY,0,0,0,0,0,0,Double.POSITIVE_INFINITY, \
 Double.POSITIVE_INFINITY,0,Double.POSITIVE_INFINITY,Double.POSITIVE_INFINITY, \
 Double.POSITIVE_INFINITY,Double.POSITIVE_INFINITY,0,0,Double.POSITIVE_INFINITY, \
 0,0,0,Double.POSITIVE_INFINITY,Double.POSITIVE_INFINITY,0, \
 Double.POSITIVE_INFINITY,0,Double.POSITIVE_INFINITY,Double.POSITIVE_INFINITY])
galdL=LayerXY(galdx,galdy)
galdL.errorY=[galdyel,galdyeh]
galdL.style=Style(line=0, color=Color.GREEN, symbolShape=SymbolShape.FCIRCLE,
 symbolSize=5)

STARB Stars
starbdx=Double1d([1.22400,0.276000,0.792000,0.971000,0.638000,2.07800,0.276000, \
 0.837000,2.00000,1.14800,0.678000,1.44900,1.76000,1.27000,0.965000,1.01300, \
 1.52300,4.42800,0.556000,0.817000,1.24800,1.54800,0.590000,0.534000,0.634000, \
 1.01600,0.835000,0.937000,0.839000,2.23500,1.46500,0.846000,0.472000,1.54800, \
 1.36300,1.01200,1.67800,1.15200,2.49000,1.79000,0.761000,1.57400,0.821000, \
 1.42400,0.835000,0.845000,1.73200,0.914000,0.678000,1.22600,1.91700,1.15200, \
 0.486000,1.52500,0.935000,0.711000,1.70500,2.20300,1.22300,1.54800,3.15700, \
 0.784000,1.60400,1.47300,1.01300,1.02100,0.855000,1.44900,0.850000,1.02900, \
 1.40000,0.940000,0.959000,1.22400,1.01700,1.57400,1.03100,1.02200,1.01600, \
 2.68200,2.53800,0.796000])
starbdy=Double1d([1.86449,1.67325,1.41945,1.93981,1.19289,3.11257,1.60635, \
 1.40437,4.23058,1.89618,0.761027,1.39534,3.40534,1.41488,2.83191,2.78433, \
 2.56756,3.24429,3.78861,2.80002,3.17892,1.63983,1.90686,1.91320,1.66525, \
 1.32813,4.64642,1.18533,1.55998,3.95584,3.19948,1.39701,3.73524,3.40942, \
 3.72253,0.927855,3.51171,3.48882,3.41758,1.86501,1.20016,3.23265,1.88261, \
 3.19712,1.23492,2.02955,2.80465,0.860281,1.12129,2.11778,2.68806,2.67497, \
 1.13344,2.55834,2.55175,2.50633,2.49022,2.45448,1.72822,2.37990,2.30865, \
 1.28932,2.28265,2.23398,2.21146,2.17891,1.14953,1.52855,1.40540,2.03310, \
 2.01353,0.874178,1.99085,1.98116,1.89042,1.52757,1.87413,1.86122,1.83856, \
 1.83197,1.71521,1.68282])
starbdyel=Double1d(82)
starbdyeh=Double1d([0, \
 Double.POSITIVE_INFINITY,0,0,Double.POSITIVE_INFINITY,0,0, \
 Double.POSITIVE_INFINITY,0,Double.POSITIVE_INFINITY,0,Double.POSITIVE_INFINITY, \
 Double.POSITIVE_INFINITY,Double.POSITIVE_INFINITY,0,0,Double.POSITIVE_INFINITY, \
 0,Double.POSITIVE_INFINITY,0,0,Double.POSITIVE_INFINITY,0,0,0, \
 Double.POSITIVE_INFINITY,Double.POSITIVE_INFINITY,0,Double.POSITIVE_INFINITY, \
 Double.POSITIVE_INFINITY,Double.POSITIVE_INFINITY,Double.POSITIVE_INFINITY, \
 Double.POSITIVE_INFINITY,0,Double.POSITIVE_INFINITY,Double.POSITIVE_INFINITY,0, \
 Double.POSITIVE_INFINITY,Double.POSITIVE_INFINITY,Double.POSITIVE_INFINITY, \
 Double.POSITIVE_INFINITY,0,0,0,Double.POSITIVE_INFINITY,Double.POSITIVE_INFINITY,
 \
 0,Double.POSITIVE_INFINITY,Double.POSITIVE_INFINITY,Double.POSITIVE_INFINITY,0, \
 Double.POSITIVE_INFINITY,Double.POSITIVE_INFINITY,Double.POSITIVE_INFINITY, \
 Double.POSITIVE_INFINITY,Double.POSITIVE_INFINITY,Double.POSITIVE_INFINITY])
starbdL=LayerXY(starbdx,starbdy)
starbdL.errorY=[starbdyel,starbdyeh]
starbdL.style=Style(line=0, color=Color.CYAN, symbolShape=SymbolShape.STAR,
 symbolSize=6)

COMP F-Squares
compdx=Double1d([2.00200,2.42000,2.00500,2.79400,3.49300,2.66000,3.72200, \
 1.84300,3.86500,2.43400,2.75600,1.61000,0.764000])
compdy=Double1d([2.11174,7.80762,1.83755,2.77715,4.02086,3.82929,3.75145, \
 1.64104,1.02414,2.04871,1.82877,0.580657,1.71854])
compdyel=Double1d(13)
compdyeh=Double1d([0,Double.POSITIVE_INFINITY,0,0,Double.POSITIVE_INFINITY, \
 Double.POSITIVE_INFINITY,Double.POSITIVE_INFINITY,0,0,0,Double.POSITIVE_INFINITY,
 \
 0,Double.POSITIVE_INFINITY])
compdL=LayerXY(compdx,compdy)
compdL.errorY=[compdyel,compdyeh]

148

Plotting Build 15.0.3244

compdL.style=Style(line=0, color=Color.MAGENTA, symbolShape=SymbolShape.FSQUARE,
 symbolSize=5)

AGN2 F-TRIANGLE
agn2dx=Double1d([0.279000,0.473000,0.410000,0.640000,0.423000,0.489000, \
 0.433000,0.638000,0.639000,0.507000,0.858000,0.475000,0.306000,0.555000, \
 0.458000,0.438000,0.934000,0.903000,0.946000,0.817000,0.694000,0.975000, \
 1.21500,0.799000,0.460000,0.557000,0.529000,0.489000,1.19500,0.849000, \
 0.202000,0.566000,0.840000,0.851000,1.01400,0.475000,0.559000,1.02100, \
 1.33600,0.841000,0.935000,0.271000,0.557000,0.839000,1.00700,0.679000, \
 0.840000,0.489000,0.847000,0.763000,0.508000,1.92000,1.70500,0.746000, \
 0.683000,1.26400,0.975000,0.936000,1.01400,0.940000,0.836000,1.01600, \
 3.02700,0.417000,0.502000,0.556000,1.14500,1.14400,1.67800,0.517000, \
 1.75900,0.612000,1.30700,1.01800,0.454000,0.484000])
agn2dy=Double1d([1.30293,1.32434,1.16939,1.83265,1.32471,1.26253,1.17360, \
 1.41605,1.20282,2.31398,1.78550,1.56257,1.21428,3.12925,1.06307,1.44278, \
 1.76653,1.59544,5.95989,5.93360,3.30248,2.34596,2.13678,1.75307,0.878780, \
 1.12357,1.12512,1.08773,4.48744,2.08833,0.688018,4.21850,4.14075,1.61897, \
 1.98866,1.71554,1.25268,3.74834,2.78586,2.09353,3.37877,1.42903,2.39244, \
 2.39662,1.60694,0.881049,1.53038,1.33242,1.46893,1.79275,2.96701,1.91567, \
 2.85022,2.58988,1.58679,1.33070,2.65534,1.54625,2.72044,2.66857,1.38688, \
 2.60687,2.59083,0.953587,1.11573,0.937821,2.24057,2.07835,2.07835,2.05569, \
 2.00705,1.99746,1.93249,1.89042,1.06601,0.988098])
agn2dyel=Double1d(76)
agn2dyeh=Double1d([0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,Double.POSITIVE_INFINITY, \
 Double.POSITIVE_INFINITY,0,0,0,0,0,0,0,0,Double.POSITIVE_INFINITY,0,0, \
 Double.POSITIVE_INFINITY,Double.POSITIVE_INFINITY,0,0,0,0, \
 Double.POSITIVE_INFINITY,0,0,Double.POSITIVE_INFINITY,0,0,0,0,0,0,0,0,0, \
 Double.POSITIVE_INFINITY,0,Double.POSITIVE_INFINITY,0,0,0,0,0, \
 Double.POSITIVE_INFINITY,Double.POSITIVE_INFINITY,0,Double.POSITIVE_INFINITY, \
 Double.POSITIVE_INFINITY,0,0,0,Double.POSITIVE_INFINITY, \
 Double.POSITIVE_INFINITY,Double.POSITIVE_INFINITY,Double.POSITIVE_INFINITY, \
 Double.POSITIVE_INFINITY,Double.POSITIVE_INFINITY,Double.POSITIVE_INFINITY, \
 Double.POSITIVE_INFINITY,0,0])
agn2dL=LayerXY(agn2dx,agn2dy)
agn2dL.errorY=[agn2dyel,agn2dyeh]
agn2dL.style=Style(line=0, color=Color.RED, symbolShape=SymbolShape.FTRIANGLE,
 symbolSize=6)

AGN1 U-TRIANGLE
agn1dx=Double1d([4.16400,3.23300,3.58300])
agn1dy=Double1d([0.608247,2.42214,1.41423])
agn1dyel=Double1d(3)
agn1dyeh=Double1d([0,Double.POSITIVE_INFINITY,0])
agn1dL=LayerXY(agn1dx,agn1dy)
agn1dL.errorY=[agn1dyel,agn1dyeh]
agn1dL.style=Style(line=0, color=Color.BLUE, symbolShape=SymbolShape.UTRIANGLE,
 symbolSize=6)

p=PlotXY()
p.setPlotSize(5.0,3.0)
p.addLayer(gall)
p.addLayer(starbl)
p.addLayer(compl)
p.addLayer(agn2L)
p.addLayer(agn1L)
p.addLayer(galdL)
p.addLayer(starbdL)
p.addLayer(compdL)
p.addLayer(agn2dL)
p.addLayer(agn1dL)

Example 3.108. Plotting with customised line and plot styles.

3.37. Worked example: Two plots in one
The example in this section creates a plot made of two independent plots. Figure 2 in M. Baes et al.,
A&A 518, L53 (2010) .

149

http://dx.doi.org/10.1051/0004-6361/201014555
http://dx.doi.org/10.1051/0004-6361/201014555

Plotting Build 15.0.3244

Figure 3.19. A plot made of two independent plots.

from java.awt.geom import Point2D
from java.awt import Color
from herschel.ia.gui.plot import PlotLegend
from herschel.ia.gui.plot.renderer.axtype import AxisType

SubPlot Main
sll=LayerXY(Double1d(0), Double1d(0))
sll.xaxis=Axis(range=[10,2000000], titleText="wavelength $\\mathrm{\\lambda}$ [$\
\mathrm{\\micro}$m]")
sll.xaxis.setAxisType(AxisType.LOG)
sll.xaxis.title.fontSize=10
sll.yaxis=Axis(range=[0.05,1000], titleText="flux density [Jy]")
sll.yaxis.setAxisType(AxisType.LOG)
sll.yaxis.title.fontSize=10
sll.inLegend=0
sp0=SubPlot()
sp0.addLayer(sll)
p=PlotXY()
p.addSubPlot(sp0)
p.legend.visible=1

Xilouris et al. 2004
xx=Double1d([15])
xy=Double1d([0.11])
xyel=Double1d([0.02])
xyeh=Double1d([0.02])
xl=LayerXY(xx,xy)
xl.errorY=[xyel,xyeh]
xl.style=Style(line=0, color=Color.BLUE, symbolShape=SymbolShape.SQUARE,
 symbolSize=6)
xl.name="Xilouris et al. 2004"
sp0.addLayer(xl)

150

Plotting Build 15.0.3244

Golombek et al. 1988
gx=Double1d([24,60,100])
gy=Double1d([0.18,0.52,0.52])
gyel=Double1d([0.04,0.09,0.09])
gyeh=Double1d([0.04,0.09,0.09])
gl=LayerXY(gx,gy)
gl.errorY=[gyel,gyeh]
gl.style=Style(line=0, color=Color.BLUE, symbolShape=SymbolShape.FTRIANGLE,
 symbolSize=7)
gl.name="Golombek et al. 1988"
sp0.addLayer(gl)

#Shi et al. 2007
sx=Double1d([23,70,150])
sy=Double1d([0.17,0.44,0.6])
sl=LayerXY(sx,sy)
sl.style=Style(line=0, color=Color.BLUE, symbolShape=SymbolShape.FDIAMOND,
 symbolSize=7)
sl.name="Shi et al. 2007"
sp0.addLayer(sl)

Haas et al. 2004
hx=Double1d([440,830])
hy=Double1d([1.3,2.3])
hyel=Double1d([0.4,0.5])
hyeh=Double1d([0.4,0.5])
hl=LayerXY(hx,hy)
hl.errorY=[hyel,hyeh]
hl.style=Style(line=0, color=Color.BLUE, symbolShape=SymbolShape.TRIANGLE,
 symbolSize=7)
hl.name="Haas et al. 2004"
sp0.addLayer(hl)

Wright et al. 2009
wx=Double1d([3200,5000,7400,9000,12000])
wy=Double1d([5.6,9,12,14,17])
wl=LayerXY(wx,wy)
wl.style=Style(line=0, color=Color.BLUE, symbolShape=SymbolShape.STAR, symbolSize=7)
wl.name="Wright et al. 2009"
sp0.addLayer(wl)

Cotton et al. 2009
cx=Double1d([3200,20000,45000,60000,180000,900000])
cy=Double1d([8,24,46,56,120,260])
cl=LayerXY(cx,cy)
cl.style=Style(line=0, color=Color.BLUE, symbolShape=SymbolShape.FOCTAGON,
 symbolSize=7)
cl.name="Cotton et al. 2009"
sp0.addLayer(cl)

This work
tx=Double1d([100,150,240,340,500])
ty=Double1d([0.5,0.66,0.8,1.06,1.4])
tyel=Double1d([0.12,0.16,0.22,0.26,0.36])
tyeh=Double1d([0.12,0.16,0.22,0.26,0.36])
tl=LayerXY(tx,ty)
tl.errorY=[tyel,tyeh]
tl.style=Style(line=0, color=Color.RED, symbolShape=SymbolShape.FOCTAGON,
 symbolSize=7)
tl.name="This Work"
sp0.addLayer(tl)

Fit solid line
slx=Double1d([10, 2000000])
sly=Double1d([0.09, 900])
sl1=LayerXY(slx,sly)
sl1.style=Style(line=1, color=Color.BLUE)
sl1.inLegend=0
sp0.addLayer(sl1)

Fit dashed line
dlx=Double1d([10, 2000000])

151

Plotting Build 15.0.3244

dly=Double1d([0.1, 820])
dll=LayerXY(dlx,dly)
dll.style=Style(line=3, color=Color.BLUE, dashArray=[3,3])
dll.inLegend=0
sp0.addLayer(dll)

Display legends
p.legend.visible=1
p.legend.columns=1
p.legend.position=PlotLegend.CUSTOMIZED
p.legend.halign=PlotLegend.LEFT
p.legend.valign=PlotLegend.BOTTOM
p.legend.setLocation(0.8,4.85)
p.legend.halign=PlotLegend.RIGHT
p.legend.valign=PlotLegend.TOP

subplot residual
spr=SubPlot(SubPlotGridConstraints(0,1,1,0.6))
slrl=LayerXY(Double1d(0), Double1d(0))
slrl.inLegend=0
slrl.xaxis=Axis(range=[10,1000], titleText="wavelength $\\mathrm{\\lambda}$ [$\
\mathrm{\\micro}$m]")
slrl.xaxis.setAxisType(AxisType.LOG)
slrl.xaxis.title.fontSize=10
slrl.yaxis=Axis(range=[-0.7, 0.7], titleText="residual [Jy]")
slrl.yaxis.setAxisType(AxisType.LINEAR)
slrl.yaxis.title.fontSize=10
spr.addLayer(slrl)
p.addSubPlot(spr)

Xilouris et al. 2004 R
xry=Double1d([-0.01])
xrl=LayerXY(xx,xry)
xrl.errorY=[xyel,xyeh]
xrl.style=Style(line=0, color=Color.BLUE, symbolShape=SymbolShape.SQUARE,
 symbolSize=6)
xrl.inLegend=0
xrl.name="Xilouris et al. 2004 R"
spr.addLayer(xrl)

Golombek et al. 1988 R
gry=Double1d([0.01,0.2,0.06])
grl=LayerXY(gx,gry)
grl.errorY=[gyel,gyeh]
grl.style=Style(line=0, color=Color.BLUE, symbolShape=SymbolShape.FTRIANGLE,
 symbolSize=7)
grl.inLegend=0
grl.name="Golombek et al. 1988 R"
spr.addLayer(grl)

Shi et al. 2007 R
sry=Double1d([0.0,0.07,-0.11])
srl=LayerXY(sx,sry)
srl.style=Style(line=0, color=Color.BLUE, symbolShape=SymbolShape.FDIAMOND,
 symbolSize=7)
srl.inLegend=0
srl.name="Shi et al. 2007 R"
spr.addLayer(srl)

Haas et al. 2004
hry=Double1d([-0.23,-0.03])
hrl=LayerXY(hx,hry)
hrl.errorY=[hyel,hyeh]
hrl.style=Style(line=0, color=Color.BLUE, symbolShape=SymbolShape.TRIANGLE,
 symbolSize=7)
hrl.inLegend=0
hrl.name="Haas et al. 2004"
spr.addLayer(hrl)

This work
trry=Double1d([0.01,-0.03,-0.13,-0.21,-0.26])
trl=LayerXY(tx,trry)

152

Plotting Build 15.0.3244

trl.errorY=[tyel,tyeh]
trl.style=Style(line=0, color=Color.RED, symbolShape=SymbolShape.FOCTAGON,
 symbolSize=7)
trl.inLegend=0
trl.name="This Work"
spr.addLayer(trl)

Fit solid line
slrx=Double1d([10,1000])
slry=Double1d([0,0])
slrl=LayerXY(slrx,slry)
slrl.style=Style(line=1, color=Color.BLUE)
slrl.inLegend=0
spr.addLayer(slrl)

Example 3.109. Plotting two independent subplots.

3.38. Worked example: Coloured band
The example in this section creates a plot with different symbol styles, error bars and a coloured
horizontal band. Figure 4 in T.D. Rawle et al., A&A 518, L14 (2010) .

Figure 3.20. A plot with different symbol styles, error bars and a coloured horizontal band.

from java.awt import Color
from herschel.ia.gui.plot.renderer import AxisTickSide
from herschel.ia.gui.plot.renderer.RectAnnotationEngine import Type
from herschel.ia.gui.plot.renderer.axtype import AxisType

hd=LayerXY(Double1d([0.2,2.2]),Double1d([1,1]))
hd.style=Style(line=3,color=Color.GRAY,dashArray=[6,6])
hd.inLegend=0
hd.xaxis=Axis(range=[0.2,2.2])
hd.xaxis.tick.side=AxisTickSide.OUTWARD
hd.yaxis=Axis(range=[0,5.5])
hd.yaxis.tick.side=AxisTickSide.OUTWARD
hd.yaxis.tick.interval=1
hd.yaxis.tick.minorNumber=0

153

http://dx.doi.org/10.1051/0004-6361/201014681

Plotting Build 15.0.3244

strip=RectAnnotation(0.2, 2.2, 0.5, 1.5)
strip.color=Color(251,232,189,105)
hd.addRectAnnotation(strip)

b0_1=Double1d([1.674486,1.069313,1.584537,1.654299,1.365276,1.578115,1.196919, \
 1.942886,1.144155,1.609685,0.374725,0.304246,1.245910,1.659333,1.379772])
b0_2=Double1d([0.046158,0.045599,0.044985,0.046158,0.044663,0.045469,0.044663, \
 0.049357,0.045100,0.045599,0.045342,0.045342,0.044663,0.045219,0.046013])
b0_3=Double1d([1.931079,0.439483,1.661472,1.946264,1.213043,1.480344,1.051577, \
 4.586347,0.561341,1.994514,0.245011,0.367738,1.145222,2.320756,1.071991])
b0_4=Double1d([0.618866,0.085960,0.291826,0.681112,0.230290,0.260769,0.264749, \
 0.856806,0.111786,0.390115,0.114122,0.144550,0.593335,0.443113,0.816351])
b0=LayerXY(b0_1,b0_3)
b0.errorX=[b0_2, b0_2]
b0.errorY=[b0_4, b0_4]
b0.style=Style(line=0, color=Color.GRAY, symbolShape=SymbolShape.FTRIANGLE,
 symbolSize=10, symbolColor=Color.BLUE)
b0.name="Bullet Cluster OutSide PACS (100$\\micro$m estimated)"

b1_1=Double1d([1.419899,1.619893,1.419907,1.319923,1.810285,1.841473,1.608309])
b1_2=Double1d([0.017994,0.017103,0.015887,0.017436,0.037015,0.036288,0.023305])
b1_3=Double1d([1.194547,2.334788,0.975215,1.046990,4.026402,4.353637,1.914610])
b1_4=Double1d([0.106746,0.670998,0.114467,0.120429,0.592627,0.566388,0.199998])
b1=LayerXY(b1_1,b1_3)
b1.errorX=[b1_2, b1_2]
b1.errorY=[b1_4, b1_4]
b1.style=Style(line=0, color=Color.GRAY, symbolShape=SymbolShape.FTRIANGLE,
 symbolSize=10, symbolColor=Color.RED)
b1.name="Bullet Cluster in PACS field"

bg0_1=Double1d([1.548598,2.066779,1.143054,1.648204,1.721049,1.417007, \
 1.807384,1.491405])
bg0_2=Double1d([0.045469,0.045219,0.044985,0.044873,0.045219,0.045733, \
 0.049990,0.045342])
bg0_3=Double1d([1.552600,3.422128,0.459055,1.807932,2.435197,0.955189, \
 3.364770,1.068040])
bg0_4=Double1d([0.312489,0.465107,0.080527,0.324565,0.495231,0.165624, \
 0.684698,0.183726])
bg0=LayerXY(bg0_1,bg0_3)
bg0.errorX=[bg0_2, bg0_2]
bg0.errorY=[bg0_4, bg0_4]
bg0.style=Style(line=0, color=Color.GRAY, symbolShape=SymbolShape.FCIRCLE,
 symbolSize=8, symbolColor=Color.GRAY)
bg0.name="BG system OutSide PACS (100$\\micro$m estimated)"

bg1_1=Double1d([1.391505,1.442690,1.467886,1.139075,0.959461,1.393919, \
 1.505945,1.506306,1.671487,1.336313,1.272283,0.941866,1.857896])
bg1_2=Double1d([0.014170,0.018310,0.015610,0.054709,0.046394,0.033695, \
 0.038559,0.023530,0.016676,0.022353,0.035198,0.027152,0.011652])
bg1_3=Double1d([1.005709,1.128696,1.483923,0.824007,0.430120,1.229956, \
 2.137710,1.136676,2.438485,0.910690,0.965880,0.409521,3.091505])
bg1_4=Double1d([0.091131,0.102801,0.118804,0.139412,0.058699,0.147821, \
 0.326636,0.105967,0.280889,0.211824,0.112502,0.052559,0.246040])
bg1=LayerXY(bg1_1,bg1_3)
bg1.errorX=[bg1_2, bg1_2]
bg1.errorY=[bg1_4, bg1_4]
bg1.style=Style(line=0, color=Color.GRAY, symbolShape=SymbolShape.FCIRCLE,
 symbolSize=8, symbolColor=Color.RED)
bg1.name="BG system in PACS field"

p=PlotXY()
p.setPlotSize(4,4)
p.addLayer(hd)
p.addLayer(b1)
p.addLayer(bg1)
p.addLayer(b0)
p.addLayer(bg0)

legend
p.legend.visible=1
p.legend.borderVisible=0

154

Plotting Build 15.0.3244

p.legend.columns=1
p.legend.position=PlotLegend.CUSTOMIZED
p.legend.setLocation(0.4,4.0)
p.legend.halign=PlotLegend.LEFT
p.legend.valign=PlotLegend.BOTTOM
p.xaxis.title.text="log($\\mathrm{S_{100}}/\\mathrm{S_{24}}$)"
p.yaxis.title.text="$\\mathrm{SFR_{FIR}}/\\mathrm{SFR_{24{\\mu}m}}$"

Example 3.110. How to add error bars and customised horizontal bars to a plot.

3.39. Worked example: Plot with PACS and
SPIRE spectra

The following is a commented example of how to produce a plot containing a PACS and SPIRE
spectrum together. The example shows how to convert the data to be on the same wavescale (note
that no attempt at calibrating the data to be on the same flux scale is made!) and how to manipulate
spectral data so that it can be plotted. In addition the example shows how to set axes limits and titles,
how to customise line styles and how to annotate and title the plot.

The script connects to the Herschel Science Archive to retrieve data, so you must be connected to
the Internet and logged in. For more information on logging in to the Herschel Science Archive, see
Section 1.4.1 .

The following image shows the plot produced by the script:

Figure 3.21. The result of the commented plot example presented in this section.

Script for spectral plot example
#
Plot 12CO 13-12 (1497 GHz, 200.27 micron) spectra from
PACS and SPIRE for AFGL 2688 together

#
Get data (all public obsids)
and extract the products that contain the CO 13-12 line
pacsobs = getObservation(1342199235, useHsa=True)
pacs_red_rebinned_cube = pacsobs.level2.getProduct("HPS3DRR").refs[0].product

155

Plotting Build 15.0.3244

#
spireobs = getObservation(1342247105, useHsa=True)
spire_spectrum = spireobs.level2.getProduct("HR_spectrum_point")["0000"]["SSWD4"]
#
#
Extract central pixels from PACS cube
pacs_central_spectrum = extractRegionSpectrum(cube=pacs_red_rebinned_cube, \
regionType=herschel.ia.toolbox.cube.ExtractRegionSpectrumTask.Region.SINGLE_PIXEL, \
centerRow=2.0, centerCol=2.0)
#
Convert PACS spectrum wavescale to GHz
pacs_spectrum = convertWavescale(ds=pacs_central_spectrum, to='GHz',
 overwrite=False)
#
#
Extract wavescales and fluxes to plot against each other
spire_wave = spire_spectrum.wave
spire_flux = spire_spectrum.flux
pacs_wave = pacs_spectrum.wave
pacs_flux = pacs_spectrum.flux

Create plot.
from java.awt import Color
p=PlotXY()
Plot SPIRE data in blue
layer1 = LayerXY(spire_wave, spire_flux, color=Color.BLUE)
Plot the PACS data in red
layer2 = LayerXY(pacs_wave, pacs_flux, color=Color.RED)
p.addLayer(layer1)
p.addLayer(layer2)
#
Now set the axes limits and titles
p.xaxis.range = [1200.0, 1800.0]
p.yaxis.range = [60,550]
p.xtitle = "Frequency [GHz]"
p.ytitle = "Flux density [Jy]"
#
Add top axis in wavelength in microns, GHz/c/1000 = um ==> c/1000
c = 299792458.0 # m/s
xaux = ReciprocalAuxAxis(c/1000.0)
p.xaxis.removeAuxAxis(0)
p.xaxis.addAuxAxis(xaux)
xaux.setTitleText("Wavelength ($\\mu$m)")
xaux.getTick().setMinorNumber(4)
#
Annotate plot
Clear any old annotations first (helpful if you need to move annotations)
p.clearAnnotations()
Annotations are placed using plot location (x,y)
p.addAnnotation(Annotation(1250,450,"SPIRE",color=Color.BLUE, fontSize=11))
p.addAnnotation(Annotation(1600,425,"PACS",color=Color.RED, fontSize=11))
#
Add a line annotation at the location of the CO (13-12) line
from herschel.ia.gui.plot import LineAnnotation
line = LineAnnotation(LineAnnotation.XLINE, 1497)
line.color=Color.GREEN
line.dashArray=([3])
line.lineWidth=1.5
layer2.addLineAnnotation(line)
p.addAnnotation(Annotation(1510,450,"CO (13-12)",color=Color.GREEN, fontSize=9))
#
#
Add a title
p.setTitleText("CO(13-12) with PACS and SPIRE")
Now save a PDF file,
#it will be saved in the directory from which you opened HIPE
p.saveAsPDF("Fig1.pdf")

Example 3.111. Complete example using PACS and SPIRE data of AFGL 2688.

3.40. The TablePlotter

156

Plotting Build 15.0.3244

The TablePlotter utility is a tool to view and analyze table datasets organised in columns with an equal
number of rows, for instance time-ordered detector signals. In addition the tool provides advanced
means of interactively selecting subsets of this data and create new table datasets from these selections.
The TablePlotter appears as a tab in the Editor view.

TablePlotter does not support other types of datasets.

3.40.1. Invoking TablePlotter
• Invoking TablePlotter as a Viewer in HIPE

The TablePlotter works with Table Datasets and products that contain Table Datasets. For example,
double clicking on a FITS binary table file in the Navigator view of HIPE will load the file into a
product containing a table dataset and automatically bring up the product viewer. Right clicking on
the table dataset within the product and selecting Open With leads to a choice of viewers and tools
that can be applied (see Figure 3.22).

Figure 3.22. Viewers available for a table dataset in the product viewer, among them TablePlotter and
OverPlotter.

Selecting TablePlotter opens the table dataset in the main TablePlotter screen (see Figure 3.23).

• Invoking TablePlotter from the command line or from a script

You can also invoke TablePlotter from the command line. First we need to import TablePlotter and
the window manager:

from herschel.ia.gui.explorer.table import TablePlotter
from herschel.share.component import WindowManager

Assuming tbs is a TableDataset, then the Table Plotter would be invoked by the following
commands in a Jython script:

wm = WindowManager.getDefault()
wm.addWindow('test', TablePlotter(tbs).component, 1)

or by the single command:

WindowManager.getDefault().addWindow("test", TablePlotter(tbs).component, 1)

If you have a product created by reading in a FITS file containing a binary table, the first table dataset
can be easily extracted with the default method. For instance, if a FITS file was read by double
clicking on it in the navigator view, a product will appear as a variable. Assuming the variable name
is "Myfile", the following command lines send it to TablePlotter.

wm = WindowManager.getDefault()

157

Plotting Build 15.0.3244

wm.addWindow("test", TablePlotter(Myfile.default).component, 1)
wm.addWindow('test', TablePlotter(TablePlotterExerciseFile["HDU_1"]).component,
 1)

If the product contains more than one dataset, the desired table dataset can be retrieved by its name.
If you don't know the name of the dataset, a list of datasets can be obtained with the keySet method.
In the following example the list of dataset names is obtained and printed, then the first dataset is
chosen and displayed in TablePlotter.

wm = WindowManager.getDefault()
datasets = Myfile.keySet() #Get the names of the datasets
print datasets #Here you see the names of the datasets within the
 product
datasetName = datasets[0] #Choose your dataset, in this case the first with
 index 0
wm.addWindow("test", TablePlotter(Myfile[datasetName]).component, 1)

If invoked from the command line, the TablePlotter will appear in its own window, instead of a
HIPE view.

If the name of the dataset is unknown, but its sequence number is known, the following shortcut
can be used, in this case for the first dataset with index 0:

wm = WindowManager.getDefault()
wm.addWindow("test", TablePlotter(Myfile[Myfile.keySet()[0]]).component, 1)

3.40.2. Layout of the TablePlotter
When TablePlotter is invoked, it displays an X/Y-plot of the first two columns of the selected Table-
Dataset (See Figure 3.23). The TablePlotter GUI contains three major components: the plot display
area, the plot control panel on the right, and axis selection boxes on the bottom. Sometimes it is nec-
essary to adjust the window size and the sizes of the sections to see all components.

Figure 3.23. Layout of the TablePlotter GUI.

3.40.3. Controls and functions
The TablePlotter provides the following control buttons to view and analyze data.

• X and Y- Axis Selection:

Under the graphics display area, two selector arrangements allow to assign columns in the table to
the X and Y-axis of the plot. The elements of each selector are a combo box and a spinner.

158

Plotting Build 15.0.3244

By default the first column of the TableDataset is associated with the X-axis. The second column
is initially associated with the Y-axis.

Clicking the arrow on the right of the combo box invokes a drop down menu with the displayable
columns of the table dataset. Holding down the left mouse button and moving the mouse up or down
scrolls through the columns if more than 8 columns are present. A column is selected by clicking on
it. This list can be quite large. To help with the selection, a substring can be entered after clicking
into the white name field of the combo box. Only columns with names containing this substring
will be shown in the drop down menu. No distinction is made for upper or lower-case characters
in this selection.

Columns can also be selected by index using the spinner, either by entering the index number di-
rectly after clicking into the index field, or by clicking on the up or down arrow buttons of the
spinner. Fast forward/backward selection of columns in the spinner can be achieved by holding the
left mouse button down and moving the mouse up or down.

The axis selector provides an additional "virtual" index column that allows to plot columns against
the order in which they appear in the table dataset. This column only exists for convenience and is
for instance not part of the extracted dataset, as shown further below.

In addition, two checkboxes named "- offset" allow you to subtract offsets from the data along both
axes. This is useful, for example, if an axis corresponds to absolute times like TAI that start at an
Epoch some time ago and bear a large offset compared to the time period covered by the data. When
a checkbox is activated, the value of the subtracted offset appears below it.

• Display style:

The control buttons in this section change the type of scaling of the X- and Y-axes, as well as the
styles of lines and symbols used in the plot.

 The linear scale is selected for the X-axis. Clicking on the button will switch to logarithmic
scale.

 The linear scale is selected for the X-axis. Clicking on the button will switch to logarithmic
scale.

 The linear scale is selected for the Y-axis. Clicking on the button will switch to logarithmic
scale.

 The linear scale is selected for the Y-axis. Clicking on the button will switch to logarithmic
scale.

The two pull-down menus select line- and symbol-styles. The selection of symbol styles is only
available when the line styles are either MARKED , MARK_DASHED or NONE .

 / Increase/decrease symbol sizes.

• Navigation:

The navigation field contains several buttons to zoom and pan within a plot. In addition the
view can be controlled with the mouse pointer. Left clicking into the field, and pulling across
an area with the left mouse button held down selects this area. This is called further on a hold-
and-drag operation. When the mouse button is released, this area will be scaled so that it now
fits the plot window (zoom-in).

159

Plotting Build 15.0.3244

 / Zoom in/out simultaneously in X- and Y-axis.

 / Zoom out along the X/Y axis only.

 / Pan the view towards the left/right.

 / Pan the view up/down.

The size of each zooming or panning step is controlled by a toggle button at the center of the
Navigation field as follows:

 This button signifies that the fast mode is selected. Clicking on it toggles to slow mode.

 This button signifies that the slow mode is selected. Clicking on it toggles to the fast mode.

 This button opens the Preferences menu. The first entry in this drop-down menu
opens a Properties window, where the factors can be changed that control fast and slow zooming
and panning (for details see the Preferences section below).

 This button switches into free-scale mode. It is one of the most frequently used buttons.
The displayed ranges on X- and Y-axis are selected automatically to show all visible datapoints of
the currently selected columns with optimal zoom parameters.

 / Switch the X/Y axis into free-scale mode.

• Selections:

Table Plotter is not only a display tool for table datasets, but also a data selection tool. The selection
feature can be used to hide or select a particular portion of the data points, to make use of the fast
automatic scaling when scanning through many columns of data.

The data selection feature, is also very useful for unplanned, ad-hoc, interactive data analysis tasks.
Subsets of data in a table can be selected and extracted into new table datasets, that can then be
subjected to other tools or tasks like the power spectrum tool. Typical applications would be for
instance to manually remove glitches from a signal time stream, or to extract a specific period of a
signal time stream out of a sequence of instrument configurations.

The following buttons are relevant in this respect:

160

Plotting Build 15.0.3244

 This button signifies that all data points are being displayed. Deselected data points
are replaced by a small red cross. The automatic scaling takes also deselected data into account.
Clicking on this button switches to "Selected Only" display mode.

 This button signifies that only selected data points are being displayed. Deselected
data points are not shown. The automatic scaling takes only selected data into account. Clicking on
this button switches to "Show All" display mode.

 Clicking this button first, and then performing a drag-and-hold operation within
the plot hides all selected data points within the selected rectangle. In "All Columns" mode only
the X-axis range is taken into account (see below).

 Clicking this button first, and then performing a drag-and-hold operation within
the plot selects all hidden data points within the selected rectangle. In "All Columns" mode only
the X-axis range is taken into account (see below).

 Clicking this button first, and then performing a drag-and-hold operation within
the plot selects all data points within the selected rectangle and deselects everything outside. In "All
Columns" mode only the X-axis range is taken into account (see below).

 This button will re-select all hidden data points.

 This button signifies that selections and deselections only affect the two columns
used for the plot. Clicking on this button will switch Table Plotter into "All Colum" mode.

 This button signifies that selections and deselections affect all columns of the
table. The selection is based on the range on the X-axis, while the selected Y-axis range is ignored.
Clicking on this button will switch Table Plotter into "Current Column" mode.

Figure 3.24. The plot with selected (blue) and hidden (red crosses) data points.

• Printing and saving the plot:

161

Plotting Build 15.0.3244

Right-click on the plot to display a context menu with the entries Save as and Print . You can
save your plot in PDF, PNG, JPEG or EPS format.

• Dataset Extraction:

Besides visualisation, the Table Plotter can be handy for creating new datasets out of existing ones.
Typically this is done in data analysis where a specific portion of interest is selected and saved into
another dataset for subsequent analysis. The result becomes another table dataset. The extracted
columns are the two being displayed while in "Current Columns" mode, or an arbitrary user selection
of columns in "All Columns" mode. As a general rule, any row, where at least two columns represent
a valid datapoint (X,Y), will appear in the result. Data that were "hidden" in such a row are replaced
by NaNs. All other rows will be purged from the resulting table dataset.

The selection of datapoints is internally done with flags that exist for each datum. Making selec-
tions while choosing different columns for the X-axis can have sometimes results that first appear
confusing, but make perfect sense in a logical way. Especially the Exclusive Select button and the
Unhide button should be used with due consideration of the side effects.

 This button extracts a subset of the data that remains selected after all prior selec-
tion operations. The selected data will be extracted into a new table dataset that will be fed back into
the session. A name can be assigned to the new variable, which will appear in the Variables view.

If Current Col is selected, only the selected data points in the currently displayed column will be
extracted.

If All Cols is selected, the selected data points in all the columns become available for extraction.
After clicking Extract, a column selection window (see Figure 3.25) pops up, allowing to Add
individual columns or Add All columns to a list. Individual columns can also be removed (Remove)
again from the selection. The Remove All button allows to start over. Up and Down buttons are
available to change the order of columns in the new dataset (see Figure 3.25).

Figure 3.25. Extract Selected Data from Multi Columns to a New DataSet.

Clicking Close completes the extraction. You can then enter a name for the new dataset or accept
the default.

The new table dataset appears as a new variable in the Variables view of HIPE.

162

Plotting Build 15.0.3244

• Overlay Plots:

Even though the TablePlotter was primarily designed for single X-Y scattergram display, there is
limited overlay capability available. For any more complex overlay plotting, the Over Plotter was
created that is described in detail further down.

Simple overlay plots are created by marking Overlay in the Overlay plots panel on the lower right,
and selecting another column for the Y-axis. The old plot stays on display and the new X/Y-plot is
overlaid with a different color. If different symbols, symbol sizes or line styles are required, they
must be selected now. They can not be selected at a later stage. While Overlay is on, the Y-axis will
have the same scale for all overlays and it is not possible to select another column for it. The only
way to change a plot that was done earlier, is to remove the overlay in question with the Remove
a layer drop-down menu, and selecting the column for the Y-axis again. Activating the Legend
button shows the relation between colour and name of the overlay in a legend (see Figure 3.26).

Figure 3.26. Simple overlay plots of different columns plotted against the same X-axis are created by
marking the Overlay field.

• Layer Props:

 This button provides a drop-down menu, giving access to the display rules for
complex data and advanced layer management. See Figure 3.27 .

The Table Plotter is able to show complex data in four different representations: the modulus, the
real part, the imaginary part and the phase.

Figure 3.27. Preferences: Complex data can be displayed in four different ways as shown in this prop-
erties menu.

163

Plotting Build 15.0.3244

The selected preferences are stored in a properties file and will be remembered the next time you
open Table Plotter.

• Advanced command line control of TablePlotter

After invoking Table Plotter from the command line or a script, its display can be further controlled,
allowing for integration of this tool into other applications that require interactive X/Y display and/
or data selection. As stated before, the following imports must be performed first.

from herschel.ia.gui.explorer.table import TablePlotter
from herschel.share.component import WindowManager

A Table Dataset tbs would be plotted as follows in a Jython script or from the command line. Note
that in this case we retain the object tpl inbetween. This link enables us to access the Table Plotter
and its components from the command line.

wm = WindowManager.getDefault()
tpl = TablePlotter(tbs)
wm.addWindow('test', tpl.component, 1)

Now we should see a Table Plotter window as before, coming up detached of the HIPE window.
We can now go about our business in HIPE. In case we make selections, we can get the result back
into the session with the following commands.

extbl = tpl.activeLayerStruct.extractedTableDataset
flags = tpl.activeLayerStruct.flags

The variable extbl now contains the resulting TableDataset after selection. It contains only rows
with at least two valid entries. Deselected entries are replaced by NaNs. Sometimes however it is
more convenient to just return the flags that were actually set for the original table dataset. This is
done by the second line, where the flag array is saved in the variable flags. The dimensions of this
flag array match those of the original table dataset tbs, but the type is a 2 dimensional Boolean array.

The Table Plotter can also be preloaded with a flag array, which can be convenient in programmed
applications.

3.41. The Over Plotter
The Over Plotter is a consequential evolution out of the Table Plotter. It can be thought of as a stack of
individual Table Plotters with the same individual functionalities so that several graphs can be overlaid
on top of each other with their individual scaling, panning, and data point selections. In addition, the
OverPlotter provides capabilities to navigate the stack of layers in a coordinated fashion, i.e. like a
stack of glued together transparencies. It further allows for synchronization of axis scales of different
layers and synchronous selection of data across layers. As the basic Table Plotter functionalities apply
to the single layers of Over Plotter as well, they will not be repeated here. Please refer to the applicable
Table Plotter sections instead. This section will focus on all the functionalities that are specific to
Over Plotter.

3.41.1. Invoke Over Plotter
To open a table dataset can be opened also in Over Plotter, right click on the corresponding variable in
the Variables view of HIPE and choose Open With → OverPlotter from the menu (see Figure 3.22).
Note that at any time there can exist only one instance of Over Plotter in a session, while Table Plotter
can exist in many instances. In other words, selecting the option Table Plotter will always create a
new view in HIPE, while selecting Over Plotter will create a new view for Over Plotter only once and
after that send any further dataset to the same Over Plotter view as new layer.

3.41.2. Layout of Over Plotter

164

Plotting Build 15.0.3244

The Over Plotter main view looks very similar to the Table Plotter, but also shows a few important
differences (see Figure 3.28). The main differences are the Layer Controls panel, which replaces the
Overlay Plots panel, and the addition of four synchronization buttons. The plot area now contains
obviously more graphs and a second pair of axes to the top and right sides.

Figure 3.28. The main panel of Over Plotter is very similar to that of the Table Plotter. New features
include the Layer Controls panel and the synchronization buttons. This Over Plotter is in All Layers mode.

The Over Plotter works in two main modes that can be chosen through the selection of layers: 1) a
Single Layer mode and 2) an All Layers mode. The Layer drop down list shows all the available layers,
that is, all the table datasets that have been sent to the Over Plotter so far. In addition, it contains an
All entry to switch Over Plotter to All Layers mode.

Please note that the same dataset can be sent to Over Plotter more than once. This makes sense as one
may want to overlay diagrams of different pairs of columns of the same table dataset. A limitation
of the Over Plotter is that a pair of columns of two different datasets can not be combined into one
diagram, as the equal number of rows of both datasets is not guaranteed. However, columns of two
different datasets can easily be combined on the command line into two one table and then plotted
into one diagram, provided the tables have the same length. For instance, if tbl1 and tbl2 were two
related table datasets of equal length and we wanted to plot the column RA from one dataset against
the column DEC from the other dataset, then we would execute 3 simple command lines like the
following and then display the newly created table dataset in the Table Plotter.

tbl1 and tbl2 are table datasets
tbl = TableDataset() #create new empty table dataset
tbl['RA'] = tbl1['RA'] #add column RA
tbl['DEC'] = tbl2['DEC'] #add column DEC
#now open tbl in Table- or Over-Plotter.

In Figure 3.28 the Over Plotter is in All Layers mode and the graphs are shown in their selected colours.
Only for two graphs the axes can be shown. These are called the primary and the secondary layers.
The axes of the primary layer are the ones on the bottom (X-axis) and to the left (Y-axis), while the
axes of the secondary layer are the ones on the top (X-axis) and to the right (Y-axis). The axes are
shown in the colour of the respective layers.

165

Plotting Build 15.0.3244

Figure 3.29. This Over Plotter is in "Single Layer" mode. The primary layer is displayed in its selected
colour and the secondary layer is displayed in green. All other layers are displayed in grey colour.

In Figure 3.29 the Over Plotter is in Single Layer mode. In this case only the primary layer is shown in
its selected colour. The secondary layer is always green and all other layers are all displayed in gray.

The assignment of primary and secondary layer is dynamic and changes when another layer is selected.
Then the layer that was prime before becomes the secondary layer and will be displayed in green. The
previously secondary layer changes to grey colour, unless it has been selected to be prime again, and
the new prime layer is shown in its selected colour. An example is shown in Figure 3.29, where the
third layer that was gray in the previous example is now chosen to be prime, and the colours change
accordingly.

Figure 3.30. This Over Plotter is in "Single Layer" mode. The primary layer is displayed in its selected
colour and the secondary layer is displayed in green. All other layers are displayed in grey colour. These
are the same layers as in the previous figure, but after selecting Layer 1 to become prime.

3.41.3. Controls and Functions

 This drop down menu button shows the currently selected layer.
If a single layer is selected, all actions apply to the selected layer only. Individual zooming, panning

166

Plotting Build 15.0.3244

etc. is performed in this mode. ALL indicates that all layers are selected and actions are performed on
all layers simultaneously. A number of buttons are not applicable in this mode and are grayed out.

 This drop down menu button allows to remove specific layers.
This menu is available in any mode.

 This button synchronizes the scale of the X-axis of the primary layer to the scale of that of
the secondary layer, i.e. the distances between equal intervals on the X-axis display on the same scale.

 This button synchronizes the scale of the Y-axis of the primary layer to the scale of that of
the secondary layer, i.e. the distances between equal intervals on the Y-axis display on the same scale.

 This button synchronizes the offset of the X-axis of the primary layer to the offset of the
secondary layer, i.e. the primary layer is shifted in X-direction such that the values where the left Y-
axis cuts the primary and secondary X-axes become the same.

 This button synchronizes the offset of the Y-axis of the primary layer to the offset of the
secondary layer, i.e. the primary layer is shifted in Y-direction such that the values where the bottom
X-axis cuts the primary and secondary Y-axes become the same.

With all the possibilities of Table Plotter, except for the overlay function, available for each layer,
many combinations are possible. In Figure 3.31 an overlay of 3 layers with different scaling and pan-
ning is shown. These are the same layers as in the previous plots, just with several display parameters
changed to illustrate the possibilities. In addition the first layer (Layer 0) has a Y-log axis, and the
blue circles are connected by solid lines. The second layer (Layer 1) has selected enlarged magenta
filled diamonds, which are shown in green, because this is the secondary layer at this time and we are
in single layer mode. The third layer (Layer 2) has selected blue enlarged triangles connected with
a dashed line, which in this case is shown in gray colour, because this layer is neither primary nor
secondary layer right now.

167

Plotting Build 15.0.3244

Figure 3.31. A complex example for illustration. The Over Potter is in "Single Layer" mode. The primary
layer is displayed in blue with large symbols and connected by a line. The Y-axis is set to logarithmic mode.
The secondary layer is displayed in green with large filled diamonds. The third layer is displayed in grey
colour.

3.42. The Power Spectrum Generator
The Power Spectrum Generator computes a power spectrum for each column of a table dataset. You
can access it by right-clicking on a Table dataset in the Variables window in HIPE and choosing Open
With → Power Spectrum Generator .

This interface is a wrapper around a command-line tool described in the Scripting Guide : Section 5.4
in Scripting Guide . Please see that section for more details on the available options.

A time column must be selected in the main menu. The result is another table dataset, that can be
displayed with the TablePlotter. An example of a signal timeline is shown in (Figure 3.32, below).

Figure 3.32. A signal timeline displayed in Table Plotter that the Power Spectrum generator can be applied
to.

When the Power Spectrum Generator is invoked a menu appears. It consists of selectors for the time
column in the dataset and its unit, in case that is not available or incorrect. There are two text boxes

168

Plotting Build 15.0.3244

labelled flimit and sigma , controlling the deglitcher, which can be de-activated in another selector
below. The button Start FFT initiates the processing, which results in a new table datatset (see Fig-
ure 3.33 , below).

Figure 3.33. Main view of the Power Spectrum Generator.

Two text boxes are pre-filled with default values for the cut off frequency (flimit) and the deglitcher
threshold (sigma). Both flimit and sigma can be changed in the menu.

After clicking the Start FFT button, and a short processing time, a widget appears that allows naming
of the newly created table dataset. After pressing the OK button, the dataset is fed back into the session
and appears in the Variables view of HIPE. The TablePlotter can be used to display the dataset as
shown in Figure 3.34 .

Figure 3.34. Displaying the newly created power spectra in the Table Plotter.

169

Build 15.0.3244

Chapter 4. Working with images
4.1. Summary

This chapter describes tasks for manipulating and analysing images.

Image I/O

• Importing and exporting images: Section 4.3 .

Image manipulation

• Manipulating the image axes: clipping/clamping, cropping, rotating, scaling, translating, transpos-
ing: Section 4.10 .

• Manipulating the image intensities (Image arithmetics tools): adding, subtracting, multiplying, di-
viding, computing logarithms, exponentials and square roots, and so on: Section 4.11.1 .

• Image smoothing: Section 4.11.2 .

• Flagging saturated pixels: Section 4.12 .

• Making histograms/obtaining cut levels: Section 4.13 .

• Stitching images together: Section 4.14 .

• Defining a World Coordinates System: Section 4.15 .

Image analysis:

• Looking at the image (image viewer/image explorer): Section 4.4 .

• Creating intensity profiles: Section 4.16 .

• Creating contour plots: Section 4.17 .

• Creating histograms of the whole image or of a region bounded by a circle, an ellipse, a rectangle
or a polygon: Section 4.18 .

• Performing aperture photometry with a circular target aperture and an annular or rectangular sky
aperture: Section 4.21 .

• Extracting sources: Section 4.19 .

• Fitting sources: Section 4.20 .

• Comparing PSFs to point source profiles: Section 4.22 .

For information on the types of variables accepted by these tasks, and on how to determine if a variable
is of the correct type, see Section 4.2 .

4.2. Running image manipulation and analy-
sis tasks

All the tasks described in this chapter work on variables of type SimpleImage in HCSS User's
Reference Manual . These can be derived from a FITS file import, or even from an image file such
as a JPEG.

If you select a variable of the right type in the Variables view of HIPE, or in the Data section of the
Observation Viewer, all the image analysis tasks appear in the Applicable folder of the Tasks view.
Double click on a task name to launch its graphical interface in the Editor view.

170

Working with images Build 15.0.3244

If the image analysis tasks do not appear in the Applicable folder of the Tasks view, you have probably
selected a variable of the wrong type. Hovering the mouse pointer over a variable in the Variables
view shows its type, as in the following figure:

Figure 4.1. Finding variable types in the Variables view.

The tooltips shown in the previous figure display the full qualified name of the variable type, but what
interests you is the last word, just before the size information. In the case shown in the previous figure,
you see that one variable is of type ArrayDataset and the other is of type SimpleImage . You
can apply image analysis tasks only to variables of type SimpleImage .

To discover the type of a component of an observation shown in the Observation Viewer, right click
on it in the Data section and choose Create Variable . The corresponding variable appears in the
Variable view, and you can look at the tooltip with the type.

You can also display a variable type via the command line in the Console view, via the following
command:

print type(myVariable)

Example 4.1. Printing the type of a variable.

HIPE includes another image type, RgbSimpleImage in HCSS User's Reference Manual , which
represents three-colour images. You cannot run the image analysis tasks described in this chapter on
variables of this type. You must first extract the red, green or blue channel and save it as a Sim-
pleImage variable. This is shown in the following example for the red channel of an RgbSim-
pleImage called myRgbImage (for creating an RGB image see Section 4.14.2):

red = SimpleImage()
red.setImage(myRgbImage.getRedByteImage())

Example 4.2. Setting the image value of a SimpleImage object.

You can now run image analysis tasks on the red variable.

4.3. Importing and exporting images
4.3.1. Importing

You can import an image in FITS format with a double click on the FITS file in the Navigator view.
Alternatively, you can run the fitsReader in HCSS User's Reference Manual task. The image is
assigned to a variable of type SimpleImage in HCSS User's Reference Manual . If the original
image has an associated World Coordinate System, HIPE imports it into the new variable.

Once your image is imported as SimpleImage , you can execute all the image analysis tasks
described in the following sections.

171

Working with images Build 15.0.3244

There are a few additional steps you may need to perform before being able to work on your image
in HIPE. These are detailed below.

Adapting imported images

• Setting the reference wavelength. You can set the reference wavelength of your image with the
following command:

myImage.setWavelength(value)

Example 4.3. Set the wavelength value of an image.

The default unit is microns, but you can specify an alternative unit. For instance:

myImage.setWavelength(value, Length.ANGSTROMS)

Example 4.4. Set the wavelength value of an image, including units.

For more information about units, see the Scripting Guide : Assigning Units in Scripting Guide .

• Setting the flux unit of the image. To set the flux unit of the image, issue the following commands:

myImage.setUnit(SurfaceBrightness.JANSKYS_PER_BEAM)

Example 4.5. Setting the units of an image directly.

For more information about units, see the Scripting Guide : Assigning Units in Scripting Guide .

• Incorporating image components. A SimpleImage product can contain several datasets. In
addition to the flux values themselves, it can contain error, coverage and exposure datasets. If, for
instance, you had the coverage of your external image as a separate FITS file, you would have
imported it into HIPE as a separate SimpleImage . Assume you imported the external image
to variable myImage and the exposure to variable myExposure . To include the exposure into
myImage , use the following command:

myImage.exposure = myExposure.image

Example 4.6. Setting the exposure of an image.

To include error and coverage datasets, use these commands:

myImage.error = myError.image
myImage.coverage = myCoverage.image

Example 4.7. Setting the error and coverage datsets of an image.

Note

The size and scale of the exposure, coverage and/or error images must be the same as
the flux image

4.3.2. Exporting
Once you finish working on your image in HIPE, you can export it to FITS format. Right click on the
image variable name in the Variables view and choose Send to → FITS file . See Section 1.16.1 for
more details on image export to FITS.

172

Working with images Build 15.0.3244

For more information on the structure of the exported FITS file, see Section 1.16.4.2 .

You can open the exported FITS files with external astronomical software like ds9 .

Tip

If the external application you are working with is VO-enabled, you can exchange data
with HIPE via the SAMP interface, rather than FITS files. For more information about
interoperating with the Virtual Observatory, see Section 1.17 .

4.4. Viewing an image
To display an image in HIPE, double click the image name, for instance in the Variables view. The
standard image viewer display appears in the Editor view (see Figure 4.2).

Tip

If you have a large image, you may want to undock the image viewer from the Editor
view, by clicking and dragging the viewer tab, and then enlarge it. You can obtain the
same result by issuing the following command in the Console view:

Display(myImage)

Example 4.8. Constructing a Display object from an image.

Figure 4.2. Viewing an image in HIPE.

The two smaller displays to the right of the main image display show the following:

• An overview of the full image with the area shown in the main display outlined by a rectangle.
This display also shows the directions N and E on the display based on the WCS coordinates of
the image, or X and Y if no WCS is present. You can change the position of the zoom/pan region
by dragging it.

• A zoomed detail of the image around the mouse position.

Click and drag the mouse pointer on the gradient bar below the image to change intensity levels.

Zooming. You can change the zoom level in the following ways:

• Use your mouse scroll wheel while the mouse pointer is on the image.

• Right click on the image and choose Zoom → Zoom in or Zoom → Zoom out . Choose Zoom →
Zoom to Fit to fit the entire image into the viewer.

173

Working with images Build 15.0.3244

• Use the four icons at the bottom left corner of the viewer:

• Zoom in

• Zoom out

• Zoom to fit window

• Zoom to original size

• Write a custom zoom level in the text field next to the zoom icons and press Enter .

Flipping the direction of the Y axis. Click the double-arrow icon in the toolbar at the bottom of the
viewer, next to the zoom icons. Alternatively, right click on the image and choose Axes → Flip Y Axis .

Viewing image coordinates and intensity values. The three boxes below the image show the
following information (left to right):

• Pixel coordinates at mouse pointer, listed as (y, x).

• Pixel intensity value at mouse pointer.

• WCS coordinates (if defined) at mouse pointer.

To print the X/Y and RA/Dec coordinates at the mouse pointer position to the Console view, right
click on the image and choose Get coordinates .

Showing axes with coordinates. You can show axes with image coordinates at the top, bottom,
left and right of the image. Right click on the image and choose, for instance, Axes → Right Axis
→ Enable . For enabled axes you can use the same submenu to display a label, change units and
customise tick marks.

Advanced image visualisation: We recommend that you use SAOImage DS9 to perform advanced
display techniques involving several images. The following instructions are for DS9, not for HIPE
, and include the steps for:

• Tiling or blinking several images.

• Matching WCS coordinates.

This tool is part of the Virtual Observatory, thus allowing easy sharing of data with HIPE. Once
downloaded (please open this link in a new tab or window) and installed, you can send images to it
following the guidelines described in Section 4.3.2 and Section 1.17 .

• To tile images you just need to send images to DS9 and the software, by default, will arrange them
into a grid of same sized tiles. The number of rows and columns in this grid will depend on the
number of images.

• To blink images it is better to first match their coordinates first (see below). You should click Frame
→ Blink Frames to change from the default tiling view to blinking.

• Matching WCS coordinates is required to visually compare images taken with different instruments,
with different resolution and/or pixel size. To match the WCS coordinates (so the same sky positions
are overlapping for all images) you should click Frame → Match → Frame → WCS . Now all the
images show the same sky region independently of their spatial resolution.

4.5. Measuring angular distances
To measure the angular distance between two points on an image with a valid WCS, follow these steps:

1. Place the mouse pointer on the first point.

2. Press and hold the Shift key.

174

http://ds9.si.edu/site/Download.html

Working with images Build 15.0.3244

3. Press and hold the left mouse button.

4. Drag the mouse pointer to the second point. A triangle appears on the image, showing the distance
between the two points and the components in Right Ascension and Declination. Distances are
shown in arcminutes and arcseconds in the format mm:ss.SS in Java and %M:%S.%f in Jython.

Figure 4.3. Measuring angular distances on an image.

Tip

While dragging the mouse pointer with the Shift and left mouse button pressed, press
and hold the Ctrl key as well to hide the dashed lines showing the RA and Dec distance
components.

4.6. Creating masks
To create a mask covering part of the image, follow these steps:

1. Right click on the image and choose SkyMask toolbox from the menu.

The SkyMask toolbox opens.

2. Click on a shape button (rectangle, ellipse or polygon). Click and drag the mouse pointer on the
image to draw a rectangle or an ellipse. To draw a polygon, click on the image to draw a vertex,
and double click to draw the last vertex.

3. Click the scissors icon. HIPE creates a skyMask variable, describing a mask corresponding
to the shape you drew.

Resizing shapes. To resize a shape, click inside it so that it becomes selected and blue handles
appear. Click and drag a handle to resize the shape.

Moving shapes. To move a shape, click inside it and drag it to its new position.

Deleting shapes. To delete a shape, click inside it so that it becomes selected, and click the bin
icon. To delete all shapes, click the red X icon.

You can use sky masks created in this way to limit source extraction to specific areas of the image.
For more information see Section 4.19 .

4.7. Viewing metadata and array data associ-
ated to an image

An image can have several datasets, like a flag image dataset for flagging bad pixels (see Section 4.12
for more information). Each of these datasets has associated metadata, which has the same role as
header information in a FITS file. It indicates associated flux and coordinates, plus other information
such as processing history.

175

Working with images Build 15.0.3244

You have two ways to view the metadata and array data associated with an image:

• Right click on your image variable name in the Variables view, and choose Product Viewer from
the Open With menu. The Product Viewer shows image metadata, plus all the array datasets asso-
ciated with the image in the Data pane. For more information on the Product Viewer see the HIPE
Owner's Guide : Section 15.1 in HIPE Owner's Guide .

• To display information on a single dataset in the image, right click on it either in the Outline view
(as shown in Figure 4.4) or in the Product Viewer, and choose Open With → Dataset Viewer .
The Dataset Viewer is similar to the Product Viewer, in that it shows metadata and data associated
with the dataset.

Figure 4.4. Opening the Dataset Viewer from the Outline view.

4.8. Saving an image
To save an image to file, right click on it and choose Create screenshot . You can choose to save
the whole image or just the current view. In both cases, annotations are saved as well. You can save
to four formats: JPG, PNG, PDF and PS.

For information on how to save an image to FITS, see Section 4.3.2 .

From the command line.

To save an image to file via the command line you first have to create a Display object, as shown
by the following example:

d = Display(myImage) # myImage is a SimpleImage
d.saveAsJPG("/path/to/file.jpg") # Save whole image
d.saveCurrentViewAsJPG("/path/to/file.jpg") # Save current view

Example 4.9. Saving the current view of a Display object.

The other available methods are saveAsEPS , saveAsPNG and saveAsPDF , and analogously
saveCurrentViewAsEPS , saveCurrentViewAsPNG and saveCurrentViewAsPDF
.

You also have the more general save and saveCurrentView methods:

• save(" /path/to/file.jpg ") chooses the file format based on the file extension.

• saveCurrentView(" /path/to/file.jpg ") is the same as save , but for the current
view.

• save() shows the save dialogue window you obtain by right clicking on the image and choosing
Create screenshot .

Note

While the methods available in the Display class are very useful, they block the GUI
while writing to disk. This is not acceptable for scripts that save a batch of images to disk.

176

Working with images Build 15.0.3244

In cases like that, you should use the Java ImageIO package provided with the JDK which
doesn't block the user interface.

from herschel.ia.gui.image import ImageUtil
from javax.imageio import ImageIO
from java.io import File

Creating an image composed of random data
myImage = SimpleImage()
myImage.image=RESHAPE(Double1d.range(256*256), [256,256])

tiledImage = ImageUtil().getTiledImage(myImage) #myImage is a
 SimpleImage
ImageIO.write(tiledImage, "png", File("image.png"))

Example 4.10. Saving an image to disk without blocking the GUI.

4.9. SimpleImage editing
This section describes simple tools to change the colours and the cut levels of an image, and to add
drawings and annotations.

Note

The tools and editing techniques described in this section only apply to instances of the
grayscale class SimpleImage and not to RGB images like RgbSimpleImage or any
other type of image.

Editing the image colours
Right click on the image and choose Edit colors from the context menu to display the dialogue
window in Figure 4.5 . This window allows you to change the colour map, the intensity profile and
the scale algorithm. All changes are immediately reflected on the image. Click Reset to return to the
default scheme (Real colour map, Ramp intensity and Linear Scale algorithm).

Figure 4.5. Colour map window.

Editing the cut levels
Right click on the image and choose Edit cut levels from the context menu to display the dialogue
window in Figure 4.6 .

You can edit the cut levels in three ways:

• Click and drag the yellow arrows shown at either end of the histogram view to change the upper
and lower level cutoffs.

• Enter the level values in the two text boxes.

177

Working with images Build 15.0.3244

• Click one of the Auto Set buttons

All changes are immediately reflected on the image and on the histogram plot. Click Reset to return
to the default cut level of 99.5% of pixel values.

Figure 4.6. Cut level selection window.

Annotating an image
Use the annotation toolbox to add lines, shapes and text to an image. The annotation toolbox is shown
in Figure 4.7 .

To open the annotation toolbox, right click on an image and choose Annotations → Toolbox .

Figure 4.7. The annotation toolbox.

Note

You can use the annotation toolbox only on the image you opened it from. You cannot
use it on other images you have open in HIPE.

The buttons in the annotation toolbox in Figure 4.7 have the following usage, from left to right and
from top to bottom:

• Select annotation.

• Select all annotations in a region.

• Draw a line, a rectangle, an ellipse, a polyline or a polygon.

178

Working with images Build 15.0.3244

• Draw a freehand line.

• Add a text annotation.

• Remove the selected annotations.

• Remove all annotations.

• Useful only if you have one or more closed shapes drawn on the image. Returns the following
two variables:

• A variable called flag , of type Flag . The variable is basically a matrix of integers, with one
value for each pixel of the image. Values corresponding to pixels inside the shapes are set to
1. The others are set to 0. For more information on the Flag variable type, see the User's
Reference Manual : Section 1.154 in HCSS User's Reference Manual .

• A variable called bool2dMask of type Bool2d . Values corresponding to pixels inside the
shapes are set to false . The others are set to true .

The polygon and polyline methods enable you to select points on the image which should be used as
a corner of the polygon using the mouse. Double-clicking the mouse ends the selection procedure.

The three buttons below the ones already described change the view of the annotation. From top to
bottom:

• Change the thickness of the line.

• Change the colour of the annotation. The current colour of annotations corresponds to the back-
ground colour of the button.

• Change the font of text annotations.

Note

The Select all annotations in a region button only works when there are already annota-
tions on the image. Pressing the button will select all the annotations which are in the
selected region. This button can be used to change the colour or the line width of several
annotations at once.

Displaying a scale or a compass. Right click on the image and choose Annotations → Add scale
or Annotations → Add compass . The compass shows the North direction.

On the command line
You can draw figures and put text annotations on an image with the following functions of Display :

• Regular text annotations , using the addAnnotation , setAnnotationFont and se-
tAnnotationFontColor methods.

• Greek text annotations , using the addGreekAnnotation , setAnnotationFont and
setAnnotationFontColor methods. The addGreekAnnotation method converts
normal characters to Greek characters ('a' becomes 'alpha', 'b' becomes 'beta' and so on).

• Lines and shapes , using the addEllipse , addLine , addPolygon , addPolyline
and addRectangle methods. The addPolygon and addPolyline methods need an array
of doubles as parameter. In such an array, the coordinates should be added as polygon(([x1, y1,
x2, y2,...]),...).

The sizes of these shapes are measured in image pixels, not in screen pixels. This means that
shapes created with the same numbers will have the same size relative to the image, irrespective
of the zoom level.

179

Working with images Build 15.0.3244

The following example shows how you can add shapes and text annotations to an image from the
command line. The resulting image is shown after the example.

Imports
from java.awt import Font
from java.awt import Color

myDisplay = Display(myImage)

Placing a text annotation at position (321, 224)
myDisplay.addAnnotation("Veil nebula", 321, 224)
Changing the font type and size of the annotations
myDisplay.setAnnotationFont(321, 224, Font("Dialog", 0, 32))
Changing the annotation colour
myDisplay.setAnnotationFontColor(321, 224, Color(0,0,255))
Adding an ellipse with center at (268.5,500.0), width = 38 and height = 37,
linewidth = 3.0 and black colour
myDisplay.addEllipse(268.5, 500.0, 38.0, 37.0, 3.0, Color.green)
Adding a Greek text annotation at position (100,500)
myDisplay.addGreekAnnotation("a = 12.34, d = +30.30", 100, 500)
Changing the font and colour of the annotation
myDisplay.setAnnotationFont(100, 500, Font("Dialog", 0, 20))
myDisplay.setAnnotationFontColor(100, 500, Color(0,0,0))
But white is more visible
myDisplay.setAnnotationFontColor(100, 500, Color.white)

Example 4.11. Adding annotations and setting formatting options in a Display object.

Figure 4.8. Adding annotations to a Display.

Tip

There is no option to draw filled shapes, but you can easily simulate a filled shape by set-
ting a suitable line width. For example, this command draws a circle with a line thickness
twice as large as the radius:

radius = 10
myDisplay.addCircle(50.0, 50.0, radius, radius*2,
 java.awt.Color.BLACK)

Example 4.12. Filling shapes with oversized lines in a Display.

You can use the same trick to fill other shapes such as ellipses, rectangles and so on.

180

Working with images Build 15.0.3244

You can open the annotation toolbox via the command line as follows:

myDisplay.annotationToolbox()

Example 4.13. Opening the annotation toolbox programmatically.

You can open the dialogue windows for editing colours and cut levels in the same way as the annotation
toolbox:

myDisplay.editColors()
myDisplay.editCutLevels()

Example 4.14. Opening the colour and cut level dialogues programmatically.

For more information see the entry for Display in HCSS User's Reference Manual in the User's
Reference Manual . There you will find other useful methods, such as addCompass , to add a
compass with north and east directions, and addTenArcSecs , to add a line ten arcseconds long.

Obtaining code for actions in the graphical interface. You can obtain the Jython code corre-
sponding to your actions with the annotation toolbox with these two buttons at the bottom of the tool-
box window:

Figure 4.9. Jython code appearing in the annotation toolbox.

The code does not appear automatically as you work with the annotation toolbox. You must press the
Refresh Jython code button to see the code corresponding to your actions. Press Send code to HIPE
to paste the code to the Console view.

Note

If you change the size of a text annotation, this will not be reflected in the Jython code.

4.10. Manipulating the axes (cropping, rotat-
ing, scaling...)

See Section 4.2 for general information on how to run image analysis tasks.

With the following tasks you can perform basic transformations on your images. The links take you
to the corresponding entries in the User's Reference Manual . All these tasks output another image.

• Clamp in HCSS User's Reference Manual : also known as clipping , eliminates pixel intensity
values outside a given range. Intensities below the lower limit are set to that limit, and the same
happens with intensities above the upper limit.

clamped = clamp(image = myImage, low = 11, high = 240)

Example 4.15. Clamping an image with explicit limits.

181

Working with images Build 15.0.3244

• Crop in HCSS User's Reference Manual : reduces the size of an image by cutting portions outside
a rectangular area, defined by two boundary rows and columns. The WCS is adapted to have the
same sky coordinates for the same position in the original and cropped image.

cropped = crop(image = myImage, row1 = 11, row2 = 55, column1 = 240, column2 =
 300)

Example 4.16. Cropping an image specifying the rectangle dimensions.

• Regrid in HCSS User's Reference Manual : takes a source image and changes its spatial resolu-
tion (grid) according to a target image or a wcs object created for this purpose. Output flux is pro-
portional to the input flux by the following ratio output_cdelt1 * output_cdelt2/in-
put_cdelt1 * input_cdelt2 (as opposed to other tasks in this section like scale, whose
output flux for each pixel depends on the flux of neighbouring pixels of the original image). You
can retrieve the proportional factor from the output parameters of the task using the method get-
FluxConservation.

regridded = RegridTask(source = srcImage, target = refImage)
Retrieving the flux conservation factor
fluxFactor = regridded.getFluxConservation()

Example 4.17. Regridding an image and getting the flux change factor.

• Rotate in HCSS User's Reference Manual : rotates an image by a given angle. Four interpolation
methods are available:

• Bi-linear: interpolates one pixel to the right and one below. Default option.

• Nearest neighbour: direct pixel copying, the fastest option.

• Bi-cubic: uses interpolation via a piecewise bi-cubic polynomial. This option needs the subsam-
ple precision in bits as an extra parameter. The default value is 16 bits.

• Bi-cubic2: variant of bicubic interpolation that can give sharper results. This option needs the
subsample precision in bits as an extra parameter. The default value is 16 bits. This option is
relatively slow.

The following example shows how to invoke the task:

rotated = rotate(image = myImage, angle = 12.2)

Example 4.18. Rotating an image without specifying an interpolation method.

When using an interpolation method other than the default you need to specify it:

rotated = rotate(image=myImage, angle=12.2,
 interpolation=rotate.INTERP_BICUBIC, subsampleBits=32)

Example 4.19. Rotating an image with a specific interpolation method.

• Scale in HCSS User's Reference Manual : scales an image, allowing for different scaling factors
in the X and Y directions. For example, a scale factor of 2 doubles the image size, while a factor of
0.25 reduces it to one quarter of the original. A negative factor also flips the image along the axis.
Note that scaling does not conserve flux. The available interpolation types are as for the rotate
task.

Default interpolation
scaled = scale(image = myImage, x = 1.4, y = 0.4)

182

Working with images Build 15.0.3244

Custom interpolation
scaled = scale(image = myImage, x = 1.4, y = 0.4, interpolation =
 scale.INTERP_BICUBIC, subsampleBits = 32)

Example 4.20. Scaling an image both with and without custom interpolation.

• Translate in HCSS User's Reference Manual : translates an image along a given vector in pixel
or sky coordinates. Coordinates are given as decimal degrees.

Pixel coordinates
translated = translate(image = myImage, x = 5, y = 7)
Sky coordinates
translated = translate(image = myImage, ra = 0.03, dec = 0.03)

Example 4.21. Translating an image using two different sets of coordinates.

• Transpose in HCSS User's Reference Manual : transposes the image in one of the following
ways, automatically adapting the WCS:

• Flip vertically (flips top and bottom) and horizontally (flips from side to side).

• Flip diagonally (bottom left to top right) and antidiagonally (top left to bottom right).

• Rotate 90, 180 and 270 degrees (clockwise).

flipped = transpose(image = myImage, type = TransposeTask.FLIP_HORIZONTAL)

Example 4.22. Transpose an image with a horizontal flip.

Dialogue windows. All the dialogue windows for image transformations work in the same way.
You drag your image from the Variables view to the task dialogue window and drop it onto the circle
next to the image parameter. If your image has the right format, the circle turns green and the name
of your image appears next to it. To execute the task, click the Accept button.

Figure 4.10. Example image transformation dialogue window. Rotating an image using the "rotate" task.
Several interpolation options are available.

4.11. Manipulating fluxes

4.11.1. Image arithmetics
See Section 4.2 for general information on how to run image analysis tasks.

Depending on the task you want to apply to images and the particular instrument, the flux density
should be in a particular unit. Some recommendations provided by the instrument teams are:

• SPIRE maps for aperture photometry: The flux should be in Jy/pixel .

183

Working with images Build 15.0.3244

• SPIRE maps for source extraction/detection or gaussian fitting: The flux should in Jy/beam .

• PACS maps: The best unit to use with PACS data is Jy/pixel .

The following image arithmetics tasks are available. The links take you to the corresponding entries
in the User's Reference Manual . All these tasks output another image.

• imageAdd in HCSS User's Reference Manual : adds a scalar to all the pixels of an image, or
adds two images together, either pixel by pixel or based on their WCS. The addition mode is set
by the reference frame integer parameter (0 for pixel by pixel, 1 for WCS). If the two images are
to be added based on their WCS, they are regridded onto the spatial grid of the smaller image. If
the two images have the same unit, the sum uses the same unit, otherwise the calculation is done
as if the units were in counts.

Adding another image
sum = imageAdd(image1 = myImage1, image2 = myImage2, ref = 0)
Adding a scalar
sum = imageAdd(image1 = myImage, scalar = 5.0)

Example 4.23. Adding images and also scalars to images.

• imageSubtract in HCSS User's Reference Manual : subtracts a scalar from all the pixels of an
image, or subtracts an image from another one, either pixel by pixel or based on their WCS. The
observations made for the imageAdd task also apply to imageSubtract.

Subtracting another image
difference = imageSubtract(image1 = myImage1, image2 = myImage2, ref = 0)
Subtracting a scalar
difference = imageSubtract(image1 = myImage, scalar = 5.0)

Example 4.24. Subtracting images and also scalars from images.

• imageMultiply in HCSS User's Reference Manual : multiplies all the pixels of an image by a
scalar, or multiplies an image by another one, either pixel by pixel or based on their WCS. The
observations made for the imageAdd task also apply to imageMultiply . When multiplying
two images, the unit of the result is the composite of the units of the original images.

Multiplying by another image
product = imageMultiply(image1 = myImage1, image2 = myImage2, ref = 0)
Multiplying by a scalar
product = imageMultiply(image1 = myImage1, scalar = 5.0)

Example 4.25. Multiplying images and also images by scalars.

You can combine imageMultiply and regrid to change the sampling of an image and then
to ensure flux conservation of the output image. See below for an example on how to change the
pixel size to 4.5 arcseconds if the original image flux density is in MJy/sr :

oldWcs = mapHiRes.wcs
newWcs = mapHiRes.wcs.copy()
newWcs.setCdelt1(-4.5 / 3600.) # the - conserves the standard orientation
newWcs.setCdelt2(4.5 / 3600.)
mapLowRes = imageMultiply(image1=regrid(mapHiRes, wcs=newWcs), \
 scalar=(oldWcs.getCdelt2()/newWcs.getCdelt2())**2)

Example 4.26. Changing the pixel size of an image while ensuring flux conservation.

• imageDivide in HCSS User's Reference Manual : divides all the pixels of an image by a scalar,
or divides an image by another one, either pixel by pixel or based on their WCS. The observations
made for the imageMultiply task also apply to imageDivide.184

Working with images Build 15.0.3244

Dividing by another image
quotient = imageDivide(image1 = myImage1, image2 = myImage2, ref = 0)
Dividing by a scalar
quotient = imageDivide(image1 = myImage1, scalar = 5.0)

Example 4.27. Dividing images and also images by scalars.

• imageModulo in HCSS User's Reference Manual : calculates the remainder of a division between
an image and a scalar, or two images, divided either pixel by pixel or based on their WCS. The
observations made for the imageMultiply task also apply to imageModulo.

Dividing by another image
remainder = imageModulo(image1 = myImage1, image2 = myImage2, ref = 0)
Dividing by a scalar
remainder = imageModulo(image1 = myImage1, scalar = 5.0)

Example 4.28. Integer division of images and image by scalar.

• imageAbs in HCSS User's Reference Manual : computes the absolute value of all intensity values
of an image.

absolute = imageAbs(image = myImage)

Example 4.29. Applying the absolute value to the intensity values of an image.

• imageRound in HCSS User's Reference Manual : rounds all intensity values of an image to the
nearest integer.

rounded = imageRound(image = myImage)

Example 4.30. Rounding the intensity values of an image.

• imageFloor in HCSS User's Reference Manual : rounds all intensity values of an image to the
largest previous integer.

floored = imageFloor(image = myImage)

Example 4.31. Rounding the intensity values of an image to the largest previous integer.

• imageCeil in HCSS User's Reference Manual : rounds all intensity values of an image to the
smallest following integer.

floored = imageFloor(image = myImage)

Example 4.32. Rouding the intensity values of an image to the smallest following integer.

• imagePower in HCSS User's Reference Manual : raises all intensity values of an image to the
given power. The power value does not have to be an integer.

powered = imagePower(image = myImage, n = 2.0)

Example 4.33. Raising the intensity values of an image to the n-th power.

• imageSquare in HCSS User's Reference Manual : computes the square of all intensity values of
an image. The same as running imagePower with power value 2.0.

185

Working with images Build 15.0.3244

square = imageSquare(image = myImage)

Example 4.34. Squaring the intensity values with an specific task.

• imageSqrt in HCSS User's Reference Manual : computes the square root of all intensity values
of an image. The same as running imagePower with power value 0.5.

sqrt = imageSqrt(image = myImage)

Example 4.35. Taking the square root of the intensity values of an image.

• imageLog in HCSS User's Reference Manual : computes the natural logarithm of all intensity
values of an image.

log = imageLog(image = myImage)

Example 4.36. How to obtain the natural logarithm of the intensity values of an image.

• imageLog10 in HCSS User's Reference Manual : computes the base 10 logarithm of all intensity
values of an image.

log10 = imageLog10(image = myImage)

Example 4.37. How to obtain the base 10 logarithm of the intensity values of an image.

• imageLogN in HCSS User's Reference Manual : computes the base N logarithm of all intensity
values of an image. The base N can be any positive real number. Negative values for N do not give
an error, but produce an output image with NaN as intensity value for all pixels.

logN = imageLogN(image = myImage)

Example 4.38. How to obtain the base N logarithm of all intensity values of an image.

• imageExp in HCSS User's Reference Manual : computes the exponential function of all intensity
values of an image.

exp = imageExp(image = myImage)

Example 4.39. How to obtain the exponential of the intensity values of an image.

• imageExp10 in HCSS User's Reference Manual : replaces all intensity values of an image with
10 raised to the intensity value.

exp10 = imageExp10(image = myImage)

Example 4.40. Raising 10 to the intensity value for all image intensity values.

• imageExpN in HCSS User's Reference Manual : replaces all intensity values of an image with
N raised to the intensity value.

expN = imageExpN(image = myImage, n = 2.0)

Example 4.41. Raising N to the intensity value for all image intensity values.

186

Working with images Build 15.0.3244

Tip

When using the graphical interface of tasks requiring a second image (such as imageAdd
and imageSubtract) you can add the second image by dragging it from the Variables
view to the small circle close to the corresponding parameter. If the variable is of the
correct type, the circle becomes green.

Figure 4.11. Example image arithmetic dialogue window.

4.11.2. Smoothing images
See Section 4.2 for general information on how to run image analysis tasks.

The following smoothing tasks are available in the Tasks view: meanSmoothing , medianS-
moothing , boxCarSmoothing and gaussianSmoothing .

These tasks have a width parameter, representing the width of the filtering window, boxcar or the
FWHM of the Gaussian. This parameter is called sigma for Gaussian smoothing.

The parameter width must be an odd positive integer for mean and median smoothing and a positive
integer for boxcar smoothing. The parameter sigma must be a positive floating point number for
Gaussian smoothing.

The four tasks share the similar command line syntax:

Mean smoothing
smoothedMean = meanSmoothing(image = myImage, width = 3)

Median smoothing
smoothedMedian = medianSmoothing(image = myImage, width = 3)

Boxcar smoothing
boxCarSmoothed = boxCarSmoothing(image = myImage, width = 4)

Gaussian smoothing
gaussianSmoothed = gaussianSmoothing(image = myImage, sigma = 2.5)

Example 4.42. Smoothing an image using four different algorithms.

All these tasks have a SimpleImage as output, with the same settings (WCS, errors, flag, exposure)
as the input image.

4.11.3. Converting image units
To convert the surface brightness unit of your image to some other surface brightness unit, use the
convertImageUnit task. The task takes the image and the new unit as input parameters and pro-
duces a converted image. For some conversions you might need to provide the beam area as an option-
al parameter. The following example shows how to do the conversion: assuming that the beam area
is modelled by a 2D Gaussian, then the area follows equation 2*Math.PI*sigma^2 with sigma
being sigma = FWHM/SQRT(8*LOG(2.0)). The beam area is measured in square arcseconds.
Note that, in HIPE, LOG in HCSS User's Reference Manual is the natural logarithm:

187

Working with images Build 15.0.3244

FWHM = 18.1
myBeamArea = (Math.PI * (FWHM**2))/(4 * LOG(2.0))
converted = convertImageUnit(image = myImage, newUnit = "Jy/beam", beamArea
 = myBeamArea)

Example 4.43. Converting image units with a specific task.

4.11.4. Convolving images
There is often a need to bring images to a common beam size so that data taken at different wavelengths
can be compared to each other. For this you need to convolve one image with the PSF of the other
image. You can do so in HIPE with the imageConvolution task. The tasks takes an image and
a convolution kernel, in the form of another image, as input parameters, and provides the convolved
image as output. The following example shows how to invoke the task:

convolution = imageConvolution(image = myImage, kernel = myPsf)

Example 4.44. Convolving an image with a specific kernel.

4.12. Flagging saturated pixels
See Section 4.2 for general information on how to run image analysis tasks.

With the flagSaturatedPixels task you can set a cutoff value above which pixels are consid-
ered saturated.

The output is another image, called flaggedImage by default. It looks like a copy of the input
image, except that pixels whose value lies above the cutoff value are flagged with the SATURATED
flag type. The pixel values are not changed.

You can flag pixels via the command line as shown in the following example, with the value pa-
rameter giving the cutoff value:

flagged = flagSaturatedPixels(image = myImage, value = 100.0)

Example 4.45. Flagging pixels whose value exceeds the limit provided.

For more information see the User's Reference Manual: FlagSaturatedPixelTask in HCSS User's
Reference Manual

4.13. Getting cut levels
See Section 4.2 for general information on how to run image analysis tasks.

With the cutLevels task you can determine the cut levels of an image, using the percentage method
or applying a median filter.

In the task dialogue window, set the Method parameter to the method you want to use to determine
the cut levels. If you select Percent , you can change the default percentage value in the Percent field.

The result is an array with two elements, the low and high cut. You will find it in the Variables view.
Use the print command in the Console view to show the contents of the variable.

For information on determining cut levels via the command line, see the cutLevels task entry in the
User's Reference Manual: CutLevelsTask in HCSS User's Reference Manual or check the following
example.

Creating an image composed of random data

188

Working with images Build 15.0.3244

i = SimpleImage()
i.image=RESHAPE(Double1d.range(256*256), [256,256])

levels = cutLevels(i, CutLevelsTask.PERCENT, 95.0)
print "Minimum value:"+str(levels[0])
print "Maximum value:"+str(levels[1])

Example 4.46. Getting the minimum and maximum values for a certain cut-off percentage.

4.14. Combining images (stitching, RGB)

4.14.1. Stitching
Use the mosaic task to create a mosaic of images. The input parameters are the following:

• A list with images you want to combine.

• Whether to do oversampling (optional, True by default).

• A WCS for the output mosaic (optional).

The following example shows how to combine n images, from image_1 to image_n , into
a mosaic:

Import
from java.util import ArrayList

Making an ArrayList with the images
images = ArrayList()
images.add(image_1)
...
images.add(image_n)

Making an oversampled mosaic
mosaicOversampled1 = mosaic(images = images, oversample = 1)
mosaicOversampled2 = mosaic(images = images)

Making a non-oversampled mosaic
mosaicNonOversampled = mosaic(images = images, oversample = 0)

Example 4.47. Mosaicking images with the help of an intermediate array.

The result, mosaic , is of type SimpleImage .

For more information about the parameters and usage of the mosaic task, see the User's Reference
Manual : MosaicTask in HCSS User's Reference Manual .

4.14.2. Creating RGB images
You can create RGB images with the createRgbImage task. To run this task you need three
images of type SimpleImage that you wish to combine. You have to define either the cut percentage
or the scaling factors by which the images should be multiplied.

rgb = createRgbImage(red = myRedImage, green = myGreenImage, blue = myBlueImage, \
percent = 98.0, redFactor = 1.3, greenFactor = 1.0, blueFactor = 1.6)

Example 4.48. Creating an RGB image with specific weights for each channel.

You can also specify the cut levels for each image. In case you define the cut levels, you have to set
the scaling factors to 1.0.

rgb = createRgbImage(red = myRedImage, green = myGreenImage, blue = myBlueImage, \

189

Working with images Build 15.0.3244

lowBlue = 0.0, highBlue = 50.0, lowGreen = 60.0, highGreen = 120.0, lowRed = 12.0,
 highRed = 160.0)

Example 4.49. Creating an RGB image with cut levels for each channel.

In addition you can define a WCS for the output image. See Section 4.15 for information on how to
define the WCS.

rgb = createRgbImage(red = myRedImage, green = myGreenImage, blue = myBlueImage, \
percent = 98.0, redFactor = 1.3, greenFactor = 1.0, blueFactor = 1.6, wcs = myWcs)

Example 4.50. Creating an RGB image with weights, overall cut level and new WCS information.

The output of this task is an image of type RgbSimpleImage .

This is the dialogue window shown when running the task in graphical mode:

Figure 4.12. The createRgbImage task dialogue window.

For more information about the parameters and command line usage of the createRgbImage task,
see the User's Reference Manual : CreateRgbImage in HCSS User's Reference Manual .

4.15. Defining and using the World Coordi-
nates System (WCS)

The WCS information for an image is stored in its metadata. You can access it by using the following
command:

print myImage.wcs

Example 4.51. Printing the WCS information of an image.

This results in the following output:

World Coordinate System

cunit1: Degrees
cunit2: Degrees
cdelt1: -2.777777777778E-4
cdelt2: 2.777777777777778E-4
crota2: 0.0

190

Working with images Build 15.0.3244

ctype1: RA---TAN
ctype2: DEC--TAN
naxis1: 668
naxis2: 764
crpix1: 334.0
crpix2: 382.0
crval1: 76.03702441240077
crval2: 32.7159459572391
flipy: FLIPY
equinox: 2000.0

You can also use the WCS Explorer by right clicking on the image in the Variables view and choosing
Open With → WCS explorer for Images .

The following illustrates how you can create a WCS and add it to a SimpleImage .

i = SimpleImage()
i.image=RESHAPE(Double1d.range(200*300), [200,300])
Create a fake image 200x300 pixels in size

myWcs = Wcs() # Set up the Wcs() object
myWcs.ctype1 = "LINEAR" # Start adding things to it...
myWcs.cdelt1 = 5
myWcs.crval1 = 200
myWcs.cunit1 = "K"
myWcs.crpix1 = 0

myWcs.ctype2 = "LINEAR"
myWcs.cdelt2 = .05
myWcs.crval2 = 2.0
myWcs.cunit2 = "V"
myWcs.crpix2 = 0

i.wcs = myWcs # Apply the set of WCS information to our image
print i.wcs # To see the WCS of the image

Example 4.52. Creating WCS coordinate data.

Warning

The above code generates an image with the value 200 assigned to the NAXIS2 keyword
and 300 assigned to NAXIS1 . In other words, the image size will be 200 pixels along
the y axis and 300 pixels along the x axis. The coordinate values will be displayed in the
order (y , x) in the Image Viewer. For an explanation of why the y size comes before the
x size, see the Scripting Guide : Array ordering in Scripting Guide .

The above example creates a coordinate system, with temperature and current as axes. The x-axis is
LINEAR (ctype1), has the central pixel in column 0 (crpix1), has a value of 200 in the central pixel
(crval1), uses steps of 5 (cdelt1) and has as unit Kelvin. The y-axis is also LINEAR (ctype2), has the
central pixel in row 0 (crpix2, this is the top of the image), has a value of 2 in the central pixel (crval2),
uses steps of 0.05 (cdelt2) and has as unit Volts.

Note

Rows and columns start counting from (0,0), pixels from (1,1).

Defining transformations between pixel coordinates and sky coordinates . You can do so with
the Wcs class, using the standard WCS parameters. An example is given below. It also indicates how
you can set WCS values in your WCS object:

wcs2 = Wcs() # Creating a WCS.
wcs2.setCrpix1(128)
wcs2.setCrpix2(128) # The central pixel, in this case at (128, 128).
Setting the position of the central pixel. In this case, the
central pixel is located at 6h46'42.387" and 0 degrees 49'45.94".
wcs2.setCrval1(101.676612741936)

191

Working with images Build 15.0.3244

wcs2.setCrval2(0.829427624677429)
Setting the type of the axes. The first axis defines the right
ascension and the second axis the declination, both in a gnomonic projection.
wcs2.setCtype1("RA---TAN")
wcs2.setCtype2("DEC--TAN")
Setting the coordinate system (here the standard ICRS type) and the equinox.
wcs2.setRadesys("ICRS")
wcs2.setEquinox(2000.0)
Creating the linear transformation matrix, which defines
the pixel size and the rotation of the images.
wcs2.setParameter("cd1_1", -1.9064468150235E-6, "")
wcs2.setParameter("cd1_2", 3.39797311269006E-4, "")
wcs2.setParameter("cd2_1", 3.39811958581193E-4, "")
wcs2.setParameter("cd2_2", 1.580446989748E-6, "")

Example 4.53. Creating WCS coordinate data with parameters.

For a more in-depth discussion about creating a WCS, including more options and examples, see the
Scripting Guide : Section 4.1 in Scripting Guide .

4.16. Creating intensity profiles
See Section 4.2 for general information on how to run image analysis tasks.

With the profile task you can draw a straight line on an image and plot the intensity along that line.
This is useful to check whether there is a gradient in intensity in your image.

Click once on the image to define one end of the line. As you move the mouse, the line is updated and
the corresponding profile appears below the image (see Figure 4.13). Click a second time to define
the other end of the line. The resulting profile is saved into a dataset in the Variables view.

Figure 4.13. The intensity profile below the image.

You can modify the line by clicking on it and dragging the blue handles. Note that, while the plot
below the image is updated in real time, the output dataset is not. You have to click the Accept button
again to obtain a new dataset with the updated result.

192

Working with images Build 15.0.3244

Alternatively, you can click Clear to delete the line and draw a new one. The output dataset will
appear as soon as you define the second end of the line, without having to click Accept .

To use the task via the command line you need to pass the following input parameters:

• The image (image).

• The beginning and end of the straight line, in pixels (beginX , beginY , endX and endY) or in
sky coordinates in hexadecimal format as strings (beginRA , beginDec , endRA and endDec).

The following example shows the two options available to make a profile plot:

profilePixel = profile(image = myImage, beginX = 236.0, beginY = 378.0, \
 endX = 557.0, endY = 232.0)
profileSky = profile(image = myImage, beginRA = "02:00:15.119", \
 beginDec = "-22:24:07.16", endRA = "02:00:38.462", endDec = "-22:26:34.08")

Example 4.54. Creating a profile plot of an image.

You can inspect both output products (profilePixel and profileSky) with the methods listed
in the following table:

Procedure 4.1. Available methods for profilePixel and profileSky .

1. getBeginPixelCoordinates()

Returns a Double1d with the pixel coordinates of the beginning of the straight line. Also avail-
able a getEndPixelCoordinates() method that does the same for the end of the line.

Java style
print myProfile.getBeginPixelCoordinates()
Jython style
print myProfile.beginPixelCoordinates

Example 4.55. Retrieving the pixel coordinates of the beginning of the line.

2. getBeginSkyCoordinates()

Returns a String1d with the sky coordinates of the beginning of the straight line. Also available
a getEndSkyCoordinates() method that does the same for the end of the line.

Java style
print myProfile.getBeginSkyCoordinates()
Jython style
print myProfile.beginSkyCoordinates

Example 4.56. Retrieving the sky coordinates of the beginning of the line.

3. getProfile()

Returns the intensity profile as a Double1d .

Java style
print myProfile.getProfile()
Jython style
print myProfile.profile

Example 4.57. Converting the profile plot to a Double1d.

4. getUnit()

Returns the name of the unit in which the intensity profile is expressed.

Java style
print myProfile.getUnit()

193

Working with images Build 15.0.3244

Jython style
print myProfile.unit

Example 4.58. Getting the unit of the profile plot.

For a complete example obtaining the profile plot of a fake data image (with a vertical gradient), see
below:

Creating an image composed of random data
i = SimpleImage()
i.image=RESHAPE(Double1d.range(256*256), [256,256])

Creating a profile plot using pixel coordinates
profilePixel = profile(image = i, beginX = 136.0, beginY = 138.0, \
 endX = 254.0, endY = 232.0)

Example 4.59. Creating the pixel profile plot of a synthetic image.

4.17. Creating contour plots
See Section 4.2 for general information on how to run image analysis tasks.

A contour plot connects all image points with the same intensity, like isobars on a weather map.

You can provide a set of contours via three tasks:

• The automaticContour task, where you select the number of levels and the lower and upper
values, and the intermediate levels are generated automatically with linear or logarithmic intervals
of intensity. The parameter controlling the interval distribution is distribution . Possible values are
0 (linear), 1 (log) or 2 (ln).

from java.awt.Color import GREEN
from java.awt.Color import RED
contours = automaticContour(image = myImage, levels = 2, min = 3.7, max = 4.2, \
distribution = 1, colors = [GREEN, RED])
contours = automaticContour(image = myImage, levels = 2, min = 3.7, max = 4.2, \
distribution = 1)

Example 4.60. Creating an automatic line contour specifying distribution and plotting details.

• The manualContour task, where you to specify the values of each contour level.

from java.awt.Color import GREEN
from java.awt.Color import RED
contours = manualContour(image = myImage, values = Double1d([3.7,4.2]), \
colors = [GREEN, RED])
contours = manualContour(image = myImage, values = Double1d([3.7,4.2]))

Example 4.61. Creating a manual line contour providing contour level values.

• The contour task, where you specify a single contour level.

from java.awt.Color import GREEN
contours = contour(image = myImage, value = 3.7, color = GREEN)
contours = contour(image = myImage, value = 3.7)

Example 4.62. Creating a contour containing one single contour level.

This is a complete example where the task automaticContour (described above) is used to gen-
erate the contours and then, with the help of the Display class, plot them over the image.

from java.awt import Color

Get a public SPIRE observation
myobs=getObservation(1342183475L, useHsa=True)

194

Working with images Build 15.0.3244

Extract the PSW (250 um band) map
map=myobs.level2.refs["psrcPSW"].product

Display the map
d = Display(map)

Generate the contours
contours = automaticContour(image=map,levels=4,min=0.05,max=0.2,distribution=0)

Plot the contours on top of the map (contour default colour is blue)
d.addImageContour(contours)

Example 4.63. Plotting automatically-generated contours on top of an image.

To run the task via its graphical interface, click the name of the target image in the Variables view.
Then double click on automaticContour , manualContour or contour in the Tasks list.
The corresponding dialogue window appears in the Editor view, as shown in the following image.

Figure 4.14. Dialogue window for automaticContour .

With manualContour , enter a contour value and press Add to add it to the list. Remove the last
selected value or the whole list by clicking Remove or Clear , then press Accept .

Tip

All contours produced via the task graphical interface have the same colour. To change
their colour, run the task via the command line instead.

Plotting the contour over an image. First open the image in a display, and then drag and drop
the contours onto the image.

If the contours are calculated for an image with a valid WCS and dragged onto an image with a valid
WCS, the plot is based on the sky coordinates. In all other cases, the pixel coordinates are used.

Deleting contours from an image. Follow these steps:

1. Right click on the image and choose Annotations → Toolbox

The annotation toolbox opens.

2. Click the red cross icon.

The contours and any other annotations disappear.

Tip

When displayed on an image, contour levels are like any other annotation. You can select,
resize and move them.

195

Working with images Build 15.0.3244

For more information on creating contour plots via the command line, see the following entries in the
User's Reference Manual :

• ContourTask in HCSS User's Reference Manual

• ManualContourTask in HCSS User's Reference Manual

• AutomaticContourTask in HCSS User's Reference Manual

4.18. Creating histograms
See Section 4.2 for general information on how to run image analysis tasks.

You can make a histogram of the values in a whole image or of a region bounded by a circle, ellipse,
rectangle or polygon, with the imageHistogram , circleHistogram , ellipseHis-
togram , rectangleHistogram and polygonHistogram tasks.

With the exception of imageHistogram , which computes the histogram for the entire image, a
new copy of the image appears in the Editor view when you open the task dialogue window. From
this you can select the region inside which to take the histogram.

In the task dialogue window, click and drag the mouse pointer over the image to draw the region. In the
case of polygonHistogram a single click adds a vertex, and a double click adds the final vertex.

Once you have created the region, you can move and resize it. To move the region, click and drag it.
To resize the region, click once inside it, then drag the blue resize handles.

In the graphical interface, below the image you can enter the cut levels and number of bins for the
histogram (see Figure 4.15). Once you click Accept , the following happens:

• The histogram appears in the same window. Scroll down to see it.

• The equivalent command appears in the Console view.

• The histogram values are placed in a dataset that appears in the Variables list. Double click the
variable name to show more information (see Figure 4.16).

Note that changing the area after running the task will modify the histogram shown in the task window,
but not the one in the dataset. You have to click on Accept again to produce a new dataset with the
updated result.

Figure 4.15. Circle histogram area selection and parameter selection.

196

Working with images Build 15.0.3244

Figure 4.16. Display of the histogram task results, held in the histogram output dataset.

4.18.1. Histograms via the command line
To execute the histogram tasks via the command line, you must provide the following input param-
eters:

• The image (image).

• The cut levels (lowCut and highCut).

• The number of bins (bins).

To create histograms of a specific region within the image, you have to specify additional parameters:

• For a circle :

• The position of the centre in pixels (centerX and centerY) or sky coordinates (centerRa
and centerDec).

• The radius in pixels (radiusPixels) or arcseconds (radiusArcsec).

• For an ellipse :

• The position of the centre in pixels (centerX and centerY) or sky coordinates (centerRa
and centerDec).

• The width and height in pixels (widthPixels and heightPixels) or arcseconds (
widthArcsec and heightArcsec).

• For a rectangle :

• The position of the corner with the smallest coordinate values, in pixels (minX and minY) or
sky coordinates (minRa and minDec).

• The width and height in pixels (widthPixels and heightPixels) or arcseconds (
widthArcsec and heightArcsec).

• For a polygon :

197

Working with images Build 15.0.3244

• The positions of the vertices in pixels (edgesPixel , stored as x1 , y1 , x2 , y2 and so on)
or sky coordinates (edgesSky , stored as RA1 , Dec1 , RA2 , Dec2 , and so on).

To create a histogram, follow this example:

Creating an image composed of random data
myImage = SimpleImage()
myImage.image=RESHAPE(Double1d.range(256*256), [256,256])

Creating an image composed of random data and WCS information
myImage2 = SimpleImage()
myImage2.image=RESHAPE(Double1d.range(256*256), [256,256])
Create a fake image 200x300 pixels in size

wcs2 = Wcs() # Creating a WCS.
wcs2.setCrpix1(128)
wcs2.setCrpix2(128) # The central pixel, in this case at (128, 128).
Setting the position of the central pixel. In this case, the
central pixel is located at 6h46'42.387" and 0 degrees 49'45.94".
wcs2.setCrval1(101.676612741936)
wcs2.setCrval2(0.829427624677429)
Setting the type of the axes. The first axis defines the right
ascension and the second axis the declination, both in a gnomonic projection.
wcs2.setCtype1("RA---TAN")
wcs2.setCtype2("DEC--TAN")
Setting the coordinate system (here the standard ICRS type) and the equinox.
wcs2.setRadesys("ICRS")
wcs2.setEquinox(2000.0)
Creating the linear transformation matrix, which defines
the pixel size and the rotation of the images.
wcs2.setParameter("cd1_1", -1.9064468150235E-6, "")
wcs2.setParameter("cd1_2", 3.39797311269006E-4, "")
wcs2.setParameter("cd2_1", 3.39811958581193E-4, "")
wcs2.setParameter("cd2_2", 1.580446989748E-6, "")

myImage2.wcs = wcs2 # Applying the set of WCS information to our image

Making a histogram of an image
histogram = imageHistogram(image = myImage, lowCut = 0.0, \
 highCut = 255.0, bins = 10)

Making a histogram of a region bounded by a circle
circleHistogramPixel = circleHistogram(image = myImage, centerX = 417.5, \
 centerY = 240.0, radiusPixels = 217.6, lowCut = 9.0, highCut = 255.0, bins = 10)
circleHistogramSky = circleHistogram(image = myImage2, centerRa = "02:00:28.319", \
 centerDec = "-22:26:26.15", radiusArcsec = 219.3, lowCut = 9.0, \
 highCut = 255.0, bins = 10)

Making a histogram of a region bounded by an ellipse
ellipseHistogramPixel = ellipseHistogram(image = myImage, centerX = 360.0, \
 centerY = 237.0, widthPixels = 642.0, heightPixels = 229.1, lowCut = 9.0, \
 highCut = 255.0, bins = 10)
ellipseHistogramSky = ellipseHistogram(image = myImage2, centerRa = "02:00:24.138",
 \
 centerDec = "-22:26:29.22", widthArcsec = 647.136, heightArcsec = 230.9, \
 lowCut = 9.0, highCut = 255.0, bins = 10)

Making a histogram of a region bounded by a rectangle
rectangleHistogramPixel = rectangleHistogram(image = myImage, minX = 211.0, \
 minY = 127.0, widthPixels = 471.0, heightPixels = 175.0, lowCut = 9.0, \
 highCut = 255.0, bins = 10)
rectangleHistogramSky = rectangleHistogram(image = myImage2, minRa = "02:00:13.308",
 \
 minDec = "-22:28:20.17", heightArcsec = 474.8, widthArcsec = 176.4, \
 lowCut = 9.0, highCut = 255.0, bins = 10)

Making a histogram of a region bounded by a polygon
pyEdgesPixel = Double1d([133.0, 206.0, 247.0, 333.0, 620.0, 233.0, 487.0, 112.01])
polygonHistogramPixel = polygonHistogram(image = myImage, \
 edgesPixel = pyEdgesPixel, lowCut = 9.0, highCut = 255.0, bins = 10)

198

Working with images Build 15.0.3244

pyEdgesSky = String1d(["05:47:51.56", "-51:04:36.74", "05:47:37.37",
 "-510:59:08.06", "05:46:39.92",
 "-51:00:48.54"])
polygonHistogramSky = polygonHistogram(image = myImage2, \
 edgesSky = pyEdgesSky, lowCut = 9.0, highCut = 255.0, bins = 10)

Example 4.64. Creating a histogram from an image.

Note

For each task, all dimensions must have the same unit.

You can specify dimensions in arcseconds only if the image has a valid WCS and the pixel
scaling is the same in both directions.

The following table lists some methods useful to inspect the output of the histogram tasks. You can
use these methods on histograms created from regions of any shape:

Procedure 4.2. Available methods for the output of histogram tasks.

1. getNbOfBins()

Returns the number of bins.

Java style
print myHistogram.getNbOfBins()
Jython style
print myHistogram.nbOfBins

Example 4.65. Getting the number of bins from the histogram.

2. getLowCut()

Returns the lower cut level of the histogram. A getHighCut() method to return the upper cut
level is also available.

Java style
print myHistogram.getLowCut()
Jython style
print myHistogram.lowCut

Example 4.66. Getting the lower cut level of the histogram.

3. getHistogram()

Returns the entire histogram as a table dataset.

Java style
myTable = myHistogram.getHistogram()
Jython style
myTable = myHistogram.histogram

Example 4.67. Converting the histogram to a table dataset.

4. getValues()

Returns the values of the histogram bins as a Double1d .

Java style
print myHistogram.getValues()
Jython style
print myHistogram.values

Example 4.68. Getting the values of the bins as a Double1d array.

5. getFrequencies()

199

Working with images Build 15.0.3244

Returns the occurrences of each value (the height of the histogram bars) as a Double1d .

Java style
print myHistogram.getFrequencies()
Jython style
print myHistogram.frequencies

Example 4.69. Getting the count for each histogram bin as a Double1d.

6. getUnit()

Returns the name of the unit in which the bin values are expressed.

Java style
print myHistogram.getUnit()
Jython style
print myHistogram.unit

Example 4.70. Get the unit of the histogram values.

Additional methods are available for the tasks creating histograms from regions of specific shapes.
These methods are listed in the following tables.

Procedure 4.3. Available methods for the output of the circleHistogram task.

1. getCenterPixelCoordinates()

Returns the centre of the circle in pixel coordinates as a Double1d .

Java style
print myHistogram.getCenterPixelCoordinates()
Jython style
print myHistogram.centerPixelCoordinates

Example 4.71. Getting the centre pixel coordinates of the circle histogram.

2. getCenterSkyCoordinates()

Returns the centre of the circle in sky coordinates as a String1d .

Java style
print myHistogram.getCenterSkyCoordinates()
Jython style
print myHistogram.centerSkyCoordinates

Example 4.72. Getting the centre sky coordinates of the circle histogram.

3. getRadiusPixels()

Returns the radius of the circle in pixels.

Java style
print myHistogram.getRadiusPixels()
Jython style
print myHistogram.radiusPixels

Example 4.73. Getting the radius of the circle histogram in pixels.

4. getRadiusArcsec()

Returns the radius of the circle in arcseconds.

Java style
print myHistogram.getRadiusArcsec()

200

Working with images Build 15.0.3244

Jython style
print myHistogram.radiusArcsec

Example 4.74. Getting the radius of the circle histogram in arcseconds.

Procedure 4.4. Available methods for the output of the ellipseHistogram task.

1. getCenterPixelCoordinates()

Returns the centre of the ellipse in pixel coordinates as a Double1d .

Java style
print myHistogram.getCenterPixelCoordinates()
Jython style
print myHistogram.centerPixelCoordinates

Example 4.75. Getting the centre pixel coordinates for the ellipse histogram.

2. getCenterSkyCoordinates()

Returns the centre of the ellipse in sky coordinates as a String1d .

Java style
print myHistogram.getCenterSkyCoordinates()
Jython style
print myHistogram.centerSkyCoordinates

Example 4.76. Getting the centre sky coordinates for the ellipse histogram.

3. getWidthPixels()

Returns the width of the ellipse in pixels. A getHeightPixels() method to get the height
of the ellipse is also available.

Java style
print myHistogram.getWidthPixels()
Jython style
print myHistogram.widthPixels

Example 4.77. Getting the width of the ellipse histogram in pixels.

4. getWidthArcsec()

Returns the width of the ellipse in arcseconds. A getHeightArcsec() method to get the
height of the ellipse is also available.

Java style
print myHistogram.getWidthArcsec()
Jython style
print myHistogram.widthArcsec

Example 4.78. Getting the width of the ellipse histogram in arcseconds.

Procedure 4.5. Available methods for the output of the rectangleHistogram tasks.

1. getUpperLeftCornerPixelCoordinates()

Returns the pixel coordinates of the upper left corner of the rectangle as a Double1d . The upper
left corner is the corner with lowest pixel coordinates.

Java style
print myHistogram.getUpperLeftCornerPixelCoordinates()201

Working with images Build 15.0.3244

Jython style
print myHistogram.upperLeftCornerPixelCoordinates

Example 4.79. Getting the upper left corner pixel coordinates of a rectangle histogram.

2. getUpperLeftCornerSkyCoordinates()

Returns the sky coordinates of the upper left corner of the rectangle as a String1d . The upper
left corner is the corner with lowest pixel coordinates.

Java style
print myHistogram.getUpperLeftCornerSkyCoordinates()
Jython style
print myHistogram.upperLeftCornerSkyCoordinates

Example 4.80. Getting the upper left corner sky coordinates of a rectangle histogram.

3. getWidthPixels()

Returns the width of the rectangle in pixels. A getHeightPixels() method to get the height
of the rectangle is also available.

Java style
print myHistogram.getWidthPixels()
Jython style
print myHistogram.widthPixels

Example 4.81. Getting the width in pixels of a rectangle histogram.

4. getWidthArcsec()

Returns the width of the rectangle in arcseconds. A getHeightArcsec() method to get the
height of the rectangle is also available.

Java style
print myHistogram.getWidthArcsec()
Jython style
print myHistogram.widthArcsec

Example 4.82. Getting the width in arcseconds of a rectangle histogram.

Procedure 4.6. Available methods for the output of the polygonHistogram task.

1. getEdges()

Returns the edges of the histogram as a composite dataset.

Java style
myEdges = myHistogram.getEdges()
Jython style
myEdges = myHistogram.edges

Example 4.83. Getting the edges of a polygon histogram.

2. getEdgesPixelCoordinates()

Returns the pixel coordinates of the polygon vertices as a table dataset.

Java style
myVertices = myHistogram.getEdgesPixelCoordinates()
Jython style
myVertices = myHistogram.edgesPixelCoordinates

Example 4.84. Getting the vertices of a polygon histogram as a table dataset.

202

Working with images Build 15.0.3244

3. getEdgesPixelCoordinatesDouble2d()

Returns the pixel coordinates of the polygon vertices as a Double2d .

Java style
myVertices = myHistogram.getEdgesPixelCoordinatesDouble2d()
Jython style
myVertices = myHistogram.edgesPixelCoordinatesDouble2d

Example 4.85. Getting the vertices of a polygon histogram as a Double2D array.

4. getEdgesSkyCoordinates()

Returns the sky coordinates of the polygon edges as a table dataset.

Java style
myVertices = myHistogram.getEdgesSkyCoordinates()
Jython style
myVertices = myHistogram.edgesSkyCoordinates

Example 4.86. Getting the edges of a polygon histogram in sky coordinates.

4.19. Finding and extracting sources
See Section 4.2 for general information on how to run image analysis tasks.

HIPE includes the sourceExtractorDaophot and sourceExtractorSussextractor
tasks, designed primarily for use on PACS and SPIRE maps.

• sourceExtractorSussextractor implements the SUSSEXtractor algorithm, described by Savage
& Oliver (2007), ApJ, 661, 1339. The algorithm uses a model of a source on top of a flat background,
and finds the maximum likelihood flux+background combination, all in one step, without iterations.
The image is smoothed with a convolution kernel, derived from the point response function, and
the resulting smoothed image is searched for peaks, which are taken to be the positions of the point
sources. The intensity in the smoothed image at the position of a point source is taken as the estimate
of that source's flux density. Note that NaN pixels near point sources in the image or error extensions
of the input image may prevent sourceExtractorSussextractor from finding that source.

• sourceExtractorDaophot implements the DAOPHOT (classic) algorithm, following the FIND
and APER procedures in the IDL Astronomy User's Library . The image is smoothed with the
DAOPHOT convolution kernel to find the source positions, as in the sourcExtractorSus-
sextractor task. Then the source flux densities are estimated using aperture photometry, as in
the aperturePhotometry task.

For more details on the algorithms used by the two tasks, see the corresponding entries in the User's
Reference Manual :

• sourceExtractorDaophot in HCSS User's Reference Manual

• sourceExtractorSussextractor in HCSS User's Reference Manual

The following figure shows the lists of parameters for the two tasks:

203

http://adsabs.harvard.edu/abs/2007ApJ...661.1339S
http://adsabs.harvard.edu/abs/2007ApJ...661.1339S
http://idlastro.gsfc.nasa.gov/contents.html#C2

Working with images Build 15.0.3244

Figure 4.17. List of parameters for the two source extraction tasks.

Output. The output is of type SourceListProduct and is called sourceList by default.
You can inspect it in the Product Viewer like any other product, as shown by the following figure.
Measurement units are shown next to each column name.

Units. Note that fluxes are always given in mJy, whatever the units of the original image. The image
must have units specified, and these must be mJy, Jy or MJy per pixel, sr or beam. The task will fail
if it encounters units it does not understand.

Use print myImage .getUnit() to view the image units, and myImage .setU-
nit("MJy/sr") to set the units of the image to MJy/sr. Other units such as Jy/beam, Jy/pixel and
mJy/pixel also work. You must set units manually only if the image has no units, or if the units are
inappropriate (for example, Jy instead of Jy/beam).

Warning

Changing the units of an image as described above has no effect on the data values.

204

Working with images Build 15.0.3244

Figure 4.18. The list of sources shown in the Product Viewer, with the internal dataset highlighted.

To display the extracted sources on the image, or on any other image with the same field of view, drag
and drop the sourceList variable on the image in a display. A circle is overlaid at the location of
each source. Dragging and dropping will not work if you select the returnPixelCoordinates checkbox
in the task graphical interface. When this option is selected, the task returns source coordinates in
pixels rather than astronomical coordinates.

Creating residual and source images
Images can easily be created to assist with evaluating the quality of the extracted source list. A residual
image (the original image with sources subtracted) can be created using

imageWithSourcesSubtracted = sourceList.subtractedFromImage(image, fwhm[, beamArea])

Example 4.87. Creating a residual image subtracting the sources for the original image.

A source image (an artificial image based on the source list) can be created using

imageOfSources = sourceList.asNewImage(image, fwhm[, beamArea])

Example 4.88. Creating an image containing only the sources of the original image.

In both of these cases, a Gaussian PRF (Point Response Function) is used.

Extracting and viewing additional outputs
If you check the getPrf or getFilteredMap checkbox, the output will include the point response
function and the filtered map as additional images. For the SUSSEXtractor algorithm, the filtered
map is equal to the input map convolved with the point response function, such that the value at each
pixel gives an estimate of the flux of a source, in mJy, assuming there is a source located at the centre
of that pixel. For the DAOPHOT algorithm, the filtered map gives the input map convolved with the
DAOPHOT kernel.

If you select one or both of these additional outputs, the result of the task will be an array of products
(more precisely, a Jython tuple). Double clicking on it in the Variables view will open a viewer.
Alternatively you can extract the individual outputs with the following commands, assuming that the
array is called sourceList as the task defaults to :

srcList = sourceList[0]

205

Working with images Build 15.0.3244

filteredMap = sourceList[1]
prf = sourceList[2]

Example 4.89. Extracting the results of the task from the output array.

If you select getPrf but not getFilteredMap , or vice versa, result[0] still returns the source list,
while result[1] returns either the point response function or the filtered map, depending on what
you have selected.

Specifying the positions of known sources
You can use a SourceListProduct as an input to the source extractor task to specify the positions
of known sources. For example, it could be a source list created from another image with WCS coor-
dinates. The task will then give the fluxes of sources at those positions. To provide the list of known
sources, drag and drop a variable of type SourceListProduct onto the small circle next to
the inputSourceList parameter in the task graphical interface. You can inspect the type of a
variable by hovering the mouse pointer on the variable name in the Variables view. In this case you
should see herschel.ia.toolbox.srcext.SourceListProduct .

The best way to create a SourceListProduct is to load the data from a text file. The file
must have at least the ra and dec columns. For more information see Working with source lists in
text files below.

Removing sources from the source list
To remove a source from the list use the following command, assuming your source list is called
mySourceList :

mySourceList["sources"].removeRow(index)

Example 4.90. Removing a row from a sources list.

where index is the index of the source you want to remove. To find the index, open the source list
by right clicking on the corresponding variable name in the Variables view and choosing Open With
→ Product Viewer . Then click on sources to display the table. The first column is the index.

Changing the colour and size of the source circles
When you extract sources, or drag and drop a list of sources onto an image, the circles representing
the sources are green by default. To represent sources with circles of another colour you have to use
the command line. Assuming that myImage and mySourceList are your image and list of
sources, respectively, issue the following commands:

disp = Display(myImage)
disp.addPositionList(mySourceList, java.awt.Color.YELLOW)

Example 4.91. Plotting the source list along with the image with the help of the Display class.

This will plot yellow circles. For more information on the java.awt.Color class, used to specify
different colours, see Section 3.25 .

To specify the sizes of the source circles, use the following command, where disp is still the display
corresponding to myImage :

disp.addPositionList(mySourceList, sizes)

Example 4.92. Customising the size of the position circles when plotting sources with Display.

206

Working with images Build 15.0.3244

where sizes is a Float1d array of pixel sizes. This means that you can specify different sizes
for different sources.

For example, to have the size of each circle to be proportional to the flux:

fluxes = mySourceList["sources"]["flux"].data
sizes = Float1d(3 + 7*fluxes/MAX(fluxes)) # Sizes will range from 3 to 10 pixels
disp.addPositionList(mySourceList, java.awt.Color.RED, sizes)

Example 4.93. Making the position circles of plotted sources proportional to the flux intensity.

You can also specify the colour and sizes in one step:

disp.addPositionList(mySourceList, color, sizes)

Example 4.94. Plotting fully customised position circles by passing Color and Float1d objects.

where colour is a colour specified by the java.awt.Color class (see Section 3.25).

If the image has an associated WCS, you can specify sizes in arcseconds, rather than pixels, with the
addPositionListWcs method:

disp.addPositionListWcs(mySourceList, color, sizes)

Example 4.95. Plotting position circles that take the sizes as sky coordinates by passing a Wcs object.

In the last case you always have to specify the colour as well.

Specifying a custom point response function
By default, the point response function (PRF) is assumed to be Gaussian, with full-width half maxi-
mum in arcseconds provided by the fwhm parameter. Alternatively, you can specify a custom PRF
via the prf parameter. This should be a variable of type SimpleImage . The image must be of odd
width and height in number of pixels, with the peak at the centre, normalised such that it gives a point
source flux of 1 Jy, in the units of the input map. The PRF image is assumed to have the same pixel
scale of the main image, and does not need to have an associated WCS. If you input a PRF you do
not need to specify the FWHM.

Extracting sources on part of the image
You can use the roi parameter to define a region of interest within the image and extract sources
only inside that region. This can either be a SkyMask or a Bool2d. To define a rectangular region
of interest between raMin and raMax and between decMin and decMax, use the following (note
that this is just the prototype of the constructor, a proper example with values can be found at the end
of this subsection):

roi = SkyMaskRectangle(raMin, raMax, decMin, decMax)

Example 4.96. Creating a rectangular region of interest (SkyMask) using sky coordinates in decimal de-
grees.

To define a circular region of interest centred on (ra, dec) and with radius 5 arcmin, use the following
(again, note that this is just the prototype of the constructor, a proper example with values can be found
at the end of this subsection):

roi = SkyMaskCircle(ra, dec, 5)

Example 4.97. Creating a circular region of interest (SkyMask) using sky coordinates in decimal degrees.

207

Working with images Build 15.0.3244

To define a region of interest based on a Bool2d variable, myBool2d, of the same dimensions as the
image (for instance created with the image annotation toolbox, or via code in HCSS User's Reference
Manual) use the following:

roi = myBool2d

Example 4.98. Creating a region of interest from a bidimensional array of booleans.

Variables of type SkyMask... can be combined using .or(), .and() and .xor() and inverted
with .not(). For example, to define the region of interest to be the region more than 5 arcmin away
from both (ra1, dec1) and (ra2, dec2), first combine two circles using .or() and then invert
with .not():

roi = SkyMaskCircle(ra1, dec1, 5).or(SkyMaskCircle(ra2, dec2, 5)).not()

Example 4.99. Applying the boolean OR operation between SkyMasks.

A simpler example is the inversion of a region of interest, using .not(). This consists of the whole
of the image excluding a 5 arcminutes hole centered at (ra, dec):

roi = SkyMaskCircle(ra, dec, 5).not()

Example 4.100. Inverting a region of interest.

A collection of SkyMask... variables can be combined as a SkyMaskUnion (equivalent to
.or()) or as a SkyMaskIntersection (equivalent to .and()). To define the region of interest
to be the union of skyMask1, skyMask2 and skyMask3, use the following:

roi = SkyMaskUnion([skyMask1, skyMask2, skyMask3])

Example 4.101. Joining the areas of three different SkyMasks.

You can manually define a SkyMask using the SkyMask toolbox. Right-click on an image to open
the SkyMask toolbox, as in the following figure:

Figure 4.19. Opening the SkyMask toolbox.

Draw the regions you want to mask as shown in the following figure. Click on the scissors to created a
variable called skyMask with the selected regions of the image masked. You can use this variable
for the roi parameter in the source extractor task.

208

Working with images Build 15.0.3244

Figure 4.20. Drawing a region of interest on the image.

To visualise a SkyMask on an image, first display the image and then drag and drop the SkyMask
variable onto the image. This will add a new layer to the image, set to 1.0 for those pixels of the image
that are masked by the SkyMask. You can see a complete example of working with SkyMasks in
images with WCS information below.

Creating an image composed of random data
i = SimpleImage()
i.image=RESHAPE(Double1d.range(256*256), [256,256])
Create a fake image 200x300 pixels in size

wcs2 = Wcs() # Creating a WCS.
wcs2.setCrpix1(128)
wcs2.setCrpix2(128) # The central pixel, in this case at (128, 128).
Setting the position of the central pixel. In this case, the
central pixel is located at 6h46'42.387" and 0 degrees 49'45.94".
wcs2.setCrval1(101.676612741936)
wcs2.setCrval2(0.829427624677429)
Setting the type of the axes. The first axis defines the right
ascension and the second axis the declination, both in a gnomonic projection.
wcs2.setCtype1("RA---TAN")
wcs2.setCtype2("DEC--TAN")
Setting the coordinate system (here the standard ICRS type) and the equinox.
wcs2.setRadesys("ICRS")
wcs2.setEquinox(2000.0)
Creating the linear transformation matrix, which defines
the pixel size and the rotation of the images.
wcs2.setParameter("cd1_1", -1.9064468150235E-6, "")
wcs2.setParameter("cd1_2", 3.39797311269006E-4, "")
wcs2.setParameter("cd2_1", 3.39811958581193E-4, "")
wcs2.setParameter("cd2_2", 1.580446989748E-6, "")

i.wcs = wcs2 # Applying the set of WCS information to our image

Defining two ROIs, one rectangular and another circular
roiRect = SkyMaskRectangle(101.67661273, 101.67661275, 0.82942761, 0.82942763)
roiCirc = SkyMaskCircle(wcs2.getCrval1(), wcs2.getCrval2(), 0.000002)

Testing the boolean capabilities of the ROIs
roiBool = roiRect.or(roiCirc)

Does this ROI mask the center of the image? True
print roiBool.masks(wcs2.getCrval1(), wcs2.getCrval2())

Example 4.102. Masking an image with a complex, boolean SkyMask.

Working with source lists in text files
To export the source list to a text file, run the asciiTableWriter task. First you have to retrieve
the source list dataset from the result of the source extraction:

sourceListDataset = results[0]

Example 4.103. Retrieving the source list dataset from the results output list of a source extraction task.

209

Working with images Build 15.0.3244

Then click on sourceListDataset in the Variables view, and you will find asci-
iTableWriter among the applicable tasks.

To import a text file as a list of sources, use the asciiTableReader task. The result of this task
is of type TableDataset . To obtain a SourceListProduct , issue the following command:

importedSourceList = SourceListProduct(table)

Example 4.104. Creating a SourceListProduct from a source list table dataset.

Note that the column names in the imported source list must match the default column names in a
SourceListDataset (ra , dec , flux and so on). Column names are case insensitive.

For more information on exchanging data with text files, see Chapter 2 .

Working with source lists in FITS files
To export a list of sources of type SourceListProduct to a FITS file, select simple-
FitsWriter from the applicable tasks.

To import a SourceListProduct stored in a FITS file, load the file with File → Open File ,
or double click on the file in the Navigator view, and HIPE will do the rest. If the FITS file does not
contain a SourceListProduct , the data will be imported as a generic Product , with the
source list contained in a Dataset . You can create a proper SourceListProduct with the
following command, assuming that the dataset is called HDU_1 :

importedSourceList = SourceListProduct(sourceList["HDU_1"])

Example 4.105. Creating a SourceListProduct from a source list dataset.

For more information on exchanging data with FITS files, see Section 1.16 .

Common problems
• No error extension (sourceExtractorSussextractor only)

The sourceExtractorSussextractor task requires the input image to have an error exten-
sion, and if this is not present the task fails. The error in the pixel values should be determined as
part of the map-making algorithm. However, you can add an error extension to an image, assuming
the uncertainty in each pixel is 0.001, with the following command: myImage .setError(
myImage .getImage() * 0 + 0.001) .

• Invalid units, or units not specified

Both source extraction tasks require the input image to specify its units in a valid format. The
task fails if it cannot recognise the units of the image as units of surface brightness. To set the
units of the SimpleImage , image , to be "Jy/beam" (for example), use image.setU-
nit("Jy/beam") . Other units based on Jy, mJy, MJy, beam, pixel, sr and so on are recognised.

4.20. Fitting sources
See Section 4.2 for general information on how to run image analysis tasks.

You can fit a source with a two-dimensional Gaussian using the sourceFitting task. Open the
task dialogue window and click and drag with the mouse on the image to enclose the source you want
to fit. With the drop-down lists below the image you can then choose between circular and elongated
source, and between constant and sloping background. Click Accept to run the task.

If the fit is successful, the result appears in the Variables view as a variable of type SourceFit-
tingProduct , and of default name parameters . Double click on the variable to open the
parameters table in the Editor view.

210

Working with images Build 15.0.3244

You can run the sourceFitter from the command line as in the following example:

Getting a PACS photo observation for NGC 281
myObs = getObservation(obsid = 1342247320, useHsa = True)

Using the level-2 blue map as the image
elongatedSrc = myObs.refs["level2"].product.refs["HPPPMAPB"].product

Running the sourceFitting task within an appropriately big frame
parameters = sourceFitting(elongated=True, slope=False, image=elongatedSrc, \
 minX = 852.0, minY = 908.0, width=926.0, height=880.0)

Example 4.106. Fitting sources in an image.

The image parameter is the input image, elongated indicates whether the source is elongated or
circular, slope indicates whether the background has a slope or is constant and minX , minY ,
width and height determine the box where the fitter searches for the source.

For more information on running source fitting from the command line, see the User's Reference
Manual : SourceFittingTask in HCSS User's Reference Manual .

4.21. Aperture photometry
See Section 4.2 for general information on how to run image analysis tasks.

You can perform aperture photometry on an image using a circular target aperture. You can determine
the appropriate sky values using either an annular or rectangular sky aperture. If there is no suitable
area for determining the sky, you can also provide a fixed sky value.

You can use five algorithms to estimate the sky:

• average: average of the pixel values within the sky area.

• median: median of the pixel values within the sky area.

• mean-median: average of all the values closer to the median than a specified number of standard
deviations, for example 1.5.

• synthetic mode: the mean-median algorithm is repeated in an iterative process up to ten times, or
until the average does not change anymore.

• daophot: translation of the algorithm used in the IDL daophot package. This is the default
method.

4.21.1. Centroiding
The aperture photometry tasks include an option for centroiding. Selecting this option will refine the
input coordinates to those determined by a centroiding algorithm. This works as follows: a square
region, with length 4 times the requested target radius, is fit with a 2D Gaussian plus a constant; the
indicated target centre is the initial estimate of the source position and the indicated target radius is
the initial guess at the width of the Gaussian; if the centroiding can find a fit, then the "Centroiding"
keyword is set to "success" and the coordinates updated; if the algorithm finds no solution, then the
new coordinates are set to those either of the brightest pixel in the square region or, where there are
multiple bright pixels, the pixel closest to the initial guess, and "Centroiding" is set to "failed". If
using the GUI form of the task, the circle indicating where the input position is located will move to
the centroided position. The Meta datum "Centroid" is added to the output "result" of the task (this
information is also displayed in the results table).

Tip

If the centroiding was successful, note that this does not necessarily mean that a good
centroid was found, but rather than the centroiding algorithm could complete. Experience

211

Working with images Build 15.0.3244

shows that this centroiding does not always perform well, and if you are using the aperture
photometry tasks in an automatic way (i.e. not checking the resulting coordinates on the
image), it is recommended that this option is not selected. If it is necessary to refine the
target coordinates (e.g. you only have an estimated position), the sourceFitting task is a
good alternative for an automatic refining of point source coordinates, and the output of
sourceFitting can be used as input to the photometry tasks (with the centroiding option
then turned off). See Section 4.20 for an explanation of sourceFitting, see also Section 4.22
for examples.

4.21.2. Units and aperture photometry
To use an image as input of an aperture photometry task, make sure that the units are flux/pixel. The
flux may be expressed in Jy or in ADU depending on the kind of image. This ensures that the end
product of the photometry will be expressed in (flux/pixel)*pixel = flux units.

For example, if the image units are Jy/beam, then you need to convert first into MJy/sr, using the
beamsize, then to Jy/pixel using the pixel area. Then you can perform the photometry, whose output
will be in Jy.

The units of PACS maps are Jy/pixel, so no conversion is needed. For instructions on performing
aperture photometry on SPIRE maps, see the SPIRE Data Reduction Guide .

4.21.3. Point sources

4.21.3.1. Annular sky aperture photometry (annularSkyAper-
turePhotometry)

The best place to compute the background is a circular annulus as close to the target as possible. This
task determines the background in an annulus around the circular target aperture.

Via the GUI

To perform annular aperture photometry , run the annularSkyAperturePhotometry task.
The image appears in a new tab within the Editor view. Below the image you can find the interface
to enter the task options.

In the Target center pane, a drop-down menu gives you three ways to identify the target:

• By mouse interaction. With this option selected, click once on the image to select the target.

• By entering the X and Y pixel coordinates.

• By entering sky coordinates, if the image has a valid WCS. Use the format "02:00:39.4" for
Right Ascension and "-22:27:20.6" for Declination, including the quotation marks.

The target is identified by a circle.

In the Apertures panel you can enter the radii for the target and sky regions. In the Sky estimation
panel you can specify the algorithm, and whether to use entire pixels or fractional pixels.

You can reset the parameters at any time by clicking Clear . Click Accept to execute the task. The
circular radii are shown on the image (see Figure 4.21).

You can display the results by double clicking on the result variable shown in the Variables view
(see Figure 4.22).

Note

The error given by the aperture photometry task is not correct in the case of flux-calibrated
Herschel images. It is however correct in case of CCD images where the units are in ADU.
Currently the best way to determine the photometric error is to place several apertures on

212

../../spire_drg/html/ch06s07.html

Working with images Build 15.0.3244

the background around the source, and to measure the flux within these apertures. The
standard deviation of the values gives the photometric error on the source.

Figure 4.21. Aperture photometry with an annular sky aperture as displayed in HIPE.

Figure 4.22. Aperture photometry results plot and tables. Note that n.a. stands for "not applicable" and
typically occurs when units are not assigned to the image.

The results include two plots, useful to judge whether your choice of radii was sensible:

• A curve of growth , showing the target flux, without the sky, as a function of the radius.

• A sky intensity plot , showing the intensity per sky pixel as a function of the inner radius, the outer
radius being constant.

Via the command line

To perform aperture photometry from the command line you must specify the following input param-
eters:

213

Working with images Build 15.0.3244

• The image (image).

• The position of the target centre, in pixels (centerX and centerY) or sky coordinates (cen-
terRa and centerDec).

• The radius of the target, in pixels (radiusPixels) or in arcseconds (radiusArcsec).

• The inner and outer radii of the annular sky aperture, in pixels (innerPixels and outerPix-
els) or arcseconds (innerArcsec and outerArcsec).

• Whether fractional pixels are to be used (fractional). It can be True (1) or False (0),
True by default.

• The sky estimation algorithm (algorithm). This is an integer with the following possible values:
0 for average, 1 for median, 2 for mean-median, 3 for synthetic mode and 4 for the algorithm used
by Daophot.

The following examples show how to perform aperture photometry:

from herschel.calsdb.util import Coordinate
Getting a point-source PACS observation
myObs = getObservation(obsid = 1342184579, useHsa = True)

Extracting the map
pointSrcMap = myObs.refs["level2"].product.refs["HPPPMAPB"].product

The target centre specified in pixel coordinates, the radii in pixels
and using fractional pixels
photPixels = annularSkyAperturePhotometry(image = pointSrcMap, centerX = 149.0, \
 centerY = 160.0, radiusPixels = 5.0, innerPixels = 20.0, outerPixels = 40.0, \
 fractional = 1, algorithm = 4)

The task requires strings for the RA and the DEC, so they must be converted
sexagesimalRA = Coordinate.ra2String(232.85505321881504)
sexagesimalDEC = Coordinate.dec2String(77.34943290224619)

The target center specified in sky coordinates, the radii in arcseconds
and using entire pixels
photSky = annularSkyAperturePhotometry(image = pointSrcMap, \
 centerRa = sexagesimalRA, centerDec = sexagesimalDEC, radiusArcsec = 5.04, \
 innerArcsec = 20.16, outerArcsec = 40.32, fractional = 0, algorithm = 4)

Example 4.107. Performing annular sky aperture photometry on a PACS map.

from herschel.calsdb.util import Coordinate
Getting a point-source SPIRE observation
myObs = getObservation(obsid = 1342182472, useHsa = True)

Extracting the map
pointSrcMap = myObs.refs["level2"].product.refs["psrcPSW"].product

The target centre specified in pixel coordinates, the radii in pixels
and using fractional pixels
photPixels = annularSkyAperturePhotometry(image = pointSrcMap, centerX = 98.0, \
 centerY = 114.0, radiusPixels = 5.0, innerPixels = 20.0, outerPixels = 40.0, \
 fractional = 1, algorithm = 4)

The task requires strings for the RA and the DEC, so they must be converted
sexagesimalRA = Coordinate.ra2String(65.81568453395388)
sexagesimalDEC = Coordinate.dec2String(-1.3421057265332947)

The target center specified in sky coordinates, the radii in arcseconds
and using entire pixels
photSky = annularSkyAperturePhotometry(image = pointSrcMap, \
 centerRa = sexagesimalRA, centerDec = sexagesimalDEC, radiusArcsec = 5.04, \
 innerArcsec = 20.16, outerArcsec = 40.32, fractional = 0, algorithm = 4)

Example 4.108. Performing annular sky aperture photometry on a SPIRE map.

214

Working with images Build 15.0.3244

Note

You can specify distances in arcseconds (here radiusArcsec , innerArcsec
and outerArcsec) only if the pixel scaling is the same in both directions (myIm-
age.getCdelt1() = myImage.getCdelt2()). Moreover, the image must
have a valid WCS.

You must specify all distances in the same unit, pixels or arcseconds.

You can inspect the output product with the methods listed in the following table:

Procedure 4.7. Available methods for the output of the annularSkyAperturePhotometry task.

1. getTargetCenterPixelCoordinates()

Returns the pixel coordinates of the target centre as a Double1d .

Java style
print myPhot.getTargetCenterPixelCoordinates()
Jython style
print myPhot.targetCenterPixelCoordinates

Example 4.109. Getting the centre pixel coordinates for the target.

2. getTargetCenterSkyCoordinates()

Returns the sky coordinates of the target centre as a String1d .

Java style
print myPhot.getTargetCenterSkyCoordinates()
Jython style
print myPhot.targetCenterSkyCoordinates

Example 4.110. Getting the centre sky coordinates for the target.

3. getTargetRadiusPixels()

Returns the radius of the target aperture in pixels.

Java style
print myPhot.getTargetRadiusPixels()
Jython style
print myPhot.targetRadiusPixels

Example 4.111. Getting the target radius in pixels.

4. getTargetRadiusArcsec()

Returns the radius of the target aperture in arcseconds.

Java style
print myPhot.getTargetRadiusArcsec()
Jython style
print myPhot.targetRadiusArcsec

Example 4.112. Getting the target radius in arcseconds.

5. getInnerRadiusPixels()

Returns the inner radius of the sky estimation annulus in pixels. The getOuterRadiusPix-
els() method to return the outer radius is also available.

Java style
print myPhot.getInnerRadiusPixels()
Jython style

215

Working with images Build 15.0.3244

print myPhot.innerRadiusPixels

Example 4.113. Getting the outer target radius in pixels.

6. getInnerRadiusArcsec()

Returns the inner radius of the sky estimation annulus in arcseconds. The getOuterRa-
diusArcsec() method to return the outer radius is also available.

Java style
print myPhot.getInnerRadiusArcsec()
Jython style
print myPhot.innerRadiusArcsec

Example 4.114. Getting the inner radius of the sky estimation annulus in arcseconds.

7. getAlgorithm()

Returns the name of the algorithm used by the task.

Java style
print myPhot.getAlgorithm()
Jython style
print myPhot.algorithm

Example 4.115. Getting the name of the algorithm used by the aperture photometry task.

8. getPixels()

Returns the type of pixels, either entire or fractional , used by the task.

Java style
print myPhot.getPixels()
Jython style
print myPhot.pixels

Example 4.116. Checking if the aperture photometry task considers fractional or entire pixels.

9. getTable()

Returns the results table as a table dataset.

Java style
print myPhot.getTable()
Jython style
print myPhot.table

Example 4.117. Getting the results of the aperture photometry task as a table dataset.

10. getDouble2dTable()

Returns the results table as a Double2d .

Java style
print myPhot.getDouble2dTable()
Jython style
print myPhot.double2dTable

Example 4.118. Getting the results of the aperture photometry task as a Double2d table.

11. getTargetPlusSkyTotal()

Returns the total flux of the target plus the sky. To get the same for the sky and for the target
without the sky, replace TargetPlusSky with Sky or Target in the method name. To
get the corresponding error, replace Total with Error in the method name.

216

Working with images Build 15.0.3244

Java style
print myPhot.getTargetPlusSkyTotal()
Jython style
print myPhot.targetPlusSkyTotal

Example 4.119. Getting the total flux (target+sky).

12. getNbOfTargetPlusSkyPixels()

Returns the number of pixels in the target and sky areas. To get the same for the sky and for the
target areas only, replace TargetPlusSky with Sky or Target in the method name.

Java style
print myPhot.getNbOfTargetPlusSkyPixels()
Jython style
print myPhot.nbOfTargetPlusSkyPixels

Example 4.120. Getting the total number of pixels (target+sky).

13. getIntensityPerTargetPlusSkyPixel()

Returns the intensity per pixel for the target plus the sky. To get the same for the sky and for the
target without the sky, replace TargetPlusSky with Sky or Target in the method name.

Java style
print myPhot.getIntensityPerTargetPlusSkyPixel()
Jython style
print myPhot.intensityPerTargetPlusSkyPixel

Example 4.121. Getting the flux intensity averaged by the total pixels (target+sky).

14. getCurveOfGrowth()

Returns the curve of growth as a table dataset. The table dataset has two columns: Growth radius
and Growth flux .

Java style
myTable = myPhot.getCurveOfGrowth()
Jython style
myTable = myPhot.curveOfGrowth

Example 4.122. Getting the curve of growth for the results of aperture photometry task.

15. getGrowthRadius()

Returns a Double1d with the values in the Growth radius column of the curve of growth table
dataset returned by the getCurveOfGrowth() method.

Java style
print myPhot.getGrowthRadius()
Jython style
print myPhot.growthRadius

Example 4.123. Getting the growth radius for the results of the aperture photometry task.

16. getGrowthFlux()

Returns a Double1d with the values in the Growth flux column of the curve of growth table
dataset returned by the getCurveOfGrowth() method.

Java style
print myPhot.getGrowthFlux()
Jython style

217

Working with images Build 15.0.3244

print myPhot.growthFlux

Example 4.124. Getting the growth flux column of the results of the aperture photometry task.

17. getSkyIntensityPlot()

Returns the curve in the sky intensity plot as a table dataset. The table dataset has two columns:
Sky radius and Sky intensity .

Java style
myTable = myPhot.getSkyIntensityPlot()
Jython style
myTable = myPhot.skyIntensityPlot

Example 4.125. Getting the intensity plot as a table dataset.

18. getSkyIntensityRadius()

Returns a Double1d with the values in the Sky radius column of the sky intensity table dataset
returned by the getSkyIntensityPlot() method.

Java style
print myPhot.getSkyIntensityRadius()
Jython style
print myPhot.skyIntensityRadius

Example 4.126. Getting the sky intensity radius of the intensity plot.

19. getSkyIntensity()

Returns a Double1d with the values in the Sky intensity column of the sky intensity table dataset
returned by the getSkyIntensityPlot() method.

Java style
print myPhot.getSkyIntensity()
Jython style
print myPhot.skyIntensity

Example 4.127. Getting the sky intensity values from the intensity plot as a Double1d.

Note

The aperture photometry task offers a recentering option, but the results are not always
accurate. If you do not know the exact coordinates of your source, use the source-
Fitter task before running the photometry task.

4.21.3.2. Rectangular sky aperture photometry (rectangu-
larSkyAperturePhotometry)

The immediate neighbourhood of the target is not always the best location to estimate the sky. In these
cases you can take a rectangular region further away from the target. This is known as rectangular
sky aperture photometry . You can do it in HIPE with the rectangularSkyAperturePho-
tometry task.

Via the GUI

In the same way as with annular sky aperture photometry, you can select the object with one click or
give the coordinates explicitly. Click and drag your mouse pointer on the image to select a rectangular
aperture. Following the calculation for the first position, you can use the same rectangular box for the
sky and choose a new object with a further single click on the image.

The result product has the same structure as the annular photometry result product, except that the
sky intensity plot is missing.

218

Working with images Build 15.0.3244

Via the command line

To perform aperture photometry from the command line you must specify the following input param-
eters:

• The image (image).

• The position of the target centre, in pixels (centerX and centerY) or sky coordinates (cen-
terRa and centerDec).

• The radius of the target, in pixels (radiusPixels) or in arcseconds (radiusArcsec).

• The position of the corner of the background area with the smallest coordinate values, in pixels (
minX and minY) or sky coordinates (minRa and minDec).

• The width and height of the background area in pixels (widthPixels and heightPixels)
or arcseconds (widthArcsec and heightArcsec).

• Whether fractional pixels are to be used (fractional). It can be True (1) or False (0),
True by default.

• The sky estimation algorithm (algorithm). This is an integer with the following possible values:
0 for average, 1 for median, 2 for mean-median, 3 for synthetic mode and 4 for the algorithm used
by Daophot.

The following example shows how to perform rectangular sky aperture photometry:

The target centre is specified in pixel coordinates, the target radius in pixels
photPixel = rectangularSkyAperturePhotometry(image = myImage, centerX = 501.0,\
 centerY = 266.0, radiusPixels = 5.0, minX = 553.0, minY = 132.0, \
 widthPixels = 120.0, heightPixels = 47.0, algorithm = 4)

The target centre is specified in sky coordinates, the target radius in arcseconds
photSky = rectangularSkyAperturePhotometry(image = myImage, \
 centerRa = "02:00:34.388", centerDec = "-22:25:59.87", radiusArcsec = 5.04, \
 minRa = "02:00:38.179", minDec = "-22:28:14.89", widthArcsec = 120.96, \
 heightArcsec = 47.376)

Example 4.128. Performing rectangular sky aperture photometry.

Note

The target centre and the corner of the rectangle with smallest coordinate values must be
specified in the same coordinates, either pixel or sky.

You can choose the kind of pixels and the sky estimation algorithm in the same way as
for the annularSkyAperturePhotometry task.

To inspect the output product via the command line, you can use the same methods described in Pro-
cedure 4.7 for the annularSkyAperturePhotometry task, except for those referring to the an-
nular sky aperture. Further methods exclusive to the output of rectangularSkyAperturePho-
tometry are shown in the following table:

Procedure 4.8. Available methods for the output of the rectangularSkyAperturePhotometry
task.

1. getWidthPixels()

Returns the width of the rectangle in pixels. The getHeightPixels() method to get the
height of the rectangle is also available.

Java style
print myPhot.getWidthPixels()
Jython style

219

Working with images Build 15.0.3244

print myPhot.widthPixels

Example 4.129. Getting the width in pixels of the rectangular aperture.

2. getWidthArcsec()

Returns the width of the rectangle in arcseconds. The getHeightArcsec() method to get
the height of the rectangle is also available.

Java style
print myPhot.getWidthArcsec()
Jython style
print myPhot.widthArcsec

Example 4.130. Getting the width in arcseconds of the rectangular aperture.

3. getUpperLeftCornerPixelCoordinates()

Returns the pixel coordinates of the upper left corner of the rectangle as a Double1d . The upper
left corner is the corner with lowest pixel coordinates.

Java style
print myPhot.getUpperLeftCornerPixelCoordinates()
Jython style
print myPhot.upperLeftCornerPixelCoordinates

Example 4.131. Getting the upper left corner of the rectangular aperture in pixel coordinates.

4. getUpperLeftCornerSkyCoordinates()

Returns the sky coordinates of the upper left corner of the rectangle as a String1d . The upper
left corner is the corner with lowest pixel coordinates.

Java style
print myPhot.getUpperLeftCornerSkyCoordinates()
Jython style
print myPhot.upperLeftCornerSkyCoordinates

Example 4.132. Getting the upper left corner of the rectangular aperture in sky coordinates.

4.21.3.3. Fixed sky aperture photometry (fixedSkyAperturePho-
tometry)

If both the annular and rectangular sky aperture methods fail to provide a meaningful estimate of the
background, you can provide a fixed background value.

Via the GUI

Use fixedSkyAperturePhotometry to provide a fixed sky value . Executing the task and
inspecting the results is done in the same way as for the other types of photometry.

Via the command line

To perform aperture photometry from the command line you must specify the following input param-
eters:

• The image (image).

• The position of the target centre, in pixels (centerX and centerY) or sky coordinates (cen-
terRa and centerDec).

• The radius of the target, in pixels (radiusPixels) or in arcseconds (radiusArcsec).

220

Working with images Build 15.0.3244

• The sky intensity value (sky).

• Whether fractional pixels are to be used (fractional). It can be True (1) or False (0), True
by default.

The following example shows how to perform fixed sky aperture photometry:

The target centre for PACS observation 1342184579 is specified in pixel
 coordinates, the target
radius in pixels
photPixels = fixedSkyAperturePhotometry(image = myImage, centerX = 159.0, \
 centerY = 150.0, radiusPixels = 5.0, sky = 48.0)
The target centre for PACS observation 1342184579 is specified in sky coordinates,
 the target radius in arcsec
photSky = fixedSkyAperturePhotometry(image = myImage, centerRa = "15:31:24.91",\
 centerDec = "77:20:57.97"", radiusArcsec = 5.04, sky = 48.0)

Example 4.133. Performing fixed sky aperture photometry.

Note

The target radius can only be specified if the image has a valid WCS and the pixel scaling
is the same in both directions.

4.21.3.4. Aperture correction

Aperture photometry measures the flux within a finite, relatively small aperture. The total flux however
is distributed in a much larger area well outside the aperture. To account for this missing flux you
need to apply a correction factor to the flux values. Such correction factors are determined through
careful signal-to-noise measurements of bright celestial standards and are available as calibration files
in HIPE.

For PACS. Run the aperture correction task as in the following example:

result_apcor = photApertureCorrectionPointSource(apphot=myResult, band="blue", \
calTree=calTree, responsivityVersion=6)

Example 4.134. Running the aperture photometry correction task for point sources.

The myResult variable is the output of the aperture photometry task. The band parameter
determines the filter. Because the aperture correction changes when there is an update in responsivity
calibration, you must specify which responsivity calibration was used when your image was processed.

You can examine the task output in the same way as the output of the aperture photometry tasks.

For more information on the photApertureCorrectionPointSource task, see the corre-
sponding entry in the User's Reference Manual .

For SPIRE. Aperture correction is mentioned in the SPIRE Data Reduction Guide , Section 5.7
. Search for aperture correction in that section.

4.22. Comparing PSFs to point source pro-
files

In many cases you have to compare the PSF of individual sources with a model PSF. The model PSF
can be built from the sources in the image, or taken from models or dedicated observations of the
instrument teams. In this section we describe how to work with PACS and SPIRE PSFs. We give an
example script to rotate and match the PACS PSFs to an observation, and then to compare the two
in a few ways.

221

../../pacs_urm/html/herschel.pacs.spg.phot.PhotApertureCorrectionPointSourceTask.py.html
../../spire_drg/html/ch06s07.html

Working with images Build 15.0.3244

Note that the PSF of the Herschel instruments depends on the wavelength and also, in many cases, on
the observing mode (such as the scan speed for PACS), as well as possibly the flux of the source. For
more information, see the instrument web pages for PACS and SPIRE .

The PSF/beams can be obtained from the public Herschel TWiki for PACS and SPIRE , or from re-
pipelined observations.

You can compute and compare the curve-of-growth (EEF curves in PACS terminology) and/or radial
profiles of your source and the PSF to see whether your source is consistent with being a point source.
It is unlikely that your source will exactly match the model PSF, but you can look for consistency.
You can also overplot the PSF image on your source to compare their relative sizes. Finally you can
attempt point-source fitting photometry, but noting that we provide no task to do this: we simply show
you how to subtract the scaled PSF from the astronomical source. PSF-fitting photometry is unlikely,
at this point in time, to give very accurate results, since the profile of Herschel's point-spread-function
during the observations that the PSF maps were made from, is not going to be exactly the same as
the profile of Herschel's point-spread-function during your observations. However, see the instrument
websites to learn more, as this situation will improve with time. Rather than PSF-subtraction, done,
for example, to disentangle a point+extended source, you may be better off fitting your point source
with a Gaussian (e.g. sourceFitting) and subtracting that.

For PACS it is recommended that rather than taking the PSFs from the PACS public TWiki,
you instead reduce the observation the PSF was taken from yourself : you can find the obsid in
this report . Your reduction should use the same pipeline parameters, as far as possible, as was done
for your astronomical source. This is because the way you reduce the data and create the maps has
an effect on the effective PSF; the profile of a true point source will not be exactly the same if you
change the parameters of some of the pipeline tasks.

Tip

A paper (Popesso et al. 2012) is available on the effect of pipelining and mapmaking on
the PACS beam profile. A technical note version is on the PACS public TWiki.

Required before you follow this script:

• Your maps. You can do what we describe here on the scan and cross-scan separately or after being
combined. For fast scan speed observations, however, see below.

• Your own version of the pipelined PSF observations, although for the demonstration here we take
them from the public TWiki.

• For SPIRE we assume you have observations that are also using the scanmapping AOTs.

• You can do most of this on a HIPE installation with either the PACS or SPIRE component, however
some of the tasks will require one or the other. You will be warned when appropriate.

You will need to do some of your own scripting. There are several ways to do anything in HIPE, so
you may want to use a different method you know about. Also, if you want to run this script on several
observations at once, you may want to wrap a loop around it.

What you will be doing:

• Downloading the maps from the HSA, because ideally you would re-reduce the PSF obsids for
PACS yourself, instead of using the PSF files mentioned above.

• Rotating by the position angle (meta data posAngle). This is because the beams are not sym-
metric, and in their wings the profile moves with the position angle of the telescope. Hence, to match
the shape of the beam to the shape of your source they should both be at the same position angle.

• Matching the WCS of the beam to that of your source, so you can compare them on their WCSs.
For this you need to measure the position of the source and the beam.

222

http://herschel.esac.esa.int/twiki/bin/view/Public/PacsCalibrationWeb
http://herschel.esac.esa.int/twiki/bin/view/Public/SpireCalibrationWeb
http://herschel.esac.esa.int/twiki/bin/view/Public/PacsCalibrationWeb#PACS_calibration_and_performance
http://herschel.esac.esa.int/twiki/bin/view/Public/SpireCalibrationWeb#SPIRE_calibration_and_performanc
http://herschel.esac.esa.int/twiki/pub/Public/PacsCalibrationWeb/bolopsfv1.01.pdf
http://adsabs.harvard.edu/abs/2012arXiv1211.4257P
http://herschel.esac.esa.int/twiki/pub/Public/PacsCalibrationWeb/hpf_psf_tn_final.pdf

Working with images Build 15.0.3244

• Overplotting contours of one on the greyscale display of the other.

• Creating EEF curves/radial profiles, and comparing those for the beam and the astronomical source.

• Scaling and subtracting the beam map from the astronomical map, to see at what point your point
source disappears.

Note

Rotating the beam involves mathematically manipulating your data, that is, resampling
the spatial plane. This will never reproduce exactly what real life would have given you.
The rotation task will perform better if you have smaller map pixel sizes, although the
map pixel sizes you can meaningfully adopt will depend on the depth of your data.

Note

To compare the beam profiles to your astronomical profiles, you will need to be comparing
maps of the same pixel sizes as each other, for each band separately. The profile depends
on the spatial sampling!

You must be extra careful when dealing with fast scan speed PACS maps. At the fast scan speed the
PSF is distorted along the scanning direction. By scanning direction we mean the scan angle, which
in HSPOT is called orientation angle. By default this is 45 and 135 for scan and cross-scan, and in
the metadata of your observation is called mapScanAngle. For more detail see this technical report,
for example Figure 1 to compare the PSF of a slow and fast scanning speed map. Because of this, if
you combine the scan and cross-scan data to make a final mosaic/map you will get a sort of cross-
shaped PSF (by how much depends on the strength of your source and the depth of your background:
faint sources and noisy backgrounds will hide the fainter parts of the PSF). Your choices here are to
work on your astronomical data scan and cross-scan maps separately (easiest option) or if you want
to combine them (e.g. to get a better SNR) then you need to create a similarly distorted and combined
PSF map: pipeline the PSF obsids (as recommended), copy the map twice, one rotated by the scan
angle and one by the cross-scan angle, and then use the mosaic task to combine those maps. This
will also give then a sort of cross-shaped PSF. Note that we say here to "rotate by the scan/cross-
scan angle and combine". Normally one should rotate by the position angle, since - as explained in the
technical report - the shape of the PSF (trilobal) rotates with the PA (i.e. it is "fixed" to the telescope).
For slow and medium scan speed observations you only need to rotate the PSF map by the position
angle of your observations (there is no distortion along the scanning angle), whether you work on
the astronomical scan and cross-scan maps separately or combined. But for fast scan speed maps you
will need to see which is more important to the profile of your point source for your observation - the
scan angle or the position angle - and then decide which to rotate by. This will vary with band, as the
scan-angle distortion is stronger in the blue than the red. For not-bright sources with not very deep
backgrounds, the distortion along the scanning angle is probably more influential to the shape of your
PSF than the trilobal shape of the beam. It is with this in mind that we say to rotate by the scan angle
before mosaicking the scan+cross scan maps, or before comparing them individually. But if you deem
that the trilobal beam shape is more important to match to your astronomical maps than the scanning
direction distortion, then instead you only need to rotate a single PSF map by the position angle, and
compare that single map to your scan, cross-scan, or combined scan+cross-scan map.

4.22.1. Setting up and getting the data
The first thing is a few imports:

import math
from math import *
from java.awt.Color import GREEN
from java.awt.Color import BLUE

Example 4.135. Importing the required classes for the PSF-point source comparison example.

Then you need to get the PSFs. For PACS you want to match the scan speed (meta data "map-
ScanSpeed") of your astronomical observations (10=slow, 20=medium, 60=fast) and you could try

223

http://herschel.esac.esa.int/twiki/pub/Public/PacsCalibrationWeb/bolopsfv1.01.pdf

Working with images Build 15.0.3244

also to match the scan angle (+63/+42/-42), although note that for all the PSFs on the PACS wiki,
the position angle has been set to 0 (and unfortunately the posAngle meta data are not given in the
maps). For that reason, in this example regular observations from the Herschel Science Archive will
be used . Note that the beam units are Jy and they are normalised to have a total flux of 1Jy. So:

PACS

For PACS, extract the PSF from calibration observation 1342186136
calObs = getObservation(obsid = 1342186136, useHsa = True)
bm = calObs.refs["level2"].product.refs["HPPPMAPB"].product
pabm = 0.0

Example 4.136. Reading the data from a PACS calibration observation (PSF-point source comparison).

SPIRE

calTree=spireCal(calTree="spire_cal")
band="PLW" # or "PSW" or "PMW"
bm=calTree.phot.getBeamProf(band)

pabm = bm.getMeta()["posAngle"].value

Example 4.137. Retrieving the beam profile from the latest SPIRE calibration (PSF-point source compar-
ison).

Note

For SPIRE the units of the beams are Jy/beam, but those from the wiki and those from the
calibration file have different flux - the latter have been scaled to give a peak flux of 1.
Those from the calibration file may not have the units in it, but they are Jy/beam. These
PSFs have not been rotated to 0 PA so you need to extract the position angle as well.

Finally you need the map of your source, which we will call "src". For example, you can use
1342184579, but note that this is a chop/nod observation and doesn't include mapScanSpeed nor
mapScanAngle metadata. From your map, if a PACS observation you need your position angle,
scan speed and scan angle, and for SPIRE the position angle:

srcObs = getObservation(obsid = 1342184579, useHsa = True)
src = srcObs.refs["level2"].product.refs["HPPPMAPB"].product
pa = src.getMeta()["posAngle"].value
uncomment the next two lines if your observation is not chop/nod
speed = src.getMeta()["mapScanSpeed"].value
sa = src.getMeta()["mapScanAngle"].value

Example 4.138. Retrieving the necessary properties for PACS and SPIRE (PSF-point source comparison).

it is also worth creating a variable for the obsid and the band or filter (R/B/G" for PACS red, blue,
green, and "PLW/PMW/PSW" for the SPIRE long, mid, short bands) so you can attach this information
to your output:

obsid = 1342184579
band = "B"

Example 4.139. Creating auxiliary variables with the obsid and band (PSF-point source comparison).

4.22.2. Rotate the PSF and match it to the astronomi-
cal source

First thing you need to do is to rotate the PSF/beam by the PA or, if you are working on PACS fast
scan speed maps maybe by the SA (scan angle), of your observation. For PACS PSF maps taken from

224

Working with images Build 15.0.3244

the wiki you only need to rotate by the PA value (as the PA of the PSF map is 0), but for SPIRE you
need to rotate by the difference between the PA of the beam and your source:

angle=pa-pabm-180
bmr=rotate(image=bm, angle=angle, subsampleBits=32,\
 interpolation=rotate.INTERP_BICUBIC)
optional information
bmr.setDescription("beam rotated for "+str(obsid)+", "+band)
Display(bm)
Display(bmr)
print "WCS of rotated beam:",bmr.wcs

Example 4.140. Rotating the PSF and matching to the source (PSF-point source comparison).

See the documentation for rotate in HCSS User's Reference Manual to learn more about this task.

Note

The rotate task will rotate the WCS of a map. When you Display the rotated map it will
have a different orientation to the original. HOWEVER, when you are rotating in order to
match an angle, you need to rather rotate the source and keep the WCS the same. To do
this, but while still using "rotate", you then need to copy the original map WCS over to
the new. This is perfectly OK to do as you do not change the map pixel sizes by rotating,
however this will also usually slightly shift the source position.

wcs=bm.getWcs()
bmr.setWcs(wcs)
bmr.setDescription("beam rotated for "+str(obsid)+", "+band\
 +" with original wcs")
print "WCS of rotated beam with old WCS imposed:",bmr.wcs

Example 4.141. Updating the Wcs information (PSF-point source comparison).

Now match the WCS of the beam and the astronomical source, so the sources lie at the same RA,
DEC on both. For this, first you have to locate the exact source position. Here we use the sourceFitter
for that:

xpixstep=bmr["image"].meta["cdelt1"].value*3600.
ypixstep=bmr["image"].meta["cdelt2"].value*3600.
if (xpixstep<0): xpixstep=-1*xpixstep
if (ypixstep<0): ypixstep=-1*ypixstep

Example 4.142. Matching the WCS of the beam and the source (PSF-point source comparison).

where xpixstep and ypixstep are the pixel sizes in arcsec. The final two if lines are needed to get rid
of negative values.

Then you get the RA, Dec coordinates of your sources (for the sourceFitter to begin its search) in
decimal degrees from the meta data (or you can work it out yourself):

RA=bmr.meta["raNominal"].value
DEC=bmr.meta["decNominal"].value

Example 4.143. Retrieving the RA and declination in decimal degrees (PSF-point source comparison).

...and in pixel values:

cxpix=bmr.wcs.getPixelCoordinates(RA,DEC)[1]
cypix=bmr.wcs.getPixelCoordinates(RA,DEC)[0]

Example 4.144. Retrieving the X, Y coordinates in pixels (PSF-point source comparison).

Or set the coordinates to be the centre of the map (where the source most likely is):

225

Working with images Build 15.0.3244

nxpix=bmr.wcs.naxis1
nypix=bmr.wcs.naxis2
cxpix=nxpix/2.
cypix=nypix/2.

Example 4.145. Setting the coordinates to the centre of the map (PSF-point source comparison).

Now you have to find the exact centre of your PSF. For that you have to first set a maximum shift to
search for source in, around cy|xpix you may want to make this generous for the rotated beam map,
if the source is very far off the centre. You also need to run this in a loop increasing the search radius
each time. You can change the boxsize values 5,60 to something else if you like.

maxshift = 10.
print " Fitting rotated beam ..."
for boxsize in range(5,60):
 try:
 minX=cxpix-boxsize/2.
 minY=cypix-boxsize/2.
 sfit = sourceFitting(elongated=True,slope=False,image=bmr,\
 minX=minX,minY=minY,width=boxsize,height=boxsize)
 print " boxsize "+str(boxsize)+"...success!"
 poo=1 # seems to be necessary to make this stop when it has success
 except:
 print " boxsize "+str(boxsize)+"...failed"
 cxpixfit=-1 # or some other value to indicate failure
 cypixfit=-1 # eg maybe the centre of the map, ...
 pixfit_RA=-1
 pixfit_Dec=-1
 poo=0
 else:
 # upon success, grab the results of the sourceFitting
 cxpixfit = sfit.getCenterX()
 cypixfit = sfit.getCenterY()
 pixfit_RA = sfit.getCenterRA()
 pixfit_Dec = sfit.getCenterDec()
 # very occasionally sourceFitting gives nonsence results, so:
 if ((ABS(cxpix-cxpixfit) > maxshift) or (ABS(cypix-cypixfit) > maxshift)):
 print " ...however, source found too far from original coords"
 print" so setting to -1,-1"
 print " orig coords: "+str(cxpix)+", "+str(cypix)+\
 " found coords: "+str(bm_cxpixfit)+", "+str(bm_cypixfit)
 cxpixfit=-1 # or some other value to indicate failure
 cypixfit=-1 # eg maybe the centre of the map, ...
 pixfit_RA=-1
 pixfit_Dec=-1
 poo=0
 else:
 bm_cxpixfit = sfit.getCenterX()
 bm_cypixfit = sfit.getCenterY()
 bm_pixfit_RA = sfit.getCenterRA()
 bm_pixfit_Dec = sfit.getCenterDec()
 sigma_x = sfit.getSigmaXPixels()
 sigma_y = sfit.getSigmaYPixels()
 bm_fwhm_x = round(abs(2.*SQRT(2.*LOG(2))*sigma_x*xpixstep),1)
 bm_fwhm_y = round(abs(2.*SQRT(2.*LOG(2))*sigma_y*ypixstep),1)
 print "Beam details:"
 print " beam position: pixel:",bm_cxpixfit, bm_cypixfit
 print " coordinates:",bm_pixfit_RA, bm_pixfit_Dec
 print " beam fwhm x,y:",bm_fwhm_x,bm_fwhm_y
 poo=1
 if (poo == 1): break
 pass

Example 4.146. Finding the exact centre of the PSF (PSF-point source comparison).

You need to do exactly the same for your astronomical source.

xpixstep=src["image"].meta["cdelt1"].value*3600. # pixel size in arcsec

226

Working with images Build 15.0.3244

ypixstep=src["image"].meta["cdelt2"].value*3600.
if (xpixstep<0): xpixstep=-1*xpixstep # avoid negative values
if (ypixstep<0): ypixstep=-1*ypixstep
starting RA, Dec values in decimal degrees...from the meta data
or you can work it out yourself
decimal values are necessary
RA=src.meta["raNominal"].value
DEC=src.meta["decNominal"].value
...and in pixel values
cxpix=src.wcs.getPixelCoordinates(RA,DEC)[1]
cypix=src.wcs.getPixelCoordinates(RA,DEC)[0]
maxshift = 10.
print " Fitting astronomical source ..."
for boxsize in range(5,60):
 try:
 minX=cxpix-boxsize/2.
 minY=cypix-boxsize/2.
 sfit = sourceFitting(elongated=True,slope=False,image=src,\
 minX=minX,minY=minY,width=boxsize,height=boxsize)
 print " boxsize "+str(boxsize)+"...success!"
 poo=1 # seems to be necessary to make this stop when it has success
 except:
 print " boxsize "+str(boxsize)+"...failed"
 cxpixfit=-1 # or some other value to indicate failure
 cypixfit=-1 # eg maybe the centre of the map, ...
 pixfit_RA=-1
 pixfit_Dec=-1
 poo=0
 else:
 # upon success, grab the results of the sourceFitting
 cxpixfit = sfit.getCenterX()
 cypixfit = sfit.getCenterY()
 pixfit_RA = sfit.getCenterRA()
 pixfit_Dec = sfit.getCenterDec()
 # very occasionally sourceFitting gives nonsence results, so:
 if ((ABS(cxpix-cxpixfit) > maxshift) or (ABS(cypix-cypixfit) > maxshift)):
 print " ...however, source found too far from original coords,"
 print " so setting to -1,-1"
 print " orig coords: "+str(cxpix)+","+str(cypix)+\
 " found coords: "+str(bm_cxpixfit)+", "+str(bm_cypixfit)
 cxpixfit=-1 # or some other value to indicate failure
 cypixfit=-1 # eg maybe the centre of the map, ...
 pixfit_RA=-1
 pixfit_Dec=-1
 poo=0
 else:
 src_cxpixfit = sfit.getCenterX()
 src_cypixfit = sfit.getCenterY()
 src_pixfit_RA = sfit.getCenterRA()
 src_pixfit_Dec = sfit.getCenterDec()
 sigma_x = sfit.getSigmaXPixels()
 sigma_y = sfit.getSigmaYPixels()
 src_fwhm_x = round(abs(2.*SQRT(2.*LOG(2))*sigma_x*xpixstep),1)
 src_fwhm_y = round(abs(2.*SQRT(2.*LOG(2))*sigma_y*ypixstep),1)
 print "Source details:"
 print " source position: pixel:",src_cxpixfit, src_cypixfit
 print " coordinates:",src_pixfit_RA, src_pixfit_Dec
 print " source fwhm x,y:",src_fwhm_x,src_fwhm_y
 poo=1
 if (poo == 1): break
 pass

Example 4.147. Find the exact centre of the point source (PSF-point source comparison).

Now move the WCS of the PSF map so that the pixel coordinates where the beam is located are the
WCS coordinates of the astronomical source. Then display the astro map to check:

bmr.getWcs().setCrval1(src_pixfit_RA)
bmr.getWcs().setCrval2(src_pixfit_Dec)
bmr.getWcs().setCrpix1(bm_cxpixfit+1.0)
bmr.getWcs().setCrpix2(bm_cypixfit+1.0)

227

Working with images Build 15.0.3244

print "WCS of rotated beam with old WCS imposed and shifted to the astro source
 position:"\
 ,bmr.wcs
d=Display(src)
d.setTitle(str(obsid)+","+band)
d.setCutLevelsPercentage(99.0)
d.setTitle(str(obsid)+","+band+",rotated by "+str(angle))
red circle where the astro source was found to be
d.addCircle(src_cypixfit,src_cxpixfit,2,2,java.awt.Color.red)
If you want to add contours of the beam and the astro source to the greyscale map"
Beam:
->must be as many as there are contour levels
cs=[BLUE,BLUE,BLUE,BLUE,BLUE]
->change the min and max according to the flux range in your map
contoursb = automaticContour(image=bmr, levels=5, min=0.1, max=0.5, distribution=0,\
 colors=cs)
d.addWcsImageContour(contoursb)
Astro source:
#cs=[GREEN,GREEN,GREEN,GREEN,GREEN]
#contourss = automaticContour(image=src, levels=5, min=0.002, max=0.004, \
distribution=0, colors=cs)
#d.addWcsImageContour(contourss)
d.setZoomFactor(16)

Example 4.148. Matching the WCS of the PSF to the coordinates of the source (PSF-point source compar-
ison).

4.22.3. EEF Curves
One way to get curves of growth is to use the aperture photometry task, which produces one as a
result. You have the choice of annular, fixed, and rectangular aperture photometry (read the DAG or
the URM entries for each of the tasks to learn more). A better way is to do aperture photometry on
increasing radii and build your own EEF curve. This way you have control over the grid to build it on.
The annularAperturePhotometry task will allow you to centroid on an approximate set of coordinates
for the source, however this does not work as well as the coordinates you get from sourceFitting; so use
those gotten using the script in the previous section. You will need to enter a size for the aperture on the
source and the sky annuli. You should try to get the sky aperture radii correct, but note that they cannot
be smaller than the "raper" value. If you want to build up EEF curves that are longer than the aperture
from which you get the sky flux from, you need to instead use the fixedSkyAperturePhotometry task
without sky subtraction, and then scale the EEF curves to their values in the sky radii range.

If you are interested in the aperture photometry, you will need to read the point source photometry
guides for PACS and SPIRE , to find the aperture corrections and recommended aperture sizes.

Begin with some definitions:

rskyin_src = 60
rskyout_src = 75

Example 4.149. Defining the coordinates for building the EEF curve.

Indicating the coordinates you want to build the EEF curve around, i.e. the RA and DEC of the source,
as worked out in the previous section. These will be for source and beam: src_cxpixfit, src_cxpixfit,
bm_cxpixfit, src_cypixfit.

Now build up a curve of growth. First you need to define the apertures:

rapers=Double1d.range(41)*2

Example 4.150. Creating an array of apertures.

then remove the first, as you cannot have an aperture of 0:

228

http://herschel.esac.esa.int/twiki/pub/Public/PacsCalibrationWeb/pacs_bolo_fluxcal_report_v1.pdf
../../spire_drg/html/photometer_launchpad.html

Working with images Build 15.0.3244

rapers=rapers[1:]

Example 4.151. Removing the first aperture from the array.

create a variable to store the fluxes (one per aperture, for astro source and PSF):

fluxes=Double2d(len(rapers),2)

Example 4.152. Creating a variable for storing two arrays of fluxes.

Start the photometry of your source:

cnt=0
for raper in (rapers):
 apphot = fixedSkyAperturePhotometry(image=src,centroid=False,\
 centerX=round(src_cxpixfit,3),centerY=round(src_cypixfit,3),\
 radiusArcsec=raper,sky=0)
 fluxes[cnt,0]=apphot["Results table"]["Total flux"].data[1]
 cnt+=1

Example 4.153. Performing the point source aperture photometry for every aperture in the array.

and your PSF:

cnt=0
for raper in (rapers):
 apphot = fixedSkyAperturePhotometry(image=bmr,centroid=False,\
 centerX=round(bm_cxpixfit,1),centerY=round(bm_cypixfit,1),\
 radiusArcsec=raper,sky=0)
 fluxes[cnt,1]=apphot["Results table"]["Total flux"].data[1]
 cnt+=1

Example 4.154. Performing the PSF aperture photometry for every aperture in the array.

Note

apphot["Results table"]["Total flux"].data[1] will get you the total
flux in the aperture, sky subtracted; if you want the average flux in the aperture (which,
however, will not account for any NaN or 0 flux pixels in your aperture) then you can grab
apphot["Results table"]["Intensity per pixel].data[1] instead

Note

The apertures will have different scalings because the fluxes of your astronomical source
and the PSF will be different. If you want to scale you can do so on e.g. the peak flux or
e.g. the flux between certain radii. Here are two possible following ways:

scale to peak (ie at the minimum aperture):

fluxes[:,0]=fluxes[:,0]/fluxes[0,0]
fluxes[:,1]=fluxes[:,1]/fluxes[0,1]

Example 4.155. Scaling the fluxes of the PSF and point source to peak (min aperture).

you also have to define the aperture for the beam model,

The aperture for the bm is assumed to be the same
rskyin_bm = 60
rskyout_bm = 75

Example 4.156. Defining apertures for the beam model.

scale to median in the sky area:

229

Working with images Build 15.0.3244

idx=rapers.where((rapers>rskyin_src)&(rapers<rskyout_src))
fluxes[:,0]=fluxes[:,0]/MEAN(fluxes[idx,0])
idx=rapers.where((rapers>rskyin_bm)&(rapers<rskyout_bm))
fluxes[:,1]=fluxes[:,1]/MEAN(fluxes[idx,1])

Example 4.157. Scaling the fluxes of the PSF and point source to median.

Now you can plot your results:

p=PlotXY(titleText="My EEF for obsid "+str(obsid)+", "+band)
p.addLayer(LayerXY(rapers,fluxes[:,0],line=1,color=java.awt.Color.black))
p.addLayer(LayerXY(rapers,fluxes[:,1],line=3,color=java.awt.Color.red))
p[1].setName("beam")
p[0].setName("astro source")
p.xaxis.title.text="arcsec"
p.yaxis.title.text="flux"
p.getLegend().setVisible(True)

Example 4.158. Plotting the results of this comparative aperture photometry.

then you can compute the FWHM of your EEF curve. This is just for information, it is not a 100%
good measure of the spatial extent of your source (that depends on how far out you have been able to
go, because the beam actually extends quite far: for PACS this is past 60".) First measure the FWHM
from the astro source:

interpgrid = Double1d.range(78*8)/8.+2
interp = CubicSplineInterpolator(rapers,fluxes[:,0])
eef_cont=interp(interpgrid)
idx=eef_cont.where((eef_cont >=0.47) & (eef_cont <=0.53))
sey=interpgrid[idx]
fw_as=MEAN(sey)

Example 4.159. Measuring the FWHM of the point source using a cubic spline interpolator.

the third line is needed to pick out the FWHM.

Do the same for the PSF:

interp = CubicSplineInterpolator(rapers,fluxes[:,1])
eef_cont=interp(interpgrid)
idx=eef_cont.where((eef_cont >=0.47) & (eef_cont <=0.53))
sey=interpgrid[idx]
fw_bm=MEAN(sey)

Example 4.160. Measuring the FWHM of the PSF using a cubic spline interpolator.

and finally compare the results:

print "FWHM (arcsec):"
print " astro source:",fw_as
print " PSF source:",fw_bm

Example 4.161. Comparing both values for FWHM.

4.22.4. Measuring the sky background scatter on
PACS and SPIRE maps

There is a way to work out the sky background value and the sky scatter value: measure the flux in
circular apertures of the same aperture size you used when doing aperture photometry (using, e.g.

230

Working with images Build 15.0.3244

annularSkyAperturePhotometry) on your source. To be scriptable, we chose here apertures evenly
located around a set radius away from your source.

Get the coordinates: either use src_cxpixfit, src_cypixfit, bm_cxpixfit, bm_cypixfit computed previ-
ously, or get them from the rotated beam maps, remembering that we recorded the source's position
in the bmr's wcs:

RA=bmr.getWcs().getCrval1()
DEC=bmr.getWcs().getCrval2()
cxpixb=bmr.wcs.getPixelCoordinates(RA,DEC)[1] # pixel coordinates of the beam
cypixb=bmr.wcs.getPixelCoordinates(RA,DEC)[0]
cxpixs=src.wcs.getPixelCoordinates(RA,DEC)[1] # pixel coordinates of the astro
 source
cypixs=src.wcs.getPixelCoordinates(RA,DEC)[0]

Example 4.162. Measuring the sky background scatter of beam and astro source.

Define the radius about which you want to measure the sky background value and its scatter, between
the apertures. You could e.g. use a value that is the sky aperture radius value recommended to do with
photometry. The radius of the mini circular apertures to compute the sky value from should be the
same value as used for your aperture photometry on your astronomical source:

rsky = 40
raper= 12
raperpix=raper/ypixstep
separation=rsky/ypixstep

Example 4.163. Defining recommended values for circular photometry.

Define the position of the mini apertures and display them on your source and perform the photometry:

ycos=COS(60.0/180.*Math.PI)
xsin=SIN(60.0/180.*Math.PI)
matrix = [[-xsin,-ycos],[-xsin,ycos],[0,-1],[0,1],[xsin,-ycos],[xsin,ycos]]
sum_bck=Double1d()
d=Display(src)
d.setTitle(str(obsid)+", "+band)
d.addCircle(cypixs,cxpixs,raperpix,1,java.awt.Color.blue) # aperture photometry
 radius
d.addCircle(cypixs,cxpixs,separation,1,java.awt.Color.red) # (aperture photometry)
 sky radius
d.setZoomFactor(12)

for spot in matrix:
 xpos=round(cxpixs+spot[0]*separation,3)
 ypos=round(cypixs+spot[1]*separation,3)
 d.addCircle(ypos,xpos,raperpix,1,java.awt.Color.white) # the sky apertures
 eaper = fixedSkyAperturePhotometry(image=src,centroid=False,\
 centerX=xpos,centerY=ypos,radiusArcsec=raper)
 sum_bck.append(eaper["Results table"]["Total flux"].data[0])

Example 4.164. Performing the aperture photometry for all the small spot apertures.

then clean your sample from the outliers and calculate the sky value:

clip=sum_bck.apply(Sigclip(nsigma=3.0,returnmode = Sigclip.RETURN_BOOL))
idx = clip.where(clip==False).toInt1d()
sum_bck_clip = sum_bck[Selection(idx)]
avg_matrix_back = MEAN(sum_bck_clip)
med_matrix_back = MEDIAN(sum_bck_clip)
rms_matrix_back = STDDEV(sum_bck_clip)
sky_bm = avg_matrix_back
print "PSF source sky values (mean: %f, median: %f, stddev: %f):"%\
 (avg_matrix_back,med_matrix_back,rms_matrix_back)

Example 4.165. Removing outliers from the sample.

231

Working with images Build 15.0.3244

A complete, self-contained example for PACS observation 1342184579 is given below:

import math
from math import *
from java.awt.Color import GREEN
from java.awt.Color import BLUE

For PACS, extract the PSF from calibration observation 1342186136
calObs = getObservation(obsid = 1342186136, useHsa = True)
bm = calObs.refs["level2"].product.refs["HPPPMAPB"].product
pabm = 0.0

Getting the observation with the source
srcObs = getObservation(obsid = 1342184579, useHsa = True)
src = srcObs.refs["level2"].product.refs["HPPPMAPB"].product

pa = src.getMeta()["posAngle"].value

Ancillary variables
obsid = 1342184579
OBSID = [obsid]
band = "B"

angle=pa-pabm-180
bmr=rotate(image=bm, angle=angle, subsampleBits=32,\
 interpolation=rotate.INTERP_BICUBIC)
optional information
bmr.setDescription("beam rotated for "+str(obsid)+", "+band)
Display(bm)
Display(bmr)
print "WCS of rotated beam:",bmr.wcs

xpixstep=bmr["image"].meta["cdelt1"].value*3600.
ypixstep=bmr["image"].meta["cdelt2"].value*3600.
if (xpixstep<0): xpixstep=-1*xpixstep
if (ypixstep<0): ypixstep=-1*ypixstep

RA=bmr.meta["raNominal"].value
DEC=bmr.meta["decNominal"].value

cxpix=bmr.wcs.getPixelCoordinates(RA,DEC)[1]
cypix=bmr.wcs.getPixelCoordinates(RA,DEC)[0]

nxpix=bmr.wcs.naxis1
nypix=bmr.wcs.naxis2
cxpix=nxpix/2.
cypix=nypix/2.

maxshift = 10.
print " Fitting rotated beam ..."
for boxsize in range(5,60):
 try:
 minX=cxpix-boxsize/2.
 minY=cypix-boxsize/2.
 sfit = sourceFitting(elongated=True,slope=False,image=bmr,\
 minX=minX,minY=minY,width=boxsize,height=boxsize)
 print " boxsize "+str(boxsize)+"...success!"
 poo=1 # seems to be necessary to make this stop when it has success
 except:
 print " boxsize "+str(boxsize)+"...failed"
 cxpixfit=-1 # or some other value to indicate failure
 cypixfit=-1 # eg maybe the centre of the map, ...
 pixfit_RA=-1
 pixfit_Dec=-1
 poo=0
 else:
 # upon success, grab the results of the sourceFitting
 cxpixfit = sfit.getCenterX()
 cypixfit = sfit.getCenterY()
 pixfit_RA = sfit.getCenterRA()
 pixfit_Dec = sfit.getCenterDec()

232

Working with images Build 15.0.3244

 # very occasionally sourceFitting gives nonsence results, so:
 if ((ABS(cxpix-cxpixfit) > maxshift) or (ABS(cypix-cypixfit) > maxshift)):
 print " ...however, source found too far from original coords"
 print" so setting to -1,-1"
 print " orig coords: "+str(cxpix)+", "+str(cypix)+\
 " found coords: "+str(bm_cxpixfit)+", "+str(bm_cypixfit)
 cxpixfit=-1 # or some other value to indicate failure
 cypixfit=-1 # eg maybe the centre of the map, ...
 pixfit_RA=-1
 pixfit_Dec=-1
 poo=0
 else:
 bm_cxpixfit = sfit.getCenterX()
 bm_cypixfit = sfit.getCenterY()
 bm_pixfit_RA = sfit.getCenterRA()
 bm_pixfit_Dec = sfit.getCenterDec()
 sigma_x = sfit.getSigmaXPixels()
 sigma_y = sfit.getSigmaYPixels()
 bm_fwhm_x = round(abs(2.*SQRT(2.*LOG(2))*sigma_x*xpixstep),1)
 bm_fwhm_y = round(abs(2.*SQRT(2.*LOG(2))*sigma_y*ypixstep),1)
 print "Beam details:"
 print " beam position: pixel:",bm_cxpixfit, bm_cypixfit
 print " coordinates:",bm_pixfit_RA, bm_pixfit_Dec
 print " beam fwhm x,y:",bm_fwhm_x,bm_fwhm_y
 poo=1
 if (poo == 1): break
 pass

xpixstep=src["image"].meta["cdelt1"].value*3600. # pixel size in arcsec
ypixstep=src["image"].meta["cdelt2"].value*3600.
if (xpixstep<0): xpixstep=-1*xpixstep # avoid negative values
if (ypixstep<0): ypixstep=-1*ypixstep
starting RA, Dec values in decimal degrees...from the meta data
or you can work it out yourself
decimal values are necessary
RA=src.meta["raNominal"].value
DEC=src.meta["decNominal"].value
...and in pixel values
cxpix=src.wcs.getPixelCoordinates(RA,DEC)[1]
cypix=src.wcs.getPixelCoordinates(RA,DEC)[0]
maxshift = 10.
print " Fitting astronomical source ..."
for boxsize in range(5,60):
 try:
 minX=cxpix-boxsize/2.
 minY=cypix-boxsize/2.
 sfit = sourceFitting(elongated=True,slope=False,image=src,\
 minX=minX,minY=minY,width=boxsize,height=boxsize)
 print " boxsize "+str(boxsize)+"...success!"
 poo=1 # seems to be necessary to make this stop when it has success
 except:
 print " boxsize "+str(boxsize)+"...failed"
 cxpixfit=-1 # or some other value to indicate failure
 cypixfit=-1 # eg maybe the centre of the map, ...
 pixfit_RA=-1
 pixfit_Dec=-1
 poo=0
 else:
 # upon success, grab the results of the sourceFitting
 cxpixfit = sfit.getCenterX()
 cypixfit = sfit.getCenterY()
 pixfit_RA = sfit.getCenterRA()
 pixfit_Dec = sfit.getCenterDec()
 # very occasionally sourceFitting gives nonsence results, so:
 if ((ABS(cxpix-cxpixfit) > maxshift) or (ABS(cypix-cypixfit) > maxshift)):
 print " ...however, source found too far from original coords,"
 print " so setting to -1,-1"
 print " orig coords: "+str(cxpix)+","+str(cypix)+\
 " found coords: "+str(bm_cxpixfit)+", "+str(bm_cypixfit)
 cxpixfit=-1 # or some other value to indicate failure
 cypixfit=-1 # eg maybe the centre of the map, ...
 pixfit_RA=-1

233

Working with images Build 15.0.3244

 pixfit_Dec=-1
 poo=0
 else:
 src_cxpixfit = sfit.getCenterX()
 src_cypixfit = sfit.getCenterY()
 src_pixfit_RA = sfit.getCenterRA()
 src_pixfit_Dec = sfit.getCenterDec()
 sigma_x = sfit.getSigmaXPixels()
 sigma_y = sfit.getSigmaYPixels()
 src_fwhm_x = round(abs(2.*SQRT(2.*LOG(2))*sigma_x*xpixstep),1)
 src_fwhm_y = round(abs(2.*SQRT(2.*LOG(2))*sigma_y*ypixstep),1)
 print "Source details:"
 print " source position: pixel:",src_cxpixfit, src_cypixfit
 print " coordinates:",src_pixfit_RA, src_pixfit_Dec
 print " source fwhm x,y:",src_fwhm_x,src_fwhm_y
 poo=1
 if (poo == 1): break
 pass

bmr.getWcs().setCrval1(src_pixfit_RA)
bmr.getWcs().setCrval2(src_pixfit_Dec)
bmr.getWcs().setCrpix1(bm_cxpixfit+1.0)
bmr.getWcs().setCrpix2(bm_cypixfit+1.0)
print "WCS of rotated beam with old WCS imposed and shifted to the astro source
 position:"\
 ,bmr.wcs
d=Display(src)
d.setTitle(str(obsid)+","+band)
d.setCutLevelsPercentage(99.0)
d.setTitle(str(obsid)+","+band+",rotated by "+str(angle))
red circle where the astro source was found to be
d.addCircle(src_cypixfit,src_cxpixfit,2,2,java.awt.Color.red)
If you want to add contours of the beam and the astro source to the greyscale map"
Beam:
->must be as many as there are contour levels
cs=[BLUE,BLUE,BLUE,BLUE,BLUE]
->change the min and max according to the flux range in your map
contoursb = automaticContour(image=bmr, levels=5, min=0.1, max=0.5, distribution=0,\
 colors=cs)
d.addWcsImageContour(contoursb)
Astro source:
#cs=[GREEN,GREEN,GREEN,GREEN,GREEN]
#contourss = automaticContour(image=src, levels=5, min=0.002, max=0.004, \
distribution=0, colors=cs)
#d.addWcsImageContour(contourss)
d.setZoomFactor(16)

Plotting the EEF curves
Recommended aperture size
rskyin_src = 60
rskyout_src = 75
The aperture for the bm is not given (will use the same)
rskyin_bm = 60
rskyout_bm = 75

rapers=Double1d.range(41)*2

rapers=rapers[1:]

fluxes=Double2d(len(rapers),2)

cnt=0
for raper in (rapers):
 apphot = fixedSkyAperturePhotometry(image=src,centroid=False,\
 centerX=round(src_cxpixfit,3),centerY=round(src_cypixfit,3),\
 radiusArcsec=raper,sky=0)
 fluxes[cnt,0]=apphot["Results table"]["Total flux"].data[1]
 cnt+=1

cnt=0
for raper in (rapers):
 apphot = fixedSkyAperturePhotometry(image=bmr,centroid=False,\

234

Working with images Build 15.0.3244

 centerX=round(bm_cxpixfit,1),centerY=round(bm_cypixfit,1),\
 radiusArcsec=raper,sky=0)
 fluxes[cnt,1]=apphot["Results table"]["Total flux"].data[1]
 cnt+=1
Scaling the fluxes to median

idx=rapers.where((rapers>rskyin_src)&(rapers<rskyout_src))
fluxes[:,0]=fluxes[:,0]/MEAN(fluxes[idx,0])
idx=rapers.where((rapers>rskyin_bm)&(rapers<rskyout_bm))
fluxes[:,1]=fluxes[:,1]/MEAN(fluxes[idx,1])

p=PlotXY(titleText="My EEF for obsid "+str(obsid)+", "+band)
p.addLayer(LayerXY(rapers,fluxes[:,0],line=1,color=java.awt.Color.black))
p.addLayer(LayerXY(rapers,fluxes[:,1],line=3,color=java.awt.Color.red))
p[1].setName("beam")
p[0].setName("astro source")
p.xaxis.title.text="arcsec"
p.yaxis.title.text="flux"
p.getLegend().setVisible(True)

interpgrid needs to be an array of points to evaluate with the interpolator
interpgrid = Double1d.range(78*8)/8.+2
interp = CubicSplineInterpolator(rapers,fluxes[:,0])
eef_cont=interp(interpgrid)
idx=eef_cont.where((eef_cont >=0.47) & (eef_cont <=0.53))
sey=interpgrid[idx]
fw_as=MEAN(sey)

interp = CubicSplineInterpolator(rapers,fluxes[:,1])
eef_cont=interp(interpgrid)
idx=eef_cont.where((eef_cont >=0.47) & (eef_cont <=0.53))
sey=interpgrid[idx]
fw_bm=MEAN(sey)

print "FWHM (arcsec):"
print " astro source:",fw_as
print " PSF source:",fw_bm

Sky background scatter
RA=bmr.getWcs().getCrval1()
DEC=bmr.getWcs().getCrval2()
cxpixb=bmr.wcs.getPixelCoordinates(RA,DEC)[1] # pixel coordinates of the beam
cypixb=bmr.wcs.getPixelCoordinates(RA,DEC)[0]
cxpixs=src.wcs.getPixelCoordinates(RA,DEC)[1] # pixel coordinates of the astro
 source
cypixs=src.wcs.getPixelCoordinates(RA,DEC)[0]

rsky = 40
raper= 12
raperpix=raper/ypixstep
separation=rsky/ypixstep

ycos=COS(60.0/180.*Math.PI)
xsin=SIN(60.0/180.*Math.PI)
matrix = [[-xsin,-ycos],[-xsin,ycos],[0,-1],[0,1],[xsin,-ycos],[xsin,ycos]]
sum_bck=Double1d()
d=Display(src)
d.setTitle(str(obsid)+", "+band)
d.addCircle(cypixs,cxpixs,raperpix,1,java.awt.Color.blue) # aperture photometry
 radius
d.addCircle(cypixs,cxpixs,separation,1,java.awt.Color.red) # (aperture photometry)
 sky radius
d.setZoomFactor(12)

for spot in matrix:
 xpos=round(cxpixs+spot[0]*separation,3)
 ypos=round(cypixs+spot[1]*separation,3)
 d.addCircle(ypos,xpos,raperpix,1,java.awt.Color.white) # the sky apertures
 eaper = fixedSkyAperturePhotometry(image=src,centroid=False,\
 centerX=xpos,centerY=ypos,radiusArcsec=raper)

235

Working with images Build 15.0.3244

 sum_bck.append(eaper["Results table"]["Total flux"].data[0])

clip=sum_bck.apply(Sigclip(nsigma=3.0,returnmode = Sigclip.RETURN_BOOL))
idx = clip.where(clip==False).toInt1d()
sum_bck_clip = sum_bck[Selection(idx)]
avg_matrix_back = MEAN(sum_bck_clip)
med_matrix_back = MEDIAN(sum_bck_clip)
rms_matrix_back = STDDEV(sum_bck_clip)
sky_bm = avg_matrix_back
print "PSF source sky values (mean: %f, median: %f, stddev: %f):"%\
 (avg_matrix_back,med_matrix_back,rms_matrix_back)

Example 4.166. Performing PSF comparison for PACS point sources.

You can also check an equivalent example for SPIRE, using observation 1342190662 is given below:

import math
from math import *
from java.awt.Color import GREEN
from java.awt.Color import BLUE

Retrieving an older calibration tree that had the posAngle value
calTree=spireCal(calTree="spire_cal_12_0")
band="PSW" # or "PSW" or "PMW"
bm=calTree.phot.getBeamProf(band)

pabm = bm.getMeta()["posAngle"].value

Getting the observation with the source
srcObs = getObservation(obsid = 1342190662, useHsa = True)
src = srcObs.refs["level2"].product.refs["psrcPSW"].product

pa = src.getMeta()["posAngle"].value

Ancillary variables
obsid = 1342190662

angle=pa-pabm-180
bmr=rotate(image=bm, angle=angle, subsampleBits=32,\
 interpolation=rotate.INTERP_BICUBIC)
optional information
bmr.setDescription("beam rotated for "+str(obsid)+", "+band)
Display(bm)
Display(bmr)
print "WCS of rotated beam:",bmr.wcs

xpixstep=bmr["image"].meta["cdelt1"].value*3600.
ypixstep=bmr["image"].meta["cdelt2"].value*3600.
if (xpixstep<0): xpixstep=-1*xpixstep
if (ypixstep<0): ypixstep=-1*ypixstep

These data are not contained in the calibration tree

#RA=bmr.meta["raNominal"].value
#DEC=bmr.meta["decNominal"].value

#cxpix=bmr.wcs.getPixelCoordinates(RA,DEC)[1]
#cypix=bmr.wcs.getPixelCoordinates(RA,DEC)[0]

Let's try with the centre method

nxpix=bmr.wcs.naxis1
nypix=bmr.wcs.naxis2
cxpix=nxpix/2.
cypix=nypix/2.

maxshift = 10.
print " Fitting rotated beam ..."
for boxsize in range(5,60):
 try:
 minX=cxpix-boxsize/2.

236

Working with images Build 15.0.3244

 minY=cypix-boxsize/2.
 sfit = sourceFitting(elongated=True,slope=False,image=bmr,\
 minX=minX,minY=minY,width=boxsize,height=boxsize)
 print " boxsize "+str(boxsize)+"...success!"
 poo=1 # seems to be necessary to make this stop when it has success
 except:
 print " boxsize "+str(boxsize)+"...failed"
 cxpixfit=-1 # or some other value to indicate failure
 cypixfit=-1 # eg maybe the centre of the map, ...
 pixfit_RA=-1
 pixfit_Dec=-1
 poo=0
 else:
 # upon success, grab the results of the sourceFitting
 cxpixfit = sfit.getCenterX()
 cypixfit = sfit.getCenterY()
 pixfit_RA = sfit.getCenterRA()
 pixfit_Dec = sfit.getCenterDec()
 # very occasionally sourceFitting gives nonsence results, so:
 if ((ABS(cxpix-cxpixfit) > maxshift) or (ABS(cypix-cypixfit) > maxshift)):
 print " ...however, source found too far from original coords"
 print" so setting to -1,-1"
 print " orig coords: "+str(cxpix)+", "+str(cypix)+\
 " found coords: "+str(bm_cxpixfit)+", "+str(bm_cypixfit)
 cxpixfit=-1 # or some other value to indicate failure
 cypixfit=-1 # eg maybe the centre of the map, ...
 pixfit_RA=-1
 pixfit_Dec=-1
 poo=0
 else:
 bm_cxpixfit = sfit.getCenterX()
 bm_cypixfit = sfit.getCenterY()
 bm_pixfit_RA = sfit.getCenterRA()
 bm_pixfit_Dec = sfit.getCenterDec()
 sigma_x = sfit.getSigmaXPixels()
 sigma_y = sfit.getSigmaYPixels()
 bm_fwhm_x = round(abs(2.*SQRT(2.*LOG(2))*sigma_x*xpixstep),1)
 bm_fwhm_y = round(abs(2.*SQRT(2.*LOG(2))*sigma_y*ypixstep),1)
 print "Beam details:"
 print " beam position: pixel:",bm_cxpixfit, bm_cypixfit
 print " coordinates:",bm_pixfit_RA, bm_pixfit_Dec
 print " beam fwhm x,y:",bm_fwhm_x,bm_fwhm_y
 poo=1
 if (poo == 1): break
 pass

xpixstep=src["image"].meta["cdelt1"].value*3600. # pixel size in arcsec
ypixstep=src["image"].meta["cdelt2"].value*3600.
if (xpixstep<0): xpixstep=-1*xpixstep # avoid negative values
if (ypixstep<0): ypixstep=-1*ypixstep
starting RA, Dec values in decimal degrees...from the meta data
or you can work it out yourself
decimal values are necessary
RA=src.meta["raNominal"].value
DEC=src.meta["decNominal"].value
...and in pixel values
cxpix=src.wcs.getPixelCoordinates(RA,DEC)[1]
cypix=src.wcs.getPixelCoordinates(RA,DEC)[0]
maxshift = 10.
print " Fitting astronomical source ..."
for boxsize in range(5,60):
 try:
 minX=cxpix-boxsize/2.
 minY=cypix-boxsize/2.
 sfit = sourceFitting(elongated=True,slope=False,image=src,\
 minX=minX,minY=minY,width=boxsize,height=boxsize)
 print " boxsize "+str(boxsize)+"...success!"
 poo=1 # seems to be necessary to make this stop when it has success
 except:
 print " boxsize "+str(boxsize)+"...failed"
 cxpixfit=-1 # or some other value to indicate failure
 cypixfit=-1 # eg maybe the centre of the map, ...

237

Working with images Build 15.0.3244

 pixfit_RA=-1
 pixfit_Dec=-1
 poo=0
 else:
 # upon success, grab the results of the sourceFitting
 cxpixfit = sfit.getCenterX()
 cypixfit = sfit.getCenterY()
 pixfit_RA = sfit.getCenterRA()
 pixfit_Dec = sfit.getCenterDec()
 # very occasionally sourceFitting gives nonsence results, so:
 if ((ABS(cxpix-cxpixfit) > maxshift) or (ABS(cypix-cypixfit) > maxshift)):
 print " ...however, source found too far from original coords,"
 print " so setting to -1,-1"
 print " orig coords: "+str(cxpix)+","+str(cypix)+\
 " found coords: "+str(bm_cxpixfit)+", "+str(bm_cypixfit)
 cxpixfit=-1 # or some other value to indicate failure
 cypixfit=-1 # eg maybe the centre of the map, ...
 pixfit_RA=-1
 pixfit_Dec=-1
 poo=0
 else:
 src_cxpixfit = sfit.getCenterX()
 src_cypixfit = sfit.getCenterY()
 src_pixfit_RA = sfit.getCenterRA()
 src_pixfit_Dec = sfit.getCenterDec()
 sigma_x = sfit.getSigmaXPixels()
 sigma_y = sfit.getSigmaYPixels()
 src_fwhm_x = round(abs(2.*SQRT(2.*LOG(2))*sigma_x*xpixstep),1)
 src_fwhm_y = round(abs(2.*SQRT(2.*LOG(2))*sigma_y*ypixstep),1)
 print "Source details:"
 print " source position: pixel:",src_cxpixfit, src_cypixfit
 print " coordinates:",src_pixfit_RA, src_pixfit_Dec
 print " source fwhm x,y:",src_fwhm_x,src_fwhm_y
 poo=1
 if (poo == 1): break
 pass

bmr.getWcs().setCrval1(src_pixfit_RA)
bmr.getWcs().setCrval2(src_pixfit_Dec)
bmr.getWcs().setCrpix1(bm_cxpixfit+1.0)
bmr.getWcs().setCrpix2(bm_cypixfit+1.0)
print "WCS of rotated beam with old WCS imposed and shifted to the astro source
 position:"\
 ,bmr.wcs
d=Display(src)
d.setTitle(str(obsid)+","+band)
d.setCutLevelsPercentage(99.0)
d.setTitle(str(obsid)+","+band+",rotated by "+str(angle))
red circle where the astro source was found to be
d.addCircle(src_cypixfit,src_cxpixfit,2,2,java.awt.Color.red)
If you want to add contours of the beam and the astro source to the greyscale map"
Beam:
->must be as many as there are contour levels
cs=[BLUE,BLUE,BLUE,BLUE,BLUE]
->change the min and max according to the flux range in your map
contoursb = automaticContour(image=bmr, levels=5, min=0.1, max=0.5, distribution=0,\
 colors=cs)
d.addWcsImageContour(contoursb)
Astro source:
#cs=[GREEN,GREEN,GREEN,GREEN,GREEN]
#contourss = automaticContour(image=src, levels=5, min=0.002, max=0.004, \
distribution=0, colors=cs)
#d.addWcsImageContour(contourss)
d.setZoomFactor(16)

Plotting the EEF curves
Recommended aperture size
rskyin_src = 60
rskyout_src = 75
The aperture for the bm is not given (will use the same)
rskyin_bm = 60
rskyout_bm = 75

238

Working with images Build 15.0.3244

rapers=Double1d.range(41)*2

rapers=rapers[1:]

fluxes=Double2d(len(rapers),2)

cnt=0
for raper in (rapers):
 apphot = fixedSkyAperturePhotometry(image=src,centroid=False,\
 centerX=round(src_cxpixfit,3),centerY=round(src_cypixfit,3),\
 radiusArcsec=raper,sky=0)
 fluxes[cnt,0]=apphot["Results table"]["Total flux"].data[1]
 cnt+=1

cnt=0
for raper in (rapers):
 apphot = fixedSkyAperturePhotometry(image=bmr,centroid=False,\
 centerX=round(bm_cxpixfit,1),centerY=round(bm_cypixfit,1),\
 radiusArcsec=raper,sky=0)
 fluxes[cnt,1]=apphot["Results table"]["Total flux"].data[1]
 cnt+=1
Scaling the fluxes to median

idx=rapers.where((rapers>rskyin_src)&(rapers<rskyout_src))
fluxes[:,0]=fluxes[:,0]/MEAN(fluxes[idx,0])
idx=rapers.where((rapers>rskyin_bm)&(rapers<rskyout_bm))
fluxes[:,1]=fluxes[:,1]/MEAN(fluxes[idx,1])

p=PlotXY(titleText="My EEF for obsid "+str(obsid)+", "+band)
p.addLayer(LayerXY(rapers,fluxes[:,0],line=1,color=java.awt.Color.black))
p.addLayer(LayerXY(rapers,fluxes[:,1],line=3,color=java.awt.Color.red))
p[1].setName("beam")
p[0].setName("astro source")
p.xaxis.title.text="arcsec"
p.yaxis.title.text="flux"
p.getLegend().setVisible(True)

interpgrid needs to be an array of points to evaluate with the interpolator
interpgrid = Double1d.range(78*8)/8.+2
interp = CubicSplineInterpolator(rapers,fluxes[:,0])
eef_cont=interp(interpgrid)
idx=eef_cont.where((eef_cont >=0.47) & (eef_cont <=0.53))
sey=interpgrid[idx]
fw_as=MEAN(sey)

interp = CubicSplineInterpolator(rapers,fluxes[:,1])
eef_cont=interp(interpgrid)
idx=eef_cont.where((eef_cont >=0.47) & (eef_cont <=0.53))
sey=interpgrid[idx]
fw_bm=MEAN(sey)

print "FWHM (arcsec):"
print " astro source:",fw_as
print " PSF source:",fw_bm

Sky background scatter
RA=bmr.getWcs().getCrval1()
DEC=bmr.getWcs().getCrval2()
cxpixb=bmr.wcs.getPixelCoordinates(RA,DEC)[1] # pixel coordinates of the beam
cypixb=bmr.wcs.getPixelCoordinates(RA,DEC)[0]
cxpixs=src.wcs.getPixelCoordinates(RA,DEC)[1] # pixel coordinates of the astro
 source
cypixs=src.wcs.getPixelCoordinates(RA,DEC)[0]

rsky = 40
raper= 12
raperpix=raper/ypixstep
separation=rsky/ypixstep

239

Working with images Build 15.0.3244

ycos=COS(60.0/180.*Math.PI)
xsin=SIN(60.0/180.*Math.PI)
matrix = [[-xsin,-ycos],[-xsin,ycos],[0,-1],[0,1],[xsin,-ycos],[xsin,ycos]]
sum_bck=Double1d()
d=Display(src)
d.setTitle(str(obsid)+", "+band)
d.addCircle(cypixs,cxpixs,raperpix,1,java.awt.Color.blue) # aperture photometry
 radius
d.addCircle(cypixs,cxpixs,separation,1,java.awt.Color.red) # (aperture photometry)
 sky radius
d.setZoomFactor(12)

for spot in matrix:
 xpos=round(cxpixs+spot[0]*separation,3)
 ypos=round(cypixs+spot[1]*separation,3)
 d.addCircle(ypos,xpos,raperpix,1,java.awt.Color.white) # the sky apertures
 eaper = fixedSkyAperturePhotometry(image=src,centroid=False,\
 centerX=xpos,centerY=ypos,radiusArcsec=raper)
 sum_bck.append(eaper["Results table"]["Total flux"].data[0])

clip=sum_bck.apply(Sigclip(nsigma=3.0,returnmode = Sigclip.RETURN_BOOL))
idx = clip.where(clip==False).toInt1d()
sum_bck_clip = sum_bck[Selection(idx)]
avg_matrix_back = MEAN(sum_bck_clip)
med_matrix_back = MEDIAN(sum_bck_clip)
rms_matrix_back = STDDEV(sum_bck_clip)
sky_bm = avg_matrix_back
print "PSF source sky values (mean: %f, median: %f, stddev: %f)" %\
 (avg_matrix_back,med_matrix_back,rms_matrix_back)

Example 4.167. Performing PSF comparison for SPIRE point sources.

4.22.5. Fitting the PACS PSF (for SPIRE it will be simi-
lar)

After rotating and aligning your astronomical source and the PSF you might want to try a PSF sub-
traction to perform photometry. Of course you have to scale your rotated PSF so that the residual
flux would be minimized. The final flux of the source is the aperture photometry flux of the PSF star
(rotated version), adjusted by the scaling factor you decide gives the best residuals. Most of the work
here is in deciding what the best residuals are. By rotating a beam you introduce some artifacts and
so there will always be irregular residuals. To help decide we produce: maps of the residual, EEFs of
the residual, and photometry of the residual. First you set up some basic variables that you will need
later, such as the camera ("blue" lets you reuse Example 4.166) and apertures:

camera="blue"
rapers=Double1d.range(21)*2
rapers=rapers[1:]

Example 4.168. Setting the camera and aperture variables.

then the scaling factors and the increments to apply to the scaling. you can have different scaling
factors for each map if you do more than one map in one script. The increments are needed to refine
the scaling factor. You will set your own increments, e.g.:

factors=[2.3,2.3,2.4,2.4,2.5,2.5,2.6,2.6,2.7,2.7,2.8,2.8]
incr=[-0.3,-0.25,-0.2,-0.15,-0.1,-0.05,0,0.05,0.1,0.15,0.2,0.25,0.3]

Example 4.169. Defining scaling factors for the data.

Here we show the case when the PSF subtraction is performed on two maps, and this is the reason
why the values in "factors" are repeated. In this document we need to break up the script to smaller
bits in order to be able to explain what is going on. But, since it contains a couple of "for" loops, you
need to pay extra attention to the indentation if you cut and paste from here.

240

Working with images Build 15.0.3244

Note

Although you can run this on all obsids at once, it is easier to digest the results if you do
not. If you decide to do more than one obsid then you need to make sure that factors have
exactly as many elements as the number of your obsids.

Start the cycle and set up your parameters for aperture photometry. You will need them later:

Initialise these arrays with your observations
OBSID = [1342186136]
mapList = [src]
bmList = [bmr]
for obsi in range(len(OBSID)):
 map=mapList[obsi]
 bm=bmList[obsi]
 RA=bm.getWcs().getCrval1()
 DEC=bm.getWcs().getCrval2()
 print "\nDoing",OBSID[obsi]
 if (camera=="red"):
 raper=12
 rskyin1=35
 rskyin2=41
 rskyout=45
 else:
 raper=12
 rskyin1=35
 rskyin2=41
 rskyout=45
 EEFs=[]
 SCALE=[]

Example 4.170. Setting up recommended aperture photometry values for all observation ids.

The outer aperture of the sky depends a bit on your map's background but it should be no more than
45 (because of the size of the PSF).

In the next step we scale and subtract the PSF.

 for k in incr:
 eef=Double1d(len(rapers))
 SCALE.append(factors[obsi]+k) # for PlotXY
 # divide by scaling--so your photometry of PSF star should be also:
 bm_sc=imageDivide(image1=bm,scalar=factors[obsi]+k)
 resid = imageSubtract(image1=map,image2=bm_sc,ref=1)

Example 4.171. Scaling and subtracting the PSF.

The loop that starts here goes through all the scaling increments and fills up the SCALE array, and
scales the beam by dividing the PSF image with the scaling factor, and calculates the residual image
by subtracting the scaled beam from the science data. Then continue, to perform aperture photometry
on the residual image, create the EEF of the residual, and finally display the results and the EEFs of
the residuals for all scaling factors.

 cxpix=resid.wcs.getPixelCoordinates(RA,DEC)[1] # pixel coordinates of the beam
 cypix=resid.wcs.getPixelCoordinates(RA,DEC)[0]
 ypixstep=resid["image"].meta["cdelt2"].value*3600.
 if (ypixstep < 0): ypixstep=-1*ypixstep
 raperpix=raper/ypixstep # for calculating flux error from mini sky apertures
 # Aperture photometry task does not like precise fits, this is what the
 "digits"
 # bit is for
 apphot = annularSkyAperturePhotometry(image=resid,centroid=False,\
 fractional=True,algorithm=4,centerX=round(cxpix,1),\
 centerY=round(cypix,1),radiusArcsec=raper,\
 innerArcsec=rskyin1,outerArcsec=rskyout)
 flux = apphot["Results table"]["Total flux"].data[0]
 separation=rskyout/ypixstep
 ycos=COS(60.0/180.*Math.PI)

241

Working with images Build 15.0.3244

 xsin=SIN(60.0/180.*Math.PI)
 matrix = [[-xsin,-ycos],[-xsin,ycos],[0,-1],[0,1],[xsin,-ycos],[xsin,ycos]]
 sum_bck=Double1d()
 sum_bck_ac=Double1d()
 # As commented above, you can play with the precision
 digits=14
 for spot in matrix:
 xpos=round(cxpix+spot[0]*separation,digits)
 ypos=round(cypix+spot[1]*separation,digits)
 eaper = annularSkyAperturePhotometry(image=resid,centroid=False,\
 fractional=True,algorithm=4,centerX=xpos,\
 centerY=ypos,radiusArcsec=raper,\
 innerArcsec=rskyin1,outerArcsec=rskyout)
 sum_bck.append(eaper["Results table"]["Total flux"].data[1])
 pass
 clip=sum_bck.apply(Sigclip(nsigma=3.0,returnmode = Sigclip.RETURN_BOOL))
 idx = clip.where(clip==False).toInt1d()
 sum_bck_clip = sum_bck[Selection(idx)]
 avg_matrix_back = MEAN(sum_bck_clip)
 med_matrix_back = MEDIAN(sum_bck_clip)
 rms_matrix_back = STDDEV(sum_bck_clip)
 cnt=0
 for r in (rapers):
 apphot = annularSkyAperturePhotometry(image=resid,centroid=False,\
 fractional=True,algorithm=4,centerX=round(cxpix,1),\
 centerY=round(cypix,1),radiusArcsec=r,\
 innerArcsec=rskyin2,outerArcsec=rskyout)
 eef[cnt]=apphot["Results table"]["Total flux"].data[2]
 cnt+=1
 EEFs.append(eef)
 disp=Display(resid)
 disp.setCutLevelsPercentage(95.0)
 disp.setZoomFactor(6.0)
 tit="Residual for "+ str(OBSID[obsi]) + ",scaling "+str(factors[obsi]+k)
 disp.setTitle(tit)
 disp.showAxes(True)
 axes = disp.showAxes(True)
 axes[0].setWorldCoordinates(True)
 axes[1].setWorldCoordinates(True)
 disp.addCircle(cypix,cxpix,2,2,java.awt.Color.red)
 print 'Scaling, Residual flux, sky median flux, sky rms::'\
 '%5.3f %.3f, %.3f +/- %.3f
 Jy'%(factors[obsi]+k,flux,med_matrix_back,rms_matrix_back)
tit="Residual EEF curve for "+ str(OBSID[obsi])
p=PlotXY(titleText=tit)
for i in range(len(EEFs)):
 p.addLayer(LayerXY(rapers,EEFs[i],line=1))
 p[i].setName("scaling:"+str(SCALE[i]))
p.xaxis.title.text="arcsec"
p.yaxis.title.text="normalised flux"
p.getLegend().setVisible(True)

Example 4.172. Performing the aperture photometry of the residual image, computing the EEF and print-
ing every result.

242

Build 15.0.3244

Chapter 5. Spectral analysis

5.1. Summary
This chapter tells you about working with spectra in HIPE. It describes:

• Some basic concepts about the spectral tools and Herschel spectral data, in Section 5.2.

• How to visualise your spectra, Section 5.3.

• How to perform spectral arithmetics, averaging, manipulation, selection, how to convert units in
your spectra and how to find the integral under a line in Section 5.4.

• How to deal with problematic baselines Section 5.5.

Many of these operations can be performed on spectral cubes too, which is described in Chapter 6. To
learn how to get spectra into and out of HIPE, see Chapter 1.

Spectral fitting in HIPE is described in Chapter 7.

To learn about more advanced scripting when working with spectra, see the Scripting Guide.

5.2. Spectra in HIPE
Spectra from all three spectrometers on board Herschel (and spectra from other observatories) can be
viewed and interacted with using the Spectrum Explorer and may be modified using the Spectrum
Toolbox in HIPE. There are some instrument specific viewers and tools, such as the SPIRE SDI Ex-
plorer and some selection tools designed for HIFI data are described in the relevant instrument man-
uals.

Spectra come in various flavours in the framework of HIPE, and are explained in detail in Chapter 3
of the Scripting Manual in Scripting Guide. HIFI spectra are HifiSpectrumDatasets with Wb-
sSpectrumDatasets and HrsSpectrumDatasets used for the Wide Band and High Resolu-
tion Spectrometers, respectively. SPIRE level 1 spectra are datasets of type SpectrometerDetec-
torSpectrum, while SPIRE level 2 spectra are datasets of type SpectrometerPointSource-
Spectrum. All PACS pipeline spectral products are spectral cubes but spectra extracted from the
PACS cubes by post-pipeline tasks are spectrum1d or SimpleSpectrum. Spectra extracted from
spectral cubes of data from all three instruments are Spectrum1d, Spectrum2d or Simple-
Spectrum, depending on the task used. All of these types of spectra are known to HIPE as Spec-
trumDatasets (often "datasets" in conversation) and implement what is known as the Spectrum-
Container interface, which allows them all to be visualised and interacted with in the same way.

SpectralLineLists, which contain information on the properties of spectral lines extracted from
Herschel spectra, can also be visualised in the Spectrum Explorer.

5.3. How to display spectra
Spectra are viewed in HIPE with the Spectrum Explorer.

To view a spectrum in Spectrum Explorer, right-click on the variable name of your spectrum (in the
Variables pane or in the context holding your spectra) and choose Spectrum Explorer from the "Open
With" menu option.

By clicking once on a variable in an Observation Context tree you will find that the spectra contained
within it may be viewed in a small Spectrum Explorer window that appears next to the Observation

243

Spectral analysis Build 15.0.3244

Context tree. This can be a convenient way to quickly inspect many spectra. However, not all aspects
of the Spectrum Explorer work in this view. You may click on the arrow to the top right of the plot to
make Spectrum Explorer 'take over' the entire Editor Pane, which will give you full functionality in
Spectrum Explorer, or you may open the variable as described above.

If you have a spectrum stored as a variable in HIPE, say MySpectrum, you can also display it in the
Spectrum Explorer from the command line with:

myPlot = openSE(MySpectrum)

Example 5.1. Opening the Spectrum Explorer from a script.

The Spectrum Explorer opens in a new tab inside the Editor view. Note that the tab title is always
plot, irrespective of the spectrum variable name.

The Spectrum Explorer is divided into three panels, see Figure 5.1:

• The Spectrum Panel, the spectra are displayed and interacted with here. A button bar is found above
the plot area, which gives access to tasks and toolboxes that work with the Spectrum Explorer.
Note that if you move the focus away from the Spectrum Explorer, for example by clicking on the
Console view, the icons will disappear. You have to click on the Spectrum Explorer tab in the Editor
view to display the icons again.

• The Data Selection Panel, from here you select what to plot. The contents of your dataset are listed
with a row for each spectrum (labelled by index) and columns for each SpectralSegment, only
HIFI data contains multiple segments. If your spectrum contains attributes these are also displayed
here.

• The Preview panel, shows a quick preview of a spectrum when selecting a row in the selection
Panel without taking the memory to plot it in the Spectrum Panel. This requires the preview mode
to be turned on, which is the default, and can be a helpful feature for large datasets.

You can resize these panels by dragging the divider bar and you can maximise any of the panels by
clicking the small black arrows on the divider bars.

Figure 5.1. The Spectrum Explorer for a single spectrum.

The type of tab that opens depends on the product, but in all tabs you can perform the same actions.
(Single-segment Spectrum1d will open in a Data Tree.)

5.3.1. Showing and Hiding spectra

244

Spectral analysis Build 15.0.3244

The spectra displayed in the Spectrum Panel are added and removed via the Data Selection Panel:

• If your dataset contains only one spectrum it will be plotted immediately upon opening the dataset in
the Spectrum Explorer. If your dataset contains multiple spectra (multiple rows in the Data Selection
Panel) then no spectra will be shown initially when you open Spectrum Explorer using the "Open
With" option. You can force Spectrum Explorer to plot all spectra in a dataset upon opening from
the command line:

plot = openSE(MySpectrum, display = 1)

Example 5.2. Opening the Spectrum Explorer forcing all spectra to be plotted

• Spectra are displayed by clicking in the squares in the Data Selection Panel. Click on the square
again to remove the spectrum from the plot.

• You can plot all the spectra in your dataset by clicking on the All button at the top left of the Data
Selection Panel. Click on it to remove them all again.

• You can plot all of the spectra in one row by clicking on the index number (first column) of that
row and you can plot all the spectra in a column by clicking on the column number. Clicking again
will remove these spectra from the display.

• Data is plotted with a distinct colour for each spectrum, with the colour of the plotted spectrum
matching that in its associated square in the Data Selection Panel. The colours cycle through blue,
cyan, green, orange, red, magenta and grey.

You can remove all spectra from the plot by choosing the remove from plot option of the With Dis-
played feature at the far right of the button bar (you may need to resize the Spectrum Explorer panel
to see it).

You can also remove one spectrum or a group of spectra from plot after selecting them (see Sec-
tion 5.4.2). To select a spectrum you should enable the selection mode of the Spectrum Explorer by
pressing the arrow icon at the left of the button bar then clicking on the spectrum you wish to remove.
Select several spectra by clicking on all the spectra you wish to remove while in selection mode. The
With Displayed menu will now read With Selected and you can choose the remove from plot option
as above to remove the selected spectra.

5.3.2. Overplotting spectra
Spectra from different SpectrumDatasets can be overplotted in the Spectrum Explorer by drag-
ging a new variable into the Spectrum Panel of an already open Spectrum Explorer.

• If a specific viewer is available for the type of data you drag into the Spectrum Explorer then this
will be opened by default, for example the Data Tree is used for HifiTimelineProducts.

• From the command line you can add all the spectra in a new variable (MyNewSpectrum) to the
plot with:

plot.add(MyNewSpectrum)

Example 5.3. Adding a new spectrum to a plot.

The new spectral product will open in a new tab in the Data Selection panel.

Note that displaying large amounts of data at once can take a long time. It is adviseable to be selective
about what you choose to plot.

Adding a new variable to the plot adds a new layer to the plot. The new layer's wave and flux units
and descriptions are compared with those already plotted. If the two sets of values are compatible (or

245

Spectral analysis Build 15.0.3244

one set of values is not defined) then the data are all displayed in the same plot. If the values are not
compatible (e.g., different units or same units but a different axis label) the the new data is displayed
in a new plot (a subplot) in the Spectrum Panel.

5.3.3. Viewing multiple plots
It is possible to view several plots (subplots) in the Spectrum Panel. You can add plots either below
or to the right of existing ones.

• To add a new plot below an existing one, right click beneath the plot and select Add subplot from
the menu. An empty subplot will appear below the existing plot.

• Drag a spectrum from the Variables pane into the new subplot. The spectrum will be displayed and
a new tab will be added to the Data Selection panel.

• Right-click to the right of any plot to add a new subplot to the right hand side.

Right clicking inside a subplot and on subplot axes gives you access to a subplot menu (over the usual
menu items found by right clicking on a plot) with the following options:

• Remove: removes the subplot from the Spectrum Panel. If you remove all of the subplots you can
add a new one by right clicking anywhere in the Spectrum Panel and selecting Add subplot.

• Create plot variable: creates a variable (an instance of SpectrumPlot) representing the plot that
can be used in scripting. The first such variable created will be named splot_0. The following
example shows how you can add spectra to a variable of this type:

obs = getObservation(1342249478, useHsa=True)
slwc3 = obs.level2.getProduct("HR_spectrum_point").getDefault()["SLWC3"]
sswd4 = obs.level2.getProduct("HR_spectrum_point").getDefault()["SSWD4"]
splot_0 can be created from the Spectrum Explorer using the context menu
splot_0 = SpectrumPlot(slwc3)
splot_0.add(sswd4)

Example 5.4. Usage of SpectrumPlot variables (overplotting spectra).

• Create plot copy: creates a new PlotXY undocked window displaying just the selected subplot.
Note that the new window lacks the Spectrum Explorer toolbar and options.

• Active: making a subplot active means that any (de-)selections you make in the Data Selection Panel
will be reflected in this subplot, even if the data in the tab you are modifying 'belongs' to a different
subplot. Clicking on a plot will make it active too.

• Lock axes: locks the axes of the subplots so that a pan, zoom in or rescale on one will be reflected
on the other(s).

• Unlock axes: unlocks axes.

• Align axes: used on an axis or subplot, aligns the axes of the other subplots so that all show the
same range for that axis. To undo this action, you must use the Auto range option (you can find it
in the same right-click menu as the others) in each of the aligned subplots.

The option to (un)lock and align is also available from the Axis menu option upon right-clicking on
an axis.

When the Spectrum Panel contains more than two subplots, the axis options Align and Lock allow
the user to select one or more subplots where to apply the operation by pressing Ctrl + left-click for
multiple selections. While doing multiple plot axes selections, the cursor will appear as a cross shape
and the axes selection in the subplots will result in a blue highlight. To complete the operation, left-
click on an blank area of the Spectrum Panel.

246

Spectral analysis Build 15.0.3244

5.3.4. Zooming and Panning
• You can zoom in and out using the scroll wheel on your mouse (or with a two-finger gesture on

any compatible trackpad or touchpad).

•
 This icon in the Spectrum Explorer button bar enables zoom mode, which is the default mode

when the Spectrum Explorer is started. When this mode is enabled you can change zoom by drawing
a rectangular box using the left mouse button and you can zoom back out to the original scale using
Ctrl + left click (Cmd + left click on a Mac) in the plot.

• You can also zoom back out to the original scale using the Autorange option under the right mouse
button. Autorange gives you the option to auto-scale the plot axes ignoring any flagged data (without
flags); this can be helpful if there is a very strong artifact in your data.

•
 This icon in the Spectrum Explorer button bar enables panning mode. When this mode is en-

abled you can pan through the spectrum in the plot window by clicking the left mouse button and
moving the mouse, you can pan along both axes.

5.3.5. Changing Display Axes
You can modify the displayed axes and add auxiliary axes within Spectrum Explorer by right-clicking
on a plot axis and selecting the Axis option from the menu:

• On the left (or main) y-axis you have the option to hide the main axis (after hiding an axis this
option becomes show the main axis), to invert the axis and also to show a grid, which displays grid
lines at the values of the main tick points on the y-axis.

• On the lower (main) and x-axes, you have the same options as on the y-axis and also the possibility
to add an auxilliary axis (add aux axis). Under the auxiliary axis option you can choose from wave
number, wavelength (in m) and radial velocity (in km/s, RELATIVISTIC convention). The wave-
length and radial velocity options offer other units from sub-menus.

Note

Some level products from the HIFI processing are computed on an IF (Intermediate
Frequency) scale, which is an intermediate scale proper to the instrument but is not yet
representative of the absolute sky frequency scale applying to the data. While the x-
axes for these spectra can be displayed with other units, it is scientifically meaningless.
Please consult the explanation on HIFI data below for more information.

Once an auxilliary axis has been added you will also find the options to remove and change the units
of an axis. Note that these actions only change the way the axes are displayed and do not change
the data at all. To change the data you should use the appropriate unit conversion tools, such as
convertWavescale.

You may also find an instrument specific menu option. This is only enabled for HIFI data at the
moment and allows the possibilty to display data in velocity (km/s, RADIO convention), LSB/USB
(GHz), or intermediate frequency (MHz). Each of these options has other units available from sub-
menus. The LSB/USB option is automatically the opposite to the frequency scale of the plotted
data, i.e., LSB scale is offered for USB data.

Chapter 22 of the HIFI Data Reduction Guide includes a table of velocity conventions.

• On the right y-axis and the upper x-axis you do not have the option the show or hide the main axis
but otherwise have the same options as for the main axis.

You can change the properties of the axes by right-clicking on an axis and selecting Properties... from
the menu.

247

../../hifi_um/html/hifi_ref_frame.html#hum_nonsso_frame

Spectral analysis Build 15.0.3244

5.3.6. Changing Plot Properties

As of version 13.0 onwards, many of the buttons that affect the layout of the spectrum plot have been
moved to a dedicated panel: the layout properties panel. Only the shortcuts on the main toolbar of the
Spectrum Explorer have been removed, the functionality is still present and it is easier to use when
displayed in its own properties panel.

•
To open the layout properties panel click on the icon of the toolbar .

Figure 5.2. The new layout properties panel.

You can change the following properties in this panel:

• Display/hide the plot title using the checkbox Show plot title. This text can be changed at any
moment the textbox to the right. The updated text is applied to the plot in real time.

• Display/hide the plot legend with the checkbox Show plot legend.

• Access finer configuration options for the plot clicking on the Plot properties... button.

• The line colour, line style, chart type (determined in the HIPE preferences), and line fill are
automatically assigned by default. You can modify these using the lower part of the layout options
panel (Line options), after deselecting the Use automatic line properties checkbox.

• Line (layer) colour: Choose between automatic or manual line colour selection. To choose
line (or layer) colours, first you have to deselect the checkbox Use automatic line colour. A
coloured square button appears to the right. If you click on it, a grid of swatches will appear
in a pop-up from which you can select the colour you want. Automatic mode can be enabled
again selecting the checkbox as it is by default.

• Select if the areas above and below the slope (the line between the start and the end values of
the spectrum) are to be filled with a light gray colour. To do so, check the box Fill area below
the line . More advanced options are available if you use PlotXY to plot your data.

248

Spectral analysis Build 15.0.3244

• Line style: after enabling manual configuration of the line options, you can select SOLID,
MARKED (solid line with '+' symbols), DASHED, MARK_DASHED (dashed line with '+'
symbols) or NONE in the combo-box to the right. Finer configuration is available (symbol
shape, size and colour) using the properties panel, described below.

• Chart type: select the chart syle from the drop-down menu. Choose between LINECHART
(smooth line through the data points), HISTOGRAM, HISTOGRAM_EDGE (histogram with
end points drawn to zero).

You can apply these properties to all the subplots in the Spectrum Panel by selecting assign layer
properties from the drop-down menu under With Displayed at the far right of the button bar.
Note that you may have to resize the Spectrum Explorer to see this.

Alternatively, you can apply these properties to a selection of spectra by selecting (see Sec-
tion 5.4.2) those spectra, whereupon the menu changes to With Selected and then assigning the
layer properties.

•
To open the plot properties in the top-right panel of the Spectrum Explorer click on this icon .
This dialog allows you to modify almost all the properties of the plot.

Properties can be applied to three different plot elements: layer (line), axes, and plot. Once the
property panel is open you can access the properties for a different element by clicking on it while
holding down the Shift key. Each layer (line) has its own properties so you need to do this for each
line you wish to modify the properties of.

You can also open the properties panel using the 'Properties...' option seen in the pop-up menu
when right clicking on a plot element. If a particular element in the context contains no changeable
properties, the plot properties are displayed.

•
The icon of the button displays/hides a grid in the active sub plot.

To change the default Spectrum Explorer settings, choose Preferences from the Edit HIPE menu and
go to the Spectrum Explorer sections. There you can choose the default chart type and also make
displaying grids and/or legends a default by checking those boxes.

In addition, there are subcategories for the data types that can be displayed in the Spectrum Explorer,
such as SpectralLineList. For each data type, you can specify a custom plot title, subtitle and
legend to be applied every time this data stype is displayed in Spectrum Explorer. Metadata fields and
attribute fields can be filled in automatically by specifying the fields name between angular brackets,
optionally with a printf-style format suffix. For example, <longitude>%.2f in the legend element
field displays the value of the longitude attribute for each spectrum in the legend.

5.3.7. Viewing large datasets
The Spectrum Explorer will load all the data before starting to plot it and this can be a slow process
for very large datsets - for example, a HIFI Spectral Scan or PACS, SPIRE EGS. It is adviseable to
be selective about what you plot in the Spectrum Panel and there are several options available from
the Spectrum Explorer button bar to help you to do that.

•
: (de-) activates preview mode. This mode is automatically turned on and causes a preview of

any row selected in the Data Selection panel to be shown in the Preview panel in the bottom right
of Spectrum Explorer.

You can use the preview to scan through your data by clicking on one row in the Data Selection
panel and using the arrow keys to navigate row-by-row through the remainder. Checking the box
in the bottom left of the preview panel will show the data in the main plot.

249

Spectral analysis Build 15.0.3244

•
: shows/hides the filter panel. The filter panel allows you to eliminate datasets from the Data

Selection table, based on values of attributes (see the section below) in this way you can define a
limited sample of data to plot.

• You can use the selection task to create a subset of your data to view and work with, see Sec-
tion 5.4.2.

•
: shows/hides the Data Tree panel. The Data Tree allows 'lazy loading', which means that a

product is not loaded into HIPE until you click on it to display it. This allows you to start looking
at large datasets without having to wait for the entire product to load, as was previously the case. It
also means that you do not have to load all of a product even if you are only interested in looking
at a few spectra contained in it, which saves memory in HIPE. One consequence of lazy loading is
that you will not see any attributes for a spectrum until it is loaded.

The Data Tree shows the hierarchical structure of all of the data in the Spectrum Explorer GUI in
one tab. Data are shown in a collapsable tree structure that allows you plot or hide an entire branch
of data in one go. The Data Tree allows you to inspect all of the data in the Spectrum Explorer and
to add or remove data from the Spectrum Explorer from one location, rather than having to work
with multiple tabs. However, you can open a tab for any product listed in the Data Tree by double
clicking on its variable name in the second column.

A right click anywhere in the Data Tree brings up a pop-up menu with the options to display/hide,
select/deselect or expand/collapse one more selected rows (or all rows of none are selected). Right
clicking on any cell and selecting the copy cell contents option copies the cell content to the clip-
board, which can then be pasted elsewhere in HIPE or in other software.

Rows are selected by clicking and are coloured yellow, a plot will be previewed in the Preview
panel. Spectra selected in the plot (using the selection mode) are coloured pink.

The columns (from left to right) show:

• First column: a '+' for collapsed data containing multiple spectra, or a '-' for expanded datasets.
Clicking on the symbol will expand or collapse that data tree.

• Second column: displays the variable name of the data. You can rename the variable by double
clicking on the variable name, the renamed variable will be added to HIPE Variables pane. Double
clicking on a variable name also causes a red cross to appear next to the variable name, clicking on
the red cross allows you to remove the data (and all 'sub-data' beloinging to it) from the Spectrum
Explorer.

• Third column: displays the colour of the line (layer), if displayed. If collapsed data are displayed
in the plot the box will be grey coloured. Clicking on this box will display or hide all the spectra
in this data set. On mouse-over a displayed spectrum in the plot will be temporarily highlighted.

• Remaining columns: meta data in the data. As for the Data Selection panel, the columns can be
reordered horizontally or sorted according to the meta data value (see Section 5.3.8).

•
: opens a mosaic panel. This does not allow you to select spectra for plotting but rather shows

large sets of data in a more efficient way in a new tab in the Spectrum Panel. The raster panel has
three modes, which can be selected from the drop-down menu at the top right of the panel:

• Grid: all of the spectra in the dataset are displayed in order from top to bottom-right as a series
of postage stamps. On mouse-over a spectrum is displayed in the preview panel. You can adjust
the x and y ranges of the data are viewed over using the slide bars at the top of the panel. This
is the default mode the raster panel opens in.

• Raster: the spectra are displayed according to their position, RA and dec values are given on the
left and top axes, respectively. The x and y ranges of the data viewd can be adjusted as for the

250

Spectral analysis Build 15.0.3244

grid view. Spectra that are from close-by sky positions may be plotted so close together that they
overlap but each plot moves to the top on mouse-over and is displayed in the preview pane. You
can also zoom in and out on the raster display using the mouse wheel or track pad equivalent.

• Location: crosses mark the positions of spectra in the dataset, with RA and dec given on the left
and top axes. On mouse-over the spectrum of each point is shown in the preview panel and you
can zoom in and out on the display using the mouse wheel or track pad equivalent.

You can reset the display with the reset button at the top right on the panel and return to the original
scale after zooming with a right-click.

5.3.8. Filtering and sorting what is viewed
You can refine what data is shown in the Data Selection panel using the filter panel to hide data based

on values in the data. The icon in the button bar opens and closes the filter panel. Alternatively,
you can right-click on the plot and choose Dialogue → Filter to open the filter panel.

To apply a filter, click the cell in the attribute column to display a list of available attribute. Click
on the = sign to choose a comparison operator. Finally, enter a value in the value column and press
Enter. The entries in the Data Selection Panel are filtered according to your criterion, and a new line
appears in case you want to define another filter.

Although the numbers reported in the Data Selection Panel are displayed to a few significant figures the
actual values, found by hovering your mouse over a cell, are given to many more significant figures:
the filter is sensitive to these values rather than the displayed ones. This means that you may find better
results by limiting your filtering to between two ranges for a variable than giving a precise value.

Click on the green circle next to a filter to temporarily disable it; the Data Selection Panel will be
immediately updated to show the results of the modified filtering. Click the red cross to remove a
filter permanently.

Figure 5.3. Filters on attributes.

You can sort data in the Data Selection Panel according to the values of attributes by clicking on the
column header, click again to reverse the order. You can also modify which attributes are displayed: a
right click on a column header will bring up an alphabetically ordered list of attributes in the data, each
one preceded by a check box. Attributes that are checked will be displayed, by default all attributes
are displayed. Clicking once in a check box will uncheck it and hide that column, clicking again will
bring it back. Clicking in one check box and shift-clicking in another will toggle the states of all the
columns in between.

Finally, you can change the order of attribute columns from left to right by directly dragging the
columns around in the data selection panel, or you can drag column names up and down in the attribute
list described above.

5.3.9. Viewing Flags/masks and plot information
You can visualise more detailed information about the data in your spectrum in Spectrum Explorer
using two buttons in the button bar.

251

Spectral analysis Build 15.0.3244

•
: shows/hides flagged channels. If your data contains any flags (sometimes equivalently called

masks) pressing this button once will cause a coloured block to appear over the spectrum in the
region that is flagged. A different colour is used for each flag/mask in the spectrum but the colours
are selected at random. Pressing the button again removes the flags from the plot.

• You can also find information about the plotted data in the lower left corner of the Spectrum Panel.
On mouse-over of a plot element (a subplot, an axis or a plot layer/spectrum, the name of the context
and location of the mouse cursor is displayed). When the mouse is near a spectrum a bullet the same
colour as the spectrum is shown by the variable name, the channel number and any flag information
is also displayed.

5.3.10. Viewing SpectralLineLists

SpectralLineLists contain information about spectral lines and can be overlaid on spectra to
show the position of spectral lines. At the moment they are only produced in HIPE by the Spectrum
Fitter, see Section 7.18.

• To view a SpectralLineList, open it in HIPE using the appropriate method (they can be
saved as pools, FITS files or text files) and drag the SpectralLineList product into an already
existing plot. The entries in the SpectralLineList will be displayed as a vertical line on the
plot.

• You can also view the dataset in the SpectralLineList by opening the SpectralLineList
with the Product Viewer and then opening the dataset contain in the with the Dataset Viewer product
with the Dataset Viewer.

5.3.11. Printing and saving

Printing and saving of the plot (or all the subplots in the Spectrum Explorer) can be done via buttons
on the button bar or from the menu that pops up on a right click in the plot.

•
: saves the plot as a PNG, PDF, EPS or JPEG file. A pop-up appears in which you can specify

the plot type, file name and file location. The same is reached by selecting Save from the File option
upon right-clicking on the plot. Note that if several subplots are displayed they will all be saved
together in the same file.

•
: prints the plot (subplots). A pop-up allows you to set up the print job. The same is reached

by selecting the Print from the File option upon right-clicking on the plot. Note that all subplots
displayed in the Spectrum Panel will be printed.

5.3.12. Plotting from the command line

When making plots for publication or as interim results when running scripts it is more convenient
to create plots via the command line. This is done using PlotXY or the command line version of the
Spectrum Explorer, splot (a contraction of spectrum plot). The usage of these packages are described
in the Chapter 3 in this manual.

5.4. Working on Spectra
Many of the tools provided in HIPE to help you reduce and analyse your data are accessible from the
Spectrum Explorer. Spectral arithmetic and manipulation tools are gathered in the Spectrum Toolbox
and are described in this section. Line fitting can be done using the Spectrum Fitter package, which
is described in Chapter 7.

252

Spectral analysis Build 15.0.3244

5.4.1. Using the Spectrum Toolbox
When a spectrum is viewed in Spectrum Explorer the Spectrum Toolbox can be opened by clicking

on the crossed hammer and screwdriver icon in the toolbar. A task GUI will appear to the right
of the spectrum and the spectrum tasks available in the toolbox can be selected from a drop-down
menu. Alternatively, you can open the tasks described in this section by clicking on a spectrum in the
Variables view and opening the Applicable folder in the Tasks view.

The tasks work on the spectrum (or spectra) that are displayed or on a selection that you make in the
Spectrum Panel. In all cases the output of the task is of the same class as the input, for example, if you
pass a Spectrum1d to a task, the output will also be a Spectrum1d.

Task execution

In HIPE 13 or later, the execution of tasks using the data displayed in the Spectrum Ex-
plorer is asynchronous, that is, the task runs in the background and the GUI remains re-
sponsive during all the process. A waiting cursor is displayed when you hover the mouse
cursor over GUI elements yet to be refreshed (the Spectrum Explorer) for the duration
of the task.

About tasks that create new data

For the spectrum and cube toolbox tasks that create new cubes or spectra and at the same
time add them to the data selection pane, the focus will pass to the new product. This
should be taken into account for additional runs of the same or other tasks, as the new
product will be the new input for the task and some of the parameter entries in the task
pane may change.

It is worth noting that if you open the tasks using the Spectrum Toolbox then you can open the User
Reference Manual (URM) entry in the help for each task by clicking on the small question mark icon
that is situated at the bottom right of the task GUI. If you prefer to open the tasks from the Task view
then you can open the URM entry by right-clicking on the task name and selecting Help in URM. The
URM entries for the spectral tasks, which are linked to the task name in the sections below, provide
detailed descriptions and good code examples, therefore in this section we deal only with the GUI
usage of the tasks.

Warning

It is better to create a variable for the spectrum you wish to work on than to open up a
spectrum from the Context or Observation Viewer and work on that. Some of the spectrum
tasks will not work if you operate from the Context (Observation) Viewer because they
change the data they work on and HIPE will not allow you to change the contents of an
ObservationContext in this way.

5.4.2. Spectral Selection: extraction, and flagging
All of the tasks available in the toolbox take advantage of the possibility to make selections on data
while applying the task and some tasks can include or exclude ranges of data. In addition many of the
tasks provide the possibility to account for flags in data. Therefore, the information in this section is
relevant for all of the tasks in the spectrum toolbox.

• Select in HCSS User's Reference Manual : The select task can be used to select a subset of spectra
from a dataset, the output from the task is the same as the input and can be passed to other spectrum
tasks, this can be helpful when dealing with large datasets. However, the select task can be used
by other spectrum tasks whilst running them. Here we describe how to make selections on spectra
in HIPE in a general sense and then go on to discuss the usage of the select task.

Selection of spectra is done with the spectrum selection mode of the Spectrum Explorer. Click

on the arrow icon in the button bar and then click on a spectrum in the plot area to select it.

253

Spectral analysis Build 15.0.3244

Continue clicking on other spectra to select more. A selected spectrum is indicated by dot symbols
and will automatically be used by the task in the toolbox panel.

All of the spectra in a dataset can be selected by right-clicking in the plot and pressing Select →
Select all and you can deselect them all with Select → Select none.

The selected spectrum can be dragged to the Variables view where it is stored as a new variable
that can be plotted using PlotXY or splot, see Chapter 3.

The Select task GUI has fields for "selection", "selection_lookup" and "segments". These fields are
seen on the GUI forms of all the spectral tasks that allow you to make a selection on your data. Enter
indices of datasets to be selected in the "selection" field and segment numbers in the "segment"
field, recalling that both start counting from 0. The "selection_lookup" field allows you to make
selections on your data without needing to know the indices and make selections based on attributes
(such as observation mode) or observation start time in the data is also possible in the command line
(see examples in the URM entries). However, so far only HIFI has taken advantage of the ability
to include attributes in data.

• extract in HCSS User's Reference Manual : Extracts data from a minimum to a maximum frequen-
cy/wavelength range for the complete set of spectra in a dataset. The spectral ranges to be extracted
can be written into the boxes in the GUI but it is easier to draw a range on the spectrum using the
select range mode of Spectrum Explorer.

To do so, click on the select one or more ranges icon in the button bar. Click and drag to select
ranges in the plot window (the middle mouse button can be used anytime for this as well). This will
create a vertical grey bar and automatically enter the start (minimum) and end (maximum) values
in the GUI. Drawing a second range adds more rows in the GUI.

Ranges can be resized by clicking near the edge of the marker and dragging the edge of the marker
to the desired position. Ranges can be removed from the GUI and the plot by right-clicking on the
drawn range and selecting Remove or Remove all from the marker menu. The right-click menu
also gives you the option to change the colour of the marker and of the line.

When using the Extract GUI, clicking accept after drawing ranges will produce a new spectrum
consisting only of the data in the ranges drawn on the original spectrum.

• flagPixels in HCSS User's Reference Manual : Flags pixels in a spectrum. A prerequisite for this
task to work is that the data should contain flag values, which may not be the case for some PACS
and SPIRE data. If you try to run the task and you see the error message:

java.lang.RuntimeException: No flag arrays included in data. Prepare the
data properly.

that means you have no flag array and this task will not work on your data.

Another pre-requisite is that the task should be able to modify the data (as flag values are overwrit-
ten); this means that you cannot use this task on a dataset that is still embedded in an Observa-
tionContext tree, instead you should create a variable of the dataset and work on that.

If no selection is made on the displayed spectrum, the task will apply new flag values to the entire

spectrum. To select points (or pixels) to flag use the select points mode: a single click will
select a point, a box drawn around a range of points will select the points in that range. Several
selections can be made this way, simply continue to draw boxes around data you wish to flag. Right
clicking on one set of selected points and choosing the deselect option under Point selection will
remove all the selections from the plot. You can remove one selection by drawing another box
around it, drawing a box while holding down the control key will extend the point selection. The
flagPixel task will pick up any point selections in the Spectrum Explorer GUI with no need to
enter anything into the task GUI.

254

Spectral analysis Build 15.0.3244

Instead of selecting a range on the spectrum you also have the option of defining a "mask" parameter,
which allows you to define regions by subband and channel number (or index number) for flagging.
This is more usefully used in a script than when working with the GUI and the interested reader is
referred to the URM entry for further information.

You can select the flag to use from the "flag" field. How this field is populated is instrument-de-
pendent. The task tries to identify what instrument the data comes from and offer only the flags
for that instrument. If the instrument cannot be identified then all of the flags in the build you are
using will be offered. This means that if you are using a version of HIPE with only PACS installed
you would only see the PACS flags but if you were using HIPE with all three instruments installed
and the task could not identify what instrument your data belongs to then you will see the flags for
HIFI, PACS and SPIRE.

Some flags that are set by the flagPixel task may be recognised by pipelines for some instruments,
but not in all cases. Flag values that are recognised by instrument pipelines or instrument-specific
data reduction tools are documented in the instrument Data Reduction Guides. There is no general
'ignore' or 'bad data' flag.

Whilst flagging data, you can optionally set the flux value of the flagged pixels to NaN by checking
the "setFluxToNaN" box.

Note that it is possible to flag data from the Spectrum Panel plot without requiring recourse to the
task GUI. After selecting points to be flagged using the select points mode you can right-click on
the selected points and choose flag or flag and remove from the PointSelection menu. This approach
provides lists of HIFI and SPIRE flags and a manual option with which one may assign an integer
value for a flag. the flag and remove option is equivalent to the setFluxToNaN option in the
flagPixel task.

5.4.3. Spectrum Arithmetics
• add in HCSS User's Reference Manual, subtract in HCSS User's Reference Manual, multiply in

HCSS User's Reference Manual, divide in HCSS User's Reference Manual : Adds/subtracts/mul-
tiplies/divides a scalar value that should be entered in the param field to/from all spectra in the
selected dataset. If your data contains multiple spectra and/or segments in Scripting Guide you can
select a subset to work on by following the instructions in Section 5.4.2.

By selecting the pair-wise option from the drop-menu, adds/subtracts/multiplies/divides groups of
spectra or single spectra together. With the Pair-wise mode, if your datasets contains multiple spec-
tra, the first spectrum of the datasets will be combined, then the second, etc. As for the scalar mode,
you can select a subset of spectra to work on and specify segments.

One note about command line usage: the tasks can also be performed using the common +, -, *, /
symbols so:

spectrum_add_2 = add(ds = spectrum, param = 2.0)
#
Is equivalent to
spectrum_add_2 = spectrum + 2

Example 5.5. Adding spectra using the overloaded method add()

5.4.4. Spectral Averaging and Statistics
• avg in HCSS User's Reference Manual : Averages a selection of spectra from a dataset.

Flags and weights for individual channels/pixels can be taken into account using the variant param-
eter if they available in the spectrum (this will be the case for HIFI data, perhaps not for PACS or

255

Spectral analysis Build 15.0.3244

SPIRE data). Flagged data can be ignored by the task, note that flags are specific to each instrument
so you should refer to the Data Reduction Guide of your instrument to check flag values. See the
URM entry for a detailed explanation of the effects of the different options for the variant parameter.

Selections can be applied before running the task, see Section 5.4.2.

In some cases the data, or your selection from the data, may fall into groups. For example, spectra
taken at the same sky position, or with the same instrumental tuning. By checking the per_group
box you can calculate the average for each of these groups separately.

• pairAvg in HCSS User's Reference Manual : Averages spectra pairwise from two input spectrum
containers. The first spectrum in the first and second container are averaged, and so on. In case the
size of the two containers is different, the result will contain a number of point spectra equal to the
lowest size. A subset of spectra and segments, if available, within the dataset can be worked on.

• accumulate in HCSS User's Reference Manual : The accumulate task averages spectra to a common
wave scale grid and will automatically resample data if needed. In addition, the accumulate task
does not require that the spectra have the same length and will resample overlapping regions of
spectra as required. The accumulate task will not average spectra that are not on a common flux
scale or spectra that are not taken at the same position, within a given tolerance that you can specify.

The task works on the all spectra that are displayed in the Spectrum Panel or on the selected spectra
in the display. In addition you can use the selection in HCSS User's Reference Manual task to
make a selection and pass that to the accumulate task by dragging it to the selection bullet from the
Variables view. In addition, you may specify a range to average over by drawing that range on the
plot after enabling the "Select one or more ranges" mode from the Spectrum Explorer button bar.

You may specify how the average is done with the variant parameter in the same way as is done
for the avg in HCSS User's Reference Manual task. You may also choose which flag to ignore,
rather than ignore all flagged data. To identify the flag you must enter its integer value, rather than
a flag name, check instrument guides for these.

The task will resample the data if required but you can also specify the frequency grid to be used
(the unit parameter refers to the units of the frequency grid) and the resampling method to be used.
You are directed to the URM entry for details.

Finally, you can specify the tolerance in wavelength/frequency and position to be used by the task.
These are specified in the units of these values in the data.

• statistics in HCSS User's Reference Manual : Performs statistical operations on the datasets, always
calculating the mean, rms, median and percentiles (quantiles). The quantities are automatically cal-
culated for each segment is the data, which is typically one for PACS and SPIRE and may be more
for HIFI.

There are two modes of operation available from the drop-down menu:

• perChannel: this mode operates per channel. Taking the mean as an example, if you had, say,
ten spectra in your dataset, this mode would calculate the mean in the first data bin (or channel)
from all ten spectra, and then for the second bin, then the third, and so on. This mode produces
a Product, e.g. "stats", containing a Spectrum1d for each statistic, which may be plotted in
Spectrum Explorer.

• acrossChannel: this mode operates across the range of each segment in the data for each spectrum
in the data. Taking the same example as above and assuming one segment, the result would be
ten mean values. This mode produces a TableDataset that can be inspected in HIPE with the
Dataset Viewer, allowing one to read off the values, and also export to text file, see Chapter 2.
When using this mode you can also use sigma clipping, by supplying the clip value and a flag
value to be assigned to the clipped data. Data will be clipped when it is above clip value
* sigma (standard deviation).

256

Spectral analysis Build 15.0.3244

You can select ranges to include or exclude by drawing a range (see Section 5.4.2) on the plot and
choose whether the range is to be included or excluded from the drop-down menu found by clicking
on include ranges.

5.4.5. Spectral Manipulation: resampling, smoothing,
replacing, gridding, stitching, and folding

• resample in HCSS User's Reference Manual : Resamples data using a Trapezoidal or Euler box.
When using a box filter you should either supply a frequency grid (grid) that the data should be
resampled to as an array of Double1ds, or supply a fixed width (resolution). Note that the resolution
you supply is actually twice the width that the data is resampled to. Another option is to use a
Gaussian filter, which requires that you set a smoothing width in the kernel field. All resampling
modes conserve flux.

By default the density option is set to True (the box is checked) and this means that the flux data
is treated as a flux density (per wavescale unit), if set to false the flux is treated as a per wavescale
bin quantity (i.e. the integrated flux per bin).

• smooth in HCSS User's Reference Manual : Transforms the displayed (or selected) spectra via a
box or gaussian (of user-selected width) smooth of the spectra in a dataset. You must supply a value
for the width parameter. See the URM entry for details of this and the other task parameters.

• replace in HCSS User's Reference Manual : Replaces all or part of a spectrum with another. This
is potentially useful if (part of) one integration among several is "bad" and could safely be replaced
with the average of the others. In theory, bad parts of spectra could be replaced with NaNs in the
case that analysis tools do not honour flags in the data but this is not tested.

In order to replace one spectrum with another you should plot both and then use the selection mode
(see Section 5.4.2) to select the spectrum to be replaced, ds, and the one to replace it with, by.

To replace part of one spectrum by another you should extract (see Section 5.4.2) the part of the
spectrum you wish to insert and use that as the dataset in the by bullet.

• Gridding : Used to grid data in a SpectrumContainer into spectral cubes. This is originally a HIFI
task and still requires that you install the HIFI build to have access to it but is currently being
adapted by SPIRE to produce spectral cubes. For descriptions on usage see the SPIRE and HIFI
Data Reduction Guides.

• stitch in HCSS User's Reference Manual : Stitches together spectra or spectral segments. This is
mostly used for HIFI data to stitch subbands. In theory, one could combine overlapping spectra
from the same or different instruments into one dataset and stitch them together with this task but
this has not yet been systematically tested.

• fold in HCSS User's Reference Manual : A HIFI-specific tool that folds frequency-switched spectra.
The frequency throw is found in the meta data and is picked up automatically by the task.

5.4.6. Spectral Unit Conversion
• convertWavescale in HCSS User's Reference Manual : Transforms the wavescale between frequen-

cy, velocity, wavelength and wavenumber. When converting to velocity you must supply a refer-
ence frequency and the units of the reference frequency.

5.4.7. Finding the integral under a line
You can use the Spectrum Fitter, which produces the integral under the model of a fitted line as one
of its outputs, see Chapter 7.

257

../../hifi_urm/html/herschel.hifi.dp.otf.GriddingTask.html
../../spire_drg/html/spec_launchpad.html
../../hifi_um/html/otfmapping.html

Spectral analysis Build 15.0.3244

A command line tool is available with which to calculate the integral under a line. It allows to integrate
over user-defined regions of a spectrum and to optionally remove a Polynomial background.

The data is expected to be in the form of a SpectralSegment (segment in the examples below)
and the value reurned is a Double, which cannot be saved to disk unless you wrap it in a Product
but can be used in scripts.

How SpectralSegments relate to spectra is described in the Scripting Guide. A quick example is
given here showing how to extract a SpectralSegment from a SpectrumDataset, MySpec-
trum. Assume MySpectrum contains only one spectrum, in the Spectrum Explorer Data Selection Pan-
el you would see only one row with one box, to get to SpectralSegment associated with that data:

Note that PointSpectra are counted from 0 and SpectralSegments from 1!
 segment = MySpectrum.getPointSpectrum(0).getSegment(1)

Example 5.6. Selecting point spectra and segments.

If MySpectrum contained, say, five spectra and you wanted the fourth you would use:

Note that PointSpectra are counted from 0 and SpectralSegments from 1!
 segment = MySpectrum.getPointSpectrum(3).getSegment(1)

Example 5.7. Selecting point spectra and segments (second variation).

Some PointSpectra can contain multiple SpectralSegments, for example, HIFI data contains one
segment per subband, specify the segment number you want.

Before using the integrator you must import it:

from herschel.ia.toolbox.spectrum.integrator import Integrator

Example 5.8. Importing the Integrator class

• Integration over a range or ranges:

The ranges ([windows] in the example) over which to integrate are formatted as [start, stop, start,
stop, ...]. So for one range from a to b: [a, b], and for n ranges: [a1, b1, a2, b2, ..., an, bn]. The ranges
should be given in the same units as the abscissa data.

i = Integrator.doIntegration(segment, [windows])

Example 5.9. Integrating over a set of ranges

• Integration over a range or ranges with 1st order background removal:

The background is removed by fitting a 1st order poly in the [masks] areas. The format of [masks]
is similar to the [windows] format and, similarly, masks have the same units as the data.

i = Integrator.doIntegration(seg, [windows], [masks])

Example 5.10. Integration over a set of ranges with masking.

• Integration over a range or ranges with nth order background removal:

i = Integrator.doIntegration(seg, [windows], [masks], n)

Example 5.11. Integration over a set of ranges with masking and removing up to n levels of background

5.4.8. Weight/error and flag/mask propagation

258

Spectral analysis Build 15.0.3244

Weights and errors in datasets are set by the instrument pipelines and are propagated by the spectral
arithmetics tasks described above. Datsets of HIFI spectra contain a weights column, while SPIRE
datasets contain an error column (and may also contain a weight column but the values contained in
it are calculated from the error). PACS does not currently assign any errors or weights in its datasets
so PACS users should ensure they exclude weights when running any of the spectral tasks that can
consider weight as a variant.

In practice, the spectral arithmetics tasks only propagate weights (w) and uses the standard weight-

sigma relation to propagate errors, w = σ-2

Until HIPE 9.0, weight propagation was carried out using a simplistic scheme. From HIPE 9.0 on, the
propagation is done such that errors are also correctly propagated for scalar and pair-wise addition,
subtraction, multiplication, division and pair-average. A weight propagation scheme that also correctly
propagates errors for the remaining tasks was set in place in HIPE 10.0. The table below shows the
weight propagation scheme used from HIPE 9.0 on, throughout the subscript 1 refers to the first dataset
passed to the task and the subscript 2 to the second.

The terms "flags" and "masks" are used interchangeably in the Herschel project, with HIFI typically
favouring the term "flag" and PACS and SPIRE preferring "mask". The table below also shows how
the flags/masks are propagated by the spectral tasks.

Task Weight propagation
scheme

Comment Flag/mask propaga-
tion scheme

Pair-wise add/subtract w = (w 1 * w 2) / (w 1
+ w 2)

If the denominator is
zero then a zero weight
is defined

Scalar add/subtract unchanged unchanged

Pair-wise multiply/di-
vide

w = (u 1 * u 2) / (u 1 +
u 2) * f -2

where u k = w k * f k
2 and f is flux. If the
denomimator is zero
then a zero weight is
defined.

Scalar multiply/divide w = w / k 2 where k is the scalar unchanged

Pair-average w arithmetic mean = 4 * (w
1 * w 2) / (w 1 + w 2) ,
w weighted = (w 1 + w 2)

If the denomimator is
zero then a zero weight
is defined. The arith-
metic mean is calculat-
ed with variant="flux",
the weighted mean with
variant = "flux-weight".

Stitch

Accumulate

Smooth same smoothing as
chosen for the fluxes

 bitwise-OR logic

Resample same scheme as used
for the fluxes

 bitwise-OR logic

5.5. Dealing with baseline issues
If you are only interested in line emission rather than the continuum then you may wish to correct
baseline issues before working on your data. Within HIPE you have access to a task that allows you
to correct for standing waves in the baseline of data from any instrument and also a tool to allow you
to mask out lines and then smooth the baseline.

259

Spectral analysis Build 15.0.3244

5.5.1. General Standing Wave Removal Tool

5.5.1.1. Introduction to FitFringe

FitFringe is a general sine-wave fitting task that can be used to remove periodic signals in spectra,
such as standing waves, from HIFI, PACS and SPIRE data. A description of the method and history
of the code can be found in Kester et al. ("The Calibration Legacy of the ISO Mission", 2003, ESASP
481, 375). Briefly, FitFringe does the following:

1. A baseline for the signal to be fitted is determined by using the SmoothBaseline task, see
Section 5.5.2. Sharp spectral features are masked out using a sigma clipping algorithm, which is
also done by the SmoothBaseline task. You can control the baseline shape by indicating a
typical period ('midcycle') that is being searched for.

2. Single sine waves are fitted to the baseline-subtracted spectrum, over a wide range of periods. Best-
fitting periods are determined from local or absolute minimum Chi-square points.

3. The sine-wave amplitudes and phases are determined by solving a set of linear equations using the
'LU' matrix decomposition method.

4. The solution is subtracted from the data and the baseline is added back in.

One can fit any number of sine waves to the data. The wavelength units of the input and output spectra
are always micron. Finally, this is not an instrument-specific task; however, a specific task does exist
for HIFI data and this is documented in the fitHifiFringe chapter of the HIFI Data Reduction
Guide .

5.5.1.2. Running FitFringe

FitFringe accepts SpectrumContainers (e.g. a SpectrumSimpleCube, or HIFI's WbsSpectrumDataset)
as input:

swData = FitFringeData(SpectrumContainer, n, m)

where n is the n-th spectrum (technically PointSpectrum) in the data and m the m-th segment
in the SpectrumContainer. If m is not given, all segments are selected. This format is not very
user-friendly for use with cubes, Section 6.7.2 explains how to work out the point spectrum index
number and provides a script to work this out from cube coordinates. Note that HIFI Spectrum Datasets
contain multiple segments by default, while PACS and SPIRE data contain only one segment by
default, however, PACS and SPIRE data aficionados can construct spectra with mutilple spectra too.

FitFringe also accepts a variable produced by FitFringeData as input. FitFringeData in
turn accepts either arrays of wavelength in micron (Double1d), flux (Double1d), flags (Int1d),
and weights (Double1d) as input:

swData = FitFringeData(myFreq,myFlux,myFlag,myWeight)

FitFringe can be opened from the "General" menu under "By Category" in the Tasks pane and does
not appear "Applicable" on any kind of data.

FitFringe can be run on the command line and with a GUI. The latter looks as follows:

260

../../hifi_um/html/hifi_fb_ff.html

Spectral analysis Build 15.0.3244

Figure 5.4. fitFringe task GUI with the parameter entry form.

Clicking on 'Accept' assumes the defaults further explained below. It is equivalent to the command
line statement:

improvedData = fitFringe(swData)

In the process, two plots are created by default. The following plots were created using the script listed
in the box below. The first one shows the sine wave period as a function of Chi2. Selected dips with
minimum Chi2 are indicated with vertical red lines.

Looking at this plot helps you understand how well you have set-up the standing wave removal: if you
have the right number of standing waves you will see a red line in every large dip in the Chi2. Similarly,
if you see lots of dips very compressed together and little else in the plot then you can narrow your
fitting range down to that region.

261

Spectral analysis Build 15.0.3244

Figure 5.5. Plot with standing wave removal lines.

The second plot shows the original data, the baseline, the sine-wave subtracted data, and the mask.
You can zoom in on the solution and original spectrum to investigate how well the task has done by
drawing a box with the mouse.

Figure 5.6. Original data with overplotted baseline, mask and subtracted data.

The output data with the sine waves subtracted can be retrieved as follows:

262

Spectral analysis Build 15.0.3244

wave=improvedData.wave

flux=improvedData.flux

flag=improvedData.flag

weight=improvedData.weight

The applied baseline is stored in a similar way. These are Double1d and can be converted into a
Spectrum1d that can be worked with a plot in the Spectrum Explorer following the method de-
scribed in the Scripting Guide, Section 3.2.1 in Scripting Guide:

mySpectrum1d = Spectrum1d(flux, wave, weight, flag)

The fitted parameters are stored in a TableDataset, which contains a list of the fitted sine waves:

fringeNum: fringe number
cycle: period [per wavenumber in micron]
cycle_In_MHz: period [in MHz]
sinAmp: amplitude of sine component
cosAmp: amplitude of cosine component
chisq: chi^2
chiRed: total chi^2 reduction

The list can be viewed as

f=fitFringe.fringelist

print f

For example, the sine wave periods in MHz are retrieved as

print f.getColumn("cycle_In_MHz")

As the GUI shows, several parameters can be controlled by the user:

• nfringes : number of sine waves to be fitted [DEFAULT: 1].

You require one sine wave for each periodic signal in your data. It can be hard to determine this by
eye so using the number of dips seen in the Chi2 plot is recommended.

• mhz : periods in the plots and in the input parameters 'midcycle', 'cycle', 'cystep', and 'fixfreq' are
expressed in units of cycles per wavenumber in micron, if the 'mhz' boxed is checked then MHz
are used instead. Note that regardless of the state of this keyword, the wavelength units of the input
and output spectra, as well as the plots, are always in micron. The 'mhz' parameter only affects the
'midcycle', 'cycle', 'cystep', and 'fixfreq' parameters. [DEFAULT: mhz=False]

• midcycle : typical cycle frequency used for smoothing in order to determine the baseline [DE-
FAULT: 1.7E6 cycles/micron^-1 = 176 MHz]

If your smoothed baseline shows a periodic structure to it then you need to use a longer period
smoothing frequency.

• cycle : start of sine wave period search range [DEFAULT: 1.1E6 cycles/micron^-1=2727 MHz]

• plot : show results in plots [DEFAULT: a period versus Chi 2 plot and a before/after plot]

• expert : show more plots of intermediate steps [DEFAULT: not]

• fixfreq : fix periods to these values, i.e. do not search for them. Has to be same number as nfringes
[DEFAULT: search for periods].

263

Spectral analysis Build 15.0.3244

This parameter must be set by creating a Double1d variable containing the periods of the wine
waves you want to fit. For example, fix two sine waves to have periods of 1.1E6 and 3E6:

fixed = Double1d([1.1e6, 3E6])

the variable fixed must then be dragged to the fixfreq bullet and you must set the number of sine
waves to fit (nfringes) to 2.

• ncycle : number of cycles to check [DEFAULT: 450]

• cystep : step between cycles, i.e. resolution of the frequency space to search for standing waves
[DEFAULT: 9000 cycles/micron^-1--unlikely to be modified by the user]

• weight: set all weights to 1 [DEFAULT: assign smaller weights to outliers]

• automask: automatically mask datapoints using the sigma-clip algorithm described in the Smooth-
Baseline documentation. This mask is added to any user-defined mask ('usermask') that is pro-
vided. [DEFAULT: automask=True]

• usermask: mask wavelength ranges in addition to the automatically determined mask. Example:
usermask=[(537.0,538.0), (539,539.5)] masks the ranges 537-538 um and 539-539.5 um. [DE-
FAULT: only automatically determined masks are used]

• tolerance: reduce Chi2 until reduction is less than tol (0.01 == 1 percent). [not yet implemented]

• auto: automatically determine the maximum number of fringes needed within the noise, using
Bayesian statistics. [not yet implemented]

The 'cycle', 'ncycle' and 'cystep' determine the cycle range (=range of standing wave frequencies) in
which the task searches for a best fit. The search range is defined as: start = 'cycle', end = 'cycle' +
'cystep'*'ncycle'. If the best fit is outside the search range, the solution will not be very different than
the input data.

However, it is more important to make a decent guess at the number of sine waves you want to fit and
the typical period ('midcycle') in your data.

Converting to cycles/wavenumber from what you see in your spectrum is not intuitive. Recall that

wavenumber is ν = 1/ λ. If your data are in microns you only need take the reciprocal of, say, the
typical period to find the value to pass to the task. If your data are already in inverse cm, just convert to
inverse microns. If your data are in MHz then use (c/f)*1E6, where f is your frequency and the factor
of 1E6 is to convert from m to micron.

The best approach to take is to make some reasonable estimate from your data and modify according
to how the Chi2 plot looks.

This example shows how FitFringe can be used. It is the script used to produce the plots shown
above.

#frequency in GHz (FitFringe assumes the periods are
#constant in frequency space)
myFreq=Double1d.range(800)/100.+500

#flag and weights
myFlag=Int1d(800)
myWeight=Double1d(800)+1.

#sum of 90, 120, and 200 MHz standing waves
#and a Gaussian emission line
sw_freq1=90
myFlux=SIN(2*Math.PI*myFreq/(sw_freq1*1.e-3))*0.04+1.0

264

Spectral analysis Build 15.0.3244

sw_freq2=120.
myFlux=myFlux*(1.+SIN(2*Math.PI*myFreq/(sw_freq2*1.e-3))*0.07)
sw_freq3=200.
myFlux=myFlux*(1.+SIN(2*Math.PI*myFreq/(sw_freq3*1.e-3))*0.05)
myFlux=myFlux+0.35*EXP(-0.5 * ((myFreq - 505.) / 0.05)**2)

#fitFringe expects wavelength in micron
myFreq=(3.e14/(((myFreq))*1.e9))

Make the input standingwave data
swData = FitFringeData(myFreq,myFlux,myFlag,myWeight)

Run FitFringe
results = fitFringe(swData,nfringes=3)

#output data will be in
results[0] : improvedData
results[1] : baseline
results[2] : mask
results[3] : fringelist

Check the fringe list (a TableDataset)
fringelist = results[3]
print fringelist
print fringelist.getColumn("cycle_In_MHz")

Example 5.12. Fitting the fringes.

5.5.2. Baseline Smoothing and Line Masking Tool

5.5.2.1. Introduction to SmoothBaseline

The SmoothBaseline task produces a smooth baseline and a mask of spectral features with no
(or very little) user interaction. It works by smoothing, median filtering, and clipping the spectrum
a number of times. Spectral lines are masked and any standing waves are smoothed over. Both the
smooth baseline and the mask are returned. Although SmoothBaseline was originally developed
for use with the FitFringe sine wave fitting routine, it can be used on its own as well, for example
for automated baseline and line detection purposes.

5.5.2.2. Running SmoothBaseline

SmoothBaseline accepts a variable produced by FitFringeData as input. FitFringeData
in turn accepts either arrays of wavelength, flux, flags, and weights or a SpectrumContainer (e.g.
HIFI's WbsSpectrumDataset) as input. See the box below for examples of either case. The box
also shows how SmoothBaseline can be run from the command line. A GUI can be opened from
the "General" tasks under "By Category" in the tasks pane.

The use of this task on cubes is a little awkward because you must work spaxel/pixel by spaxel/pixel,
unless you write a script to run a loop. It is also not simple to determine point spectrum index number
from cube coordinates, and a script to do that can be found in Section 6.7.2.

The key input parameter is 'midcycle', which is essentially the typical scale to which the baseline is to
be smoothed. Its unit is the number of cycles per wavenumber unit, where wavenumber is defined as 1/
wavelength. Any structure in the spectrum that has a much longer period than 'midcycle' is considered
baseline structure and will not be smoothed or masked.

After applying median filter with width 'midcycle', a boxcar smoothing with 10 times the width of
midcycle is done to determine outliers larger 4 times the difference between the smoothed and input
spectrum. The default boxcar value of 10 can be overruled by the user, although this is likely rarely
needed.

The user can also mask spectral regions a priori, by using the 'usermask' input option.

265

Spectral analysis Build 15.0.3244

Here is a summary of the parameters that can be controlled by the user:

• mhz: periods in the plots and in the input parameters 'midcycle', are by default expressed in units of
cycles per inverse wavenumber in micron, unless the 'mhz' box is checked. [DEFAULT: mhz=False]

• midcycle: typical cycle frequency used for smoothing in order to determine the baseline [DE-
FAULT: 1.7E6 cycles/micron^-1=176 MHz]

• plot: show results in plots or not [DEFAULT: plot=True]

• automask: automatically mask datapoints using a sigma-clip algorithm. This mask is added to any
user-defined mask ('usermask') that is provided. [DEFAULT: automask=True]

• usermask: mask wavelength ranges in addition to the automatically determined mask. Example:
usermask=[(537.0,538.0), (539,539.5)] masks the ranges 537-538 um and 539-539.5 um. [DE-
FAULT: only automatically determined masks are used]

• box: smoothing with a box of size 'box' times the width of midcycle is done to determine outliers.
[DEFAULT: box=10]

You are directed to Section 5.5.1.2 for more information about how to convert various wavelength
units into cycles per wavenumber.

Below, the output from SmoothBaseline is explained. By default two plots are generated, but this can
be avoided by entering 'plot=False'.

Example script:

#make a test spectrum

#wavelength in micron
myWave=Double1d.range(800)/100.+500

#flag and weights
myFlag=Int1d(800)
myWeight=Double1d(800)+1.

#a standing wave with a wavelength of 0.5 micron
#and a Gaussian emission line
sw_wl=0.5
myFlux=SIN(2*Math.PI*myWave/(sw_wl))*0.04+1.0
myFlux=myFlux+0.35*EXP(-0.5 * ((myWave - 505.) / 0.05)**2)

Prepare spectrum data to be processed
swData = FitFringeData(myWave,myFlux,myFlag,myWeight)

#Alternatively, if the data are available in a SpectrumContainer 'sds'
#containing N spectra ('scans') of M segments (e.g. WBS sub-bands), the
#n-th spectrum is selected as follows:
#swData = FitFringeData(sds, n)
#and its m-th segment as follows:
#swData = FitFringeData(sds, n, m)

Run SmoothBaseline. Note that the exact value of midcyc is not
very important, though it should be of the same order of magnitude
as the waves in the spectrum. Here, 7.e5 cyc/micron^-1
corresponds to waves with lengths of lambda^2/midcyc=0.35 micron
baseline = smoothBaseline(data=swData,midcycle=7.e5, plot=True)

#obtain mask of found spectral lines
mask = smoothBaseline.mask

#smooth baseline will be in
baseline.wave
baseline.flux

266

Spectral analysis Build 15.0.3244

baseline.flag
baseline.weight

Example 5.13. Smoothing the background baseline.

These are Double1d and can be converted into a Spectrum1d that can be worked with a plot in the
Spectrum Explorer following the method described in the Scripting Guide, Section 3.2.1 in Scripting
Guide:

mySpectrum1d = Spectrum1d(flux, wave, weight, flag)

The script generates the following plots:

The first plot generated by SmoothBaseline shows the initial baseline
(blue) and the limits above and below which signal will be masked (green).

Clearly the emission line is masked, as indicated by the orange line.

267

Spectral analysis Build 15.0.3244

The second plot generated by SmoothBaseline shows the base-
line in blue and the masked regions indicated in orange.

268

Build 15.0.3244

Chapter 6. Spectral analysis for cubes
6.1. Summary

This chapter tells you about working with spectral cubes in HIPE: exploring the cubes spectrally and
spatially and running various extraction and manipulation tasks on them. The access point for viewing
cube spectra is the Spectrum Explorer, and it is from the Spectrum Explorer that you can access the
Cube Toolbox and the Spectrum Toolbox (and also the Spectrum Fitter GUI, but for this see Chapter 7).

It is the toolboxes that contain the tasks that do the "extraction and manipulation". The individual tasks
can all also be run from the command line and can be called up from the Tasks pane of HIPE; but
the advantage of using them through the Spectrum Explorer is that running tasks side-by-side, and
specifying imports and looking at results, is a more comfortable process.

This chapter is organised around the things that the astronomer would do with their cubes, whether
this is in the Spectrum Explorer itself, or found in one of the toolboxes.

This chapter describes:

• Some basic concepts about the spectral tools and Herschel spectral cubes: Section 6.2. Important
information about cube coordinates: Section 6.3. Important information about the flag, weight, and
error datasets of cubes: Section 6.4.

• The Standard Cube Viewer, which displays and can extract spatial slices of your cubes: Section 6.5.

• How to plot the spectra in your cubes with the Spectrum Explorer: Section 6.6.

• Working with the cube spectra, Section 6.7, including

• spectral arithmetics, averaging and summing spaxels/pixels, statistics

• manipulation (smoothing, resampling, gridding…), flagging

• extracting along the spatial or spectral axes, converting units

• making flux and velocity maps non-interactively: Section 6.7.10.

• fitting and remove the continuum from a cube: Section 6.7.13.

• exporting spectra to ASCII (and FITS): Section 6.7.15.

• Baseline fitting and smoothing: this is mainly aimed at HIFI data but can be used by all instruments.
We refer you to the previous chapter, Section 5.5, to learn about this.

• How to combine full SED spectra of point sources from PACS and SPIRE cubes: Section 6.8.

The tasks of the Spectrum and Cube toolboxes will change the data within the input products, according
to the action requested. Most of the task do not change the class of the product—a cube in usually
means a cube out, even if only some of the spectra have been altered. Most of the tasks copy over the
entire Meta data of the input product to the output product, and where appropriate new Meta data are
added to the end of the Meta data list, and these should also find their way into the FITS files if you
save the result to disk: parameters such as reference wavelengths, or the coordinates of the extracted
ranges, etc.

To learn how to get data into and out of HIPE, see the Data I/O chapter Chapter 1.

To learn about more advanced scripting when working with spectra, see the Scripting Guide. You
will also find there information about the different spectral classes defined in HIPE, which are mainly
Spectrum1/2d, SimpleSpectrum and SpectralSimpleCube.

269

../../sg/html/sg.html

Spectral analysis for cubes Build 15.0.3244

Please do read all of the preparatory sections of this chapter before using the Spectrum Explorer:
Section 6.2; and additionally Section 6.3, Section 6.4, and Section 6.7 before working on your
spectral cubes.

6.2. Cubes and the Spectrum Explorer
Cubes from all three spectrometers on board Herschel (and spectra from other observatories) can be
viewed, interacted with and modified by the same set of tools in HIPE. There are some instrument-spe-
cific viewers and tools, but these are described in the instrument data reduction guides or other instru-
ment-specific documentation.

The default viewer on cubes is the Spectrum Explorer, which you can select with a double click on
your cube in the Variables pane of HIPE. This viewer allows you to:

1. plot and overplot the spectra from your spaxels/spatial pixels, and

2.
access the Spectrum Toolbox (), the SpectrumFitterGUI (described in Chapter 7,), and the

Cube Toolbox ().

The Spectrum Explorer is a viewer. It is not a toolbox in of itself. The Spectrum Explorer will allow
you to view the spectra of a cube (or any other spectral product), overplot different spectra or different
cubes, and make nice plots. In addition, when you are using the toolboxes the Spectrum Explorer can
be used to identify spaxels, or whole spectral and spatial regions, that the toolbox tasks should work
on. In most cases, the icons that allow you to do these selections are in the button bar at the top of
the Spectrum Explorer.

What types of cubes can the toolboxes work with?
Spectral cubes come in various flavours in the framework of HIPE, and are explained in detail in the
Scripting Guide. For all instruments the final cubes are of class SpectralSimpleCube.

• For PACS there are several Level 2 cubes: projected, drizzled, and interpolated cubes, which are
of class SpectralSimpleCube, and the rebinned cubes, which are of a PACS-specific class
—PacsRebinnedCube—and will only be accessible to the spectral tools if you are working on
a PACS build of HIPE. (Level 0.5 and 1 PACS products will also load into the Spectrum Explorer,
but working with these cubes is explained in the PACS Data Reduction Guide: Spectroscopy.)

• HIFI cubes (mapping mode observations) are found at Level 2.5; SPIRE (mapping mode observa-
tion) cubes are found at Level 2, and PACS cubes are found at Level 2 and 2.5.

• Spectra extracted from the cubes from all three instruments will be either Spectrum1|2d or
SimpleSpectrum.

All of these classes of cubes and spectra are known to HIPE as "SpectrumDatasets" (often "datasets" in
conversation) and implement what is known as the "SpectrumContainer" interface, which allows them
all to be visualised and interacted with in the same way. Any SpectrumContainer will be accepted by
the Spectrum Explorer. A common class of spectral product is the Spectrum1d and Spectrum2d.
These can hold single spectra, and also multiple-spectra datasets but with the data held in rows rather
than a cube arrangement.

Why should you care about the class of the product that you are working on? In most cases, if you
are running a task on a cube, then the output will also be a cube even if only some of the spectra have
been changed. However, some of the Spectral Toolbox tasks will return the data as Spectrum1|2d,
even if the input is a cube. In this chapter we will inform you where this is the case.

Note

The Cube Toolbox will only work on SpectralSimpleCubes (and the instrument
flavours of these cubes). If you have a SimpleCube instead, you can convert with the
simple command:

270

../../sg/html/Sadm.SpectraDataCubes.html

Spectral analysis for cubes Build 15.0.3244

what is the class of a cube?
print cube.class
create a SpectralSimpleCube from SimpleCube ("cube")
specCube = SpectralSimpleCube(cube)

Example 6.1. Creating an SpectralSimpleCube object.

A word about arrays within cubes. The data within the cubes—the fluxes, errors, etc—are held
as arrays, except RA and Dec which may be described rather by the WCS attached to the cube. HIFI
cubes also describe the frequency grid via the WCS, SPIRE and PACS use an "ImageIndex" array for
their standard products, and the PACS so-called equidistant cubes use the WCS. This is nothing the
user needs worry about—the various spectral tasks know where to look for the arrays they need. For
more information on the weights, errors and flag arrays, read Section 6.4.

Tip

Spaxels and (spatial) pixels: mean the same thing, but HIFI uses "pixel" while PACS and
SPIRE use "spaxel". These are the spatial-spectral unit of the cube, so one spaxel/pixel
is one spatial element of your cube (one "square") with a full spectrum contained within
it. If you change your spatial grid, e.g. by regridding the cube, the spaxels/pixels are still
called spaxels/pixels, it is just that their size has changed.

6.3. A message about cube coordinates and
the WCS

Cubes are three-dimensional. To know the length of a cube’s dimensions, type:

print MyCube.dimensions
#array('i', [2267, 8, 6])

Example 6.2. Printing a cube dimensions

where the first number is the length of the wavelength/frequency grid, and the last two numbers are
the spatial dimensions.

If you want to work on a single spaxel/pixel of a cube, especially via typed commands, you will need
to know its coordinates. There are two ways that coordinates for cubes are specified: either by spaxel
row,column number (e.g. 0,0; 1,2...) or by so-called "spectral index" (0,1,2,3 ...), which refers to the
placement of the spectrum within the container. (You will never be asked to specify by sky coordinate.)
Most tasks accept cube coordinates, but some still do not.

The spaxel (row, column) number is easy to get. Look at an image of the cube and hover your
mouse over it (e.g. use the Spectrum Explorer; or by right-click selecting on your cube in the Variables
pane, to "Open With" the Standard Cube Viewer). The coordinates of the spaxel under the mouse are
printed at the bottom left of the display and are given in the order (y,x), aka (row, column). This
is also the order that tasks require for cube coordinates. Rows increment as you move your mouse
upwards and columns increment as you move your mouse to the right. If your cube has the spatial
dimensions (as reported with the command above) of "8,6", then the width of the cube in the image is
6 and the height is 8. The bottom-left spaxel will have coordinate 0,0 in the centre of the spaxel.

The spectral index is harder to find. One way to identify the spectral index of a spaxel/pixel are
to convert between them:

for a cube of size 6 wide and 8 high, with dimensions
(wavelength, 8,6)

271

Spectral analysis for cubes Build 15.0.3244

row=8
column=6
for r in range(row):
 for c in range(column):
 idx = (column * r) + c
 print "cube coordinate",r,c," index:",idx

for the same cube, to go back and forth for a single coordinate
row = 8 # cube dimension
column = 6 # cube dimension
specIndex = 2
c = specIndex %column
r = specIndex/column
print r,c # spaxel coordinate

Example 6.3. Printing all the spaxel coordinates that make up this cube.

Another way to identify the spectral index of a particular spaxel is to use the Data tree of the Spectrum
Explorer: see Section 6.6.18 for more on this task.

The spatial coordinates for the cube are stored following the World Coordinate System (WCS) stan-
dard (the WCS is explained in the Scripting Guide in Scripting Guide). The two spatial dimentions are
defined by a reference spaxel/pixel, a reference value, and a delta value. The third (spectral) axis can
also be specified in the WCS if the axis is sampled on an equidistant grid (as is the case for HIFI but
only some SPIRE and PACS cube). In that case, it is also defined by a reference bin, a reference value
and a delta value. If the spectral axis grid is not equally spaced, it can be defined as an ImageIndex,
which will be a separate dataset in the cube product (and a separate extension in the FITS file when the
cube is exported from HIPE; you can learn more about this in the Scripting Guide in Scripting Guide).
The following methods exist to extract and convert coordinate values in the cube WCS object:

Get the world coordinates of the bottom left spaxel (0,0) [open the
cube in any viewer to see the "bottom left"] and the first element in
the spectral axis:
Ra, Dec
print myCube.wcs.getWorldCoordinates(0,0)
wavelength/frequency (if stored in the WCS)
myCube.wcs.getWorldCoordinateZ(0)

Get the pixel coordinates corresponding to a certain position in
RA/Dec:
print myCube.wcs.getPixelCoordinates(83.8454, -5.416)
wavelegth/and frequency:
print myCube.wcs.getPixelCoordinateZ(461.0407682)

When the spectral axis is stored as an ImageIndex, it can be accessed as:
print myCube['ImageIndex']['DepthIndex'].data[0]

Example 6.4. Getting different coordinates from the WCS information of a cube

6.4. A message about errors, weights, flags
The cubes we deal with at Level >=2 can have some or all of image, wave, imageIndex, segment, error,
weight, coverage and flag datasets attached to them (see the Scripting Guide for more information).

What is important for the user to know is that which arrays are present depends on which instrument's
cubes you are looking at. We have already mentioned that there are some differences in the way the
spectral array is held: HIFI cubes describe the frequency grid via the WCS, while most SPIRE and
PACS cubes use an "ImageIndex" array. Another difference between the instruments are in the flags,
weights and errors. Whether your cube has these arrays is something you can establish by looking
at the cube with the Product viewer: for the cube in the figure below there is an image, weight, and
flag dataset in the cube:

272

../../sg/html/Sadm.SpectraDataCubes.html

Spectral analysis for cubes Build 15.0.3244

Figure 6.1. HIFI cube: data arrays

Some of the Spectrum Toolbox tasks allow you to specify that these various arrays are taken into
account as they work, usually by allowing you to specify a flag or weight variant parameter. The
default for most tasks is that all variant boxes are checked. But you need to be aware of the following:

• A flag is used to indicate individual datapoints that have problems or are bad. Flags are created by
the data reduction pipelines, although users can add their own flags if they wish. You should consult
the instrument data reduction guides for more information on flags and their various values. (Note
that PACS and SPIRE flags are called "masks" in the pipeline).

Flags must be contained within an array in the cube called "flag" for them to be considered by the
spectral tools described in this section. Note that while the PACS cubes Level 2/2.5 cubes do have
this array, it does not indicate the presence of bad datapoints: flagged datapoints are not carried into
these final cubes when they are created by the pipeline. The "flag" simply carries information about
which masks were activated when those cubes were created. It is a fruitless exercise to request the
use of the flag array or run any flagging tasks on PACS cubes.

• Weights are an indication of the relative importance of the datapoints with respect to each other.
HIFI cubes have weights, PACS cubes have weights created from the preceding errors, and SPIRE
have weights for some types of cubes, or have instead/also an error dataset. Some spectral tools
can consider the weights: if there is no weights or error dataset in the cube (or you do not want
the weights to be considered) then deselect the weights variant box of the task. The weights are
propagated as explained in Section 6.7.9.

• Errors, as stated above, can be found in PACS and SPIRE cubes. When a tool needs to (or is asked
to) consider weights, if instead it finds an "error" array it will use that: the errors will be converted
to weights as the inverse square, and then errors and weights are propagated as explained in Sec-
tion 6.7.9.

6.5. A quick cube viewer: the Standard Cube
Viewer

This viewer, which you can access via the right-click menu on a cube in the Variables pane, will allow
you to look at images of each spectral slice in your cube. It looks much like the image viewer (see
Section 4.4) but with a slider bar at the bottom to allow you to slide through the layers. You can also
input a layer number in the text box next to the slider bar and press Enter to reach a specific layer.
With a right click on the image, you can access a menu that will allow you to manipulate the image
appearance, such as axes, the greyscale, printing, etc, extract out the current layer to an image, get
coordinates, and more. At the bottom-right is a drop-down menu from which you can display some
of the other layers in the image, e.g. coverage, error ...

273

Spectral analysis for cubes Build 15.0.3244

Tip

If you open the display and see only a tiny dot in the middle, you need to zoom-to-fit with
the third zoom icon:

Figure 6.2. The Standard Cube viewer: zoom to fit is indicated

And if you see a blank image, try moving the scrollbar (to move along the spectral axis)
and normally the cut levels are set better and the cube image is visible.

6.6. Using the Spectrum Explorer to look at
cubes
6.6.1. Opening the Spectrum Explorer on a cube

Quick explanation: Double click on your cube in the Variables pane of HIPE and the Spectrum
explorer will open in the Editor pane. You can drag and drop the GUI out of HIPE and so maximally
size it, or you can expand it within the Editor pane. In the Spectrum Explorer GUI, a cube image can
be seen at the bottom left (the "Data Selection panel") with a plotting pane to its right, and a larger
plotting pane (the "Spectrum panel") can be seen at the top (see the figure below).

Longer additional explanation: You can also open the Spectrum Explorer from the command line
with:

myPlot = openSE(myCube)

Example 6.5. Opening the Spectrum Explorer and plotting a cube.

The Spectrum Explorer opens in a new tab inside the Editor view. The tab title is always plot if opening
from the command line, otherwise it is the name of the cube it was opened on.

The openSE command has a display parameter. When this parameter is set to 1 or True, the
command opens a more limited version of the Spectrum Explorer, without the data selection panel, and
plots all the spectra at once to a variable of type SpectrumPlot, called myPlot in the following
example:

myPlot = openSE(myCube, display=1)

Example 6.6. Opening the Spectrum Explorer and plotting all spectra from a cube.

The Spectrum Explorer is divided into three panels:

• The Spectrum panel: the spectra are displayed and interacted with here. At the top of this is a button
bar with icons that will be explained in this chapter. Many of these icons can also be found from
the menu obtained with a right click inside this panel.

• The Data Selection panel: from here you select spaxels/pixels to plot. The selections are done from
an image of the cube, and until you select a spaxel/pixel no spectrum will be displayed.

• The Preview panel: which gives you a real-time spectral display of the spectrum of the spaxel/pixel
under the mouse.

274

Spectral analysis for cubes Build 15.0.3244

• You can resize these panels by dragging the divider bars and you can maximise any of the panels
by clicking the small black arrows on the divider bars.

Figure 6.3. The Spectrum Explorer with a cube loaded

The red vertical line that you will see in the spectrum plot (not shown in the image above) identifies
the layer, i.e. the wavelength/frequency point, that the cube image shown in the Data Selection panel
has been built from. The array position and wavelength/frequency of this layer are listed at the bottom
of the Spectrum panel when the mouse is over the spectrum. You can use the slidebar to scroll through
the layers, and the red line will move on the plot with this scroll. If the cube image in the Data Selection
panel is blank upon first loading into the Spectrum Explorer, a simple shift of the slidebar will usually
suffice to set the cut levels more usefully.

Tip

The cube image in the Data Selection panel is controlled by the image viewer (Chp. 4).
There are a number of HIPE preferences that can be set which may be useful, in particular
the "Autoscale layers for cubes" and "Display pixels with flagged values" preferences.
Working with these preference options is also possible via a right-click on the cube image.

You can adjust the displayed size of the cube image in the Data Selection panel with the other buttons
at the bottom of the panel. Zooming in and out on the cube image is done with the magnifying lens
icons, and zooming to fit and centre is done with the square icon next to those. You can also type the
zoom factor directly into the box to their right.

It is often easier to work in the Spectrum Explorer if you undock it.

From inside the Spectrum panel and from inside the Data Selection panel you can access their menu
of possibilities with a right click. Many of the menu items accessed from within the Spectrum panel
are also accessible from the button bar at the top of the Spectrum Explorer GUI. The menu you get
from within the Data Selection panel refers to manipulation of the cube image, and are the some of
the same menu items found in the Standard Cube Viewer (Section 6.5). Via the drop-down menu to
the bottom-right of the Data Selection panel, any other datasets in the cube (coverage, error...) can
be displayed in the image. However, note that the Preview panel will always only show the spectrum
plot, and moreover you can only make spaxel selections when viewing the image dataset.

Note

For some instrument builds there may be additional icons in the button bar at the top of
the Spectrum Explorer or additional tabs within the GUI: these will be functions that only
work on the data from that instrument, and for instructions on using those you need to
read that instrument's data reduction guide.

275

Spectral analysis for cubes Build 15.0.3244

6.6.2. Showing and hiding cube spectra; clearing stub-
born spectra

Quick explanation: once you have loaded a cube into the Spectrum Explorer you can:

1. click on a spaxel/pixel in the cube image in the Data Selection panel, and its spectrum will appear
in the Spectrum panel at the top of the GUI; click on another to also display its spectrum; the colour
that the selected spaxel/pixel is highlighted in will also be the colour of its spectrum in the plot;
re-click on a spaxel to deselect it.

2. to select a spaxel shaped area to see all the spectra of, select one of the area icons (, ,)
from the Data Selection panel and then click on the cube image to create, and then resize and move,
the chosen area.

3.
move or resize a shape after you have left it, click on the edit icon , then the shape, on the edges
to resize or drag the centre to move it.

4.
to remove a shape, click on the edit icon , then the shape and then click on the remove icon .

5. to remove everything that has been selected, click the "select" box upon which everything becomes
highlighted in blue, and then chose to remove them.

6. after a removal, you can select new spaxels or areas to display by clicking the "single spaxel selec-

tion" icon or on one of the shapes again.

Longer additional explanation:

• No spectra will be shown initially when you open Spectrum Explorer. When opening from the
command line, you can force Spectrum Explorer to plot all the spectra in a dataset upon opening,
with:

myPlot = openSE(myCube, display = 1)

Example 6.7. Opening the Spectrum Explorer and plotting all spectra from a cube

To remove the spectra you may need to use the "With Displayed" option explained below.

•
 in the Data Selection panel is for panning the cube image, useful for when you have zoomed

on it and want to access a part that has fallen out of the panel display space.

• Spectra can also be cleared from the plot by using a drop-down menu on the very top-right of the
Spectrum Explorer GUI. This will have the words "With Displayed" or "With Selected" as soon as
any spectrum is displayed or has been selected (Section 6.7.2 and later here). Click on this box to
access a drop-down menu, from where you can select "remove from plot":

• This removes all the displayed or selected spectra from all the plots and subplots in the Spectrum
panel, and so is also a last-resort way to remove spectra that you displayed using a task accessed
via the Spectrum Explorer but for whatever reason you cannot now remove.

• At the same time it will remove the highlight around the spaxels/pixels/shapes that you selected
in the Data Selection panel.

• To remove individual, or sets of individual spectra by (i) "selecting them" either with a right-click

on the spectrum's line or by clicking on the Select () icon, and then drawing a rectangle around
the spectrum or spectra you want to select, and then (ii) access the right-click menu Spectrum [Se-
lection] → remove.

276

Spectral analysis for cubes Build 15.0.3244

Note

The image in the Data selection panel is by default created from the "image" dataset. You
can display other datasets, such as coverage and error (drop-down menu at bottom-right of
the Data Selection panel). However, spaxel selection can only be done when the "image"
layer is displayed.

Tip

If you don't see a spectrum it could be stuck on a previous X|Yrange. Zoom out: Sec-
tion 6.6.3.

6.6.3. Zooming and panning
These actions can be accessed from the button bar at the top of the Spectrum Explorer GUI, or from
menus that appears when you right-click while over a plot: Context and Auto range. Note that when
you select an action, that remains active until you select another action.

From the icons you can:

: zoom mode. The default mode when the Spectrum Explorer is started. Change the horizontal and
vertical plot ranges by drawing a rectangular box using the left mouse button. Ctrl + left [Cmd + left
for macs] click of the mouse will zoom to fit the plot. You can also, at any time, use the mouse wheel
to zoom in and out of a plot.

: pan mode. Pan through the spectrum in the plot window by depressing the left mouse button and
dragging the mouse, doing this on either axis for 1d panning or in the middle of the plot for 2d panning.

From the "right-click inside a plot" context menu, the zoom and pan are available from the Context
menu and from Auto range can you also zoom out to encompass the entire spectrum. You can choose
to include or exclude flagged data points (with flags or without flags) in the automatic ranges.

6.6.4. Real-time spectrum display: preview panel
The Preview panel at the bottom right of the Spectrum Explorer GUI shows a real-time update of the
spectrum of the spaxel/pixel under the mouse. If you check the small box at the bottom left of this
panel, "show preview in main", you will then see the real-time update spectrum also in the main plot
of the Spectrum panel.

6.6.5. (Over)plotting spectra from multiple cubes
Quick explanation: drag and drop a second cube or any other spectrum dataset into the Spectrum
panel of the Spectrum Explorer, and from there you can select spaxels/pixels to see the spectra of. If
the units and labels of the new cube/spectrum dataset are the same as that of the first cube, the spectra
are overplotted, otherwise the spectra are instead plotted in a new subplot in the Spectrum panel.

Longer additional explanation:

• Dragging a non-spectrum Product from Variables into the Spectrum Explorer causes a Data Tree
tab to open in the Data Selection panel: see Section 6.6.18.

• If you opened the Spectrum Explorer from the command line, you can add all the spectra in a new
variable (myNewCube) to the plot with:

myPlot.add(myNewCube)

Example 6.8. Adding cube data to a Spectrum Explorer instance

This will at the same time plot all the spectra of that cube if you used the display=1 option when
creating "myPlot".

277

Spectral analysis for cubes Build 15.0.3244

Adding a new variable to the plot adds a new layer to the plot. The new layer's wave and flux units
and descriptions are compared with those already plotted. If the two sets of values are compatible (or
one set of values is not defined) then the data are all displayed in the same plot. If the values are not
compatible (e.g., different units or same units but a different axis label) then the new data is displayed
in a new plot (a subplot) in the Spectrum panel.

6.6.6. Linking the display of spectra from multiple
cubes

If you have more than one cube loaded into the Spectrum Explorer (see the section above) then you
can compare the spectra of these cube directly.

1. Load the cubes you wish to compare into the Spectrum Explorer (open one with the Spectrum
Explorer and drag and drop the others to the Spectrum panel). If there are also cubes present you
do not wish to compare, that is OK.

2. At the bottom of the Spectrum Explorer you see the following:

Figure 6.4. The cube comparison buttons

When you click on the "None" you can chose how to "link" your multiple cubes together: on the
WCS coordinates ("world"), on the [absolute] spaxel coordinates ("pixel"), or not at all. You need
to do this for each cube you want to compare; as the default is "None", any cube for which you do
not change the "link" will not be compared.

3. To avoid asking to compare one cube on "world" and another on "pixel" (which makes no sense),
whatever the last choice you made was, is applied to all the cubes you have chosen to link.

4. Now when you click on the spaxel/pixel of a cube, the spectrum from that cube, and from all the
cubes you have linked, for the same pixel or world coordinate will be plotted in the Spectrum panel
plot.

5. If you select the "Show Comparison Preview" button (see figure above) then in addition you will
see the spectra of all the cubes you have linked as a real-time display in the Spectrum panel's plot.

6. Unlinking (select "None") any one of the linked cubes will unlink all and also clear all spectra and
spaxel selections.

6.6.7. A grid layout of the spectra in a cube

From the button bar at the top of the Spectrum Explorer (), or from the Dialogue menu when you
right-click in the Spectrum panel, you can view a mosaic/raster plot of a cube:

Figure 6.5. Mosaic/raster view

278

Spectral analysis for cubes Build 15.0.3244

A second click on the icon, or deleting the grid tab, will revert back to just one tab with the Spectrum
plot in it.

There are three grid layouts offered (select them from the drop-down menu at the top-right of the
panel):

• Grid: the spectra plotted in order of their "point spectrum" number. i.e. starting from 0 at the top
left and incrementing right and down (see Section 6.3 to learn how to convert between index order
and cube coordinate order).

• Location: a cross for the central sky position of each spaxel.

• Raster: a layout that follows the cube's footprint, i.e. one small spectrum plot for each spaxel and
in the correct relative sky locations. You can use the scroll button of your mouse to zoom in and
out; for larger cubes this will be necessary.

You can adjust the wavelength and flux ranges for all the small plots using the entry boxes or range
bars at the top of the panel.

6.6.8. Viewing in subplots (multiple spectrum plots)
Quick explanation: to open a new plot panel (a subplot) in the Spectrum panel, go to the location
outside of the plot axes where you want the new plot to appear, right-click, and from the menu there
select Add subplot. All subsequent plotting actions will appear in this plot; to activate any other plot
—so plotting actions appear there instead—click in the plot you want to be active.

Longer additional explanation: When you open a new subplot, any actions you now do in the Data
Selection panel or any spectra that will displayed by tasks running from the Spectrum Explorer, will
happen in this new subplot. To select a different subplot to work with you can simply click on the
subplot, or right-click over it and select Activate from the Subplot menu.

Figure 6.6. The Subplot menu.

Right-click inside any subplot to get a Subplot menu with the following:

• Remove: remove this subplot; if this removes all subplots (i.e. you had only one plot) you can add
a new one with a right-click access to the menu from anywhere in the Spectrum panel.

• Create plot variable: explained in Section 6.6.17.

• Create plot copy: explained in Section 6.6.9.

• Activate: make this plot the active one; clicking on a plot also makes it active.

• Lock/Unlock axes: so that scrolling the axis of a subplot does the same on the corresponding axis
of other subplots.

• Align axes: so that all subplots show the same portion of that axis.

When the Spectrum Panel contains more than two subplots, the options to Align and Lock axes allow
the user to select one or more subplots where to apply the operation by pressing Ctrl + left-click for
multiple selections. While doing multiple plot axes selections, the cursor will appear as a cross shape
and the axes selection in the subplots will result in a blue highlight. To complete the operation, left-
click on a blank area of the Spectrum Panel.

279

Spectral analysis for cubes Build 15.0.3244

6.6.9. Standalone plot panel
You can create a stand-alone spectrum plot using the "Create plot copy" option from the "Subplot"
menu accessed via a right-click inside the Spectrum panel. This can be e.g.\ to play with to create a
plot to print. If you ask for this via the "Subplot" menu, all subplots are included. If the standalone
window is grey, a quick resize should bring up the plots.

6.6.10. Changing display axes
When right clicking on a plot axis, you get a context menu with the following options:

• Axis: this opens a submenu to change various properties of the axis,

• lock/unlock: if you have several subplots then you can lock axes so that scrolling the axis of a
subplot does the same on the same axis of other subplots; and unlock them.

• hide/show: the axis you have clicked on.

• align: if you have several subplots then you can align axes so that all subplots show the same
portion of that axis.

• add aux axis: for the x-axis only, this will allow you to change the units of that axis (note: the
display is changed, the data are not); once you have added this aux axis, from the right-click
menu you can change the units or remove the aux axis.

• show grid: shows grid lines for that axis direction.

• invert: inverts (flips) the axis.

• Properties: opens a dialogue window with additional options for customising axes.

6.6.11. Changing plot properties and behaviour
The appearance of your entire plot (the data within it as well as the geography of the plot panel) can
be controlled by editing its properties.

6.6.11.1. Appearance of the plot

To change the appearance of a plot, click the icon on the button bar of the Spectrum Explorer to

modify plot layout properties, see below. To display or hide the plot grid, the icon should be used.

Within the layout properties panel, you can find options to:

• Display/hide the plot legend (if there is one).

• Switch between line and histogram mode (after disabling Use automatic line properties and chang-
ing the Chart type).

• Show/hide the plot title (if there is one) and update it once displayed.

This is explained with much more detail in Section 6.6.11.5.

6.6.11.2. Editing the Spectrum panel properties

To edit the properties of the Spectrum panel you should select the icon from the button bar, or
chose Properties in the menu you get via a right-click in the plot. The properties panel will open in the

280

Spectral analysis for cubes Build 15.0.3244

right of the Spectrum panel and from there you can view and modify any Spectrum panel properties
(geography, line style, widths, colours...).

There is a separate properties panel for the three elements of the plot—the layer (each separate dis-
played spectrum is a separate layer), the axis (x and y), and the plot (the box that defines the plotting
area(s)). An easy way to select these is to select the Properties menu item while the mouse is located
on a spectrum (layer), on an axis, or in a blank bit of the plotting area. You can also shift between any
of these elements by mouse-clicking while holding down the Shift key with the mouse located over a
spectrum, axis, or plotting area, once the Properties panel is open.

You can also edit the properties and actions for each of these three elements from a mouse menu, as
is explained in the next three subsections.

Example of changing a plot property: if you want to change the thickness of a spectrum line drawn
on your plot:

1. Choose the Properties icon to open its panel.

2. Shift + left click a spectrum's line, i.e. you select the spectrum you want to change the properties of.

3. And in the Properties tab that opens on the right of the plot you can change the "stroke" size in the
"Layer Style" part of the tab by simply clicking in the box (will say 0.5 by default), typing in your
new value and pressing the Return key.

4. To change the line thickness for any other spectrum, you need to select it (each new spectrum is
a new layer!) and then edits its properties.

Layer properties include line thickness, colour, etc. Axis properties includes tick marks, spacing, etc.
Plot properties includes the geographic location of the plot/subplots (they get changed together).

You can only change the properties of a single layer (i.e. a single spectrum) in a single subplot at a
time, i.e, that spectrum you shift-clicked on. The same applies to changing the axis properties—only
the axes of the subplot you selected (via shift-select on an axis of a subplot) will have the properties
changed. Plot properties get changed for all subplots displayed.

6.6.11.3. Editing the axis properties

When right-clicking on a plot axis, you get a context menu which includes the following axis prop-
erties:

• Axis: this opens a submenu to change various properties of the axis: hide main axis or add an auxil-
iary axis (with different units), show a grid, and invert. If you have multiple subplots in your Spec-
trum panel then you are also offered the chance to lock axes so that scrolling the axis of a subplot
does the same on the same axis of other subplots, and unlock them. You can align axes so that all
subplots show the same portion of that axis.

• Properties: (at the bottom of the menu) opens the properties panel.

6.6.11.4. Editing the plot properties

When right-clicking inside a plot/subplot, you get a context menu which includes the following prop-
erties options:

• Subplot: opens a submenu with options to remove the subplot (see Section 6.6.8), make it active
(so that newly selected spectra are shown in this subplot), or generate a variable representing the
plot, so that you can operate on it outside Spectrum Explorer. Note that the variable corresponds
to all the subplots in the Spectrum Explorer. If you have multiple subplots in your Spectrum panel
then you are also offered the chance to lock axes so that scrolling the axis of a subplot does the
same on the same axis of other subplots, and unlock them. You can align axes so that all subplots
show the same portion of that axis.

281

Spectral analysis for cubes Build 15.0.3244

• AutoRange: enables or disables the automatic adjustment of axis ranges as spectra are added and
removed. You can choose to include or exclude flagged data points (with flags or without flags)
in the automatic ranges.

• Properties: (at the bottom of the menu) opens the properties panel.

6.6.11.5. Editing the layer properties

Each new spectrum you add to a plot is a new layer. Each layer has its own properties, and each
layer's properties will be changed independently of the other. By default the layer properties are auto
assigned. To change the line style, colour, and line type you should open the layout properties dialog

by clicking on this icon of the button bar:

Figure 6.7. changing layer properties

Within this dialog, you can change the following properties:

• Auto or manual line style (this is toggled using the checkbox Use automatic line properties); when
this is unchecked you can choose the line style you want from the drop-down labeled Line style. To
control if the spectrum is to be filled, you should check the Fill area below the line button.

• Auto or select colour using the checkbox Use automatic line colour.

You can reset the changes by selecting Use automatic line properties again. All the next plotted spectra
will be changed to your new chosen style, and will be so-affected until you either select a new style
or go back to auto mode.

6.6.12. A table of the plot—mouse interactions
The Spectrum Explorer provides context-dependent plot interactions, i.e. what a mouse click or move-
ment gives you depends on where the cursor is. The "context" is printed at the left bottom corner of
the plot panel, together with the location of the mouse cursor in plot coordinates: "subplot [576.60,
5.6]" is an example. The following table provides some contexts and the mouse interaction behaviour.

Context Click Ctrl-click Drag Scroll

subplot Set as 'active' Zoom/Select/Pan Zoom

axis Pan Zoom

spectrum Select spectrum Extend selection Move spectrum to
another subplot

 Select datapoint Extract spectrum
to a new variable

282

Spectral analysis for cubes Build 15.0.3244

Context Click Ctrl-click Drag Scroll

 Use spectrum as
task input parame-
ter

selection Same as above

marker edge Resize marker

6.6.13. Changing your Spectrum Explorer preferences
To change the default Spectrum Explorer settings, choose Preferences from the Edit HIPE menu and
go to the Spectrum Explorer sections. In addition to global options, there are subcategories for a num-
ber of data types (classes). For each data type, you can specify a custom plot title, subtitle and legend,
which will be triggered whenever that datatype is read in. Metadata fields and attribute fields can
be filled in automatically by specifying the fields name between angular brackets, optionally with a
printf-style format suffix. For example, <longitude>%.2f in the legend element field displays the
value of the longitude attribute for each spectrum in the legend.

One of the preferences controls how the tabs behave, i.e. when you have multiple products loaded
in the Spectrum Explorer. You can chose that the active tab, i.e. that which is on the top, is the one
that the toolboxes (Spectrum and Cube Toolbox) preferentially take their input from. Alternatively,
you can ask that if a spectrum has been chosen from a tab (and is therefore displayed in the Spectrum
panel), that will preferentially be taken as the default input to a task.

6.6.14. Viewing plot information
You can view additional plot information by hovering the mouse cursor over the plot. The data will
appear in the bottom-left corner of the main spectrum plot panel.

6.6.15. Viewing datapoint flags

: displays flagged datapoints. These will appear as a white cross and a curtain will sit over the plot
at those X-axis points. Note that the flags are taken from a "flag" layer in the cube. To see if your cube
has a flag dataset (and to see if any flag values are non-zero), right click on it in the Variables pane,
select "Open with" and "Product viewer". The data panel there lists the arrays in the cube:

Figure 6.8. The arrays in a cube.

can also be accessed from the menu you get when you right-click on the plot and select View.

6.6.16. Printing and saving
These actions can be accessed from the button bar or from a menu that appears when you right-click
while over a plot (File).

283

Spectral analysis for cubes Build 15.0.3244

: saves the plot as a PNG, PDF, EPS or JPEG file. If several subplots are displayed, all are in the
saved product.

: prints the plot. If several subplots are displayed, all are plotted.

6.6.17. Creating a new variable from a plotted spec-
trum

When right-clicking inside a subplot (subplots: Section 6.6.8) you get a context menu which includes
Subplot from which you can select Create Variable. This will take the active plot/subplot and make
a new variable, which will appear in Variables pane, that represents the plot. The idea is that you can
work with this outside of the Spectrum Explorer.

The variable is not a spectrum, it is a plot object that you can use in further plotting on the command
line. The variables created will be named splot_0|1|2... The following example shows you how to use
this, e.g. to open it in a new instance of the Spectrum Explorer:

p = splot_0.plot
sp = splot(p)

Example 6.9. Creating a plotting variable for later use with splot

6.6.18. A meta data list: and how to relate spaxel coor-
dinates to index coordinates

The icon , found in the button menu at the top or via right-click in a plot and from there in the
Dialogue menu, allows you to see a Data Panel for your cube. It brings up a new tab in the Data
Selection panel with a listing of information for each spaxel/pixel—what you are looking at is the
Data Tree. This is presented as a table, each row of which is a new spaxel/pixel. The first row is for
the entirety of the product. If you click on the "variable" column for a row you see the spectrum in
the Preview panel, click on the square cell next to that to see the spectrum in the Spectrum panel, in
a colour corresponding to the colour the cell turns into. Click on these elements of the first row to see
the entire cube plotted in the Preview or Spectrum panel.

The information in the Data Tree comes from the meta data of the cube. However, for cubes this listing
is of limited use: if you want to see the meta data you can use the Observation Viewer on the cube,
and since there is only one set of information per cube, rather than per spaxel/pixel, the information
in the Data Tree is exactly the same for each row. This is more useful for non-cube spectral products,
and mainly for the HIFI instrument. See Section 5.3.7 to learn more about using this panel on these
other data.

However, one use of the Data Tree for cubes is to help you identify the spectral index values for
any particular spaxels. Spaxels can be located via their coordinates (row, column) or (dataset/spectral
array) index value (0,1,2,...). Some tasks accept spaxel coordinate inputs and others only spectral index
inputs. The coordinates can be found by looking at the coordinate panel at the bottom of the cube
image of the Data Selection panel. The index for these coordinates can be found using the Data Tree
in the following way:

1. In the Data Selection Panel, click on the spaxels you want to select if looking at a cube, or click
on the row if looking at a non-cube multi-spectrum dataset.

The corresponding spectra are plotted in the Spectrum Panel. Make sure only the spectra you want
to select are there displayed.

2.
Click the icon in the toolbar.

284

Spectral analysis for cubes Build 15.0.3244

The DataTree tab opens in the Data Selection Panel.

3. Go to the DataTree tab. The spaxels you have selected are marked by coloured squares. The numeric
index of each spectrum is shown in the variable column.

4. You can now create a selection array using the following command in the Console:

mySelection = [5, 12, 24]

Example 6.10. Creating an array for selecting a particular spectrum from a cube

6.6.19. Filtering what is viewed: not useful for cubes

: opens the filter panel, which appears in a new tab under the Preview panel; however for cubes
this is not a useful. For non-cube Spectrum Containers this allows you to order spectra loaded into
the Spectrum Explorer following attribute [mainly only HIFI data have attributes]. But for cubes the
"listing" of spectra (in the Data Selection panel) is not a list but a cube image, and for an image the
ordering is set by RA, Dec—no other ordering is possible. See Section 5.3.8 to learn more about using
this panel on these other data.

This item can be found from the button menu of the Spectrum Explorer or by right-clicking on the
plot and going to the Dialogue menu.

6.6.20. Plotting from the command line
When making plots for publication or as interim results when running scripts it may be more conve-
nient to create plots via the command line. This is done using PlotXY or the command line version
of the Spectrum Explorer, splot (a contraction of spectrum plot). The usage of these packages are
described in the Plotting chapter in this manual.

6.7. Working on cubes: the Spectrum and
Cube Toolboxes

In this section we describe the tasks of the Spectrum and Cube Toolboxes which you can call up
from the Spectrum Explorer. These toolboxes include tasks to perform various spatial and spectral
operations on the spectra of a cube, for example to add, average, flag, make flux and velocity maps,
crop spectrally or spatially, change units and calculate statistics. The main difference between the
two is that the Cube Toolbox works on cubes, while the Spectrum Toolbox will work on any spectral
product, including cubes. There is some overlap between the two in what they do: the emphasis of
the Cube Toolbox is on working with cubes along the spectral and spatial planes, while the Spectrum
Toolbox concentrates more on mathematical tasks.

The toolboxes are opened from the icon menu at the top of the Spectrum Explorer GUI, and from within
the toolbox tab that opens in the Spectrum panel you can select their specific tasks. The individual
tasks can also be found in the Tasks pane of HIPE; the interaction with a task opened this way is similar
to that when opening via the Spectrum Explorer, it is mainly selecting spectra or spectral ranges for
the task to work on that differs.

Before continuing with this section you should read Section 6.2 to learn more about working with
cubes in HIPE, Section 6.3 to learn more about working with the coordinates of the spaxels/pixel in
your cube, and Section 6.4 to learn more about weights, errors, and flags.

See Section 6.6, to learn how to use the Spectrum Explorer. Please also read the next two sections,
where we explain the behaviour of the Cube and Spectrum Toolboxes working via the Spectrum Ex-
plorer: how they interact, and how you input data and inspect the output. If this tool is not familiar to
you, you will benefit greatly from reading Section 6.7.1 and Section 6.7.2.

285

Spectral analysis for cubes Build 15.0.3244

6.7.1. How to open the Toolboxes; getting extra help
Spectrum Toolbox: can be opened from the Spectrum Explorer by clicking on the crossed hammer

and screwdriver icon in the toolbar: , or from Dialogue → Spectrum Toolbox in the menu you get
via a right-click in the Spectrum panel. A new tab will appear to the right of the Spectrum panel, and
the tasks can be selected from a drop-down menu.

Cube Toolbox: can be opened from the Spectrum Explorer by clicking on the cube+screwdriver icon:

, or from Dialogue → Cube Toolbox in the menu you get via a right-click in the Spectrum panel.
A new tab will appear to the right of the Spectrum panel, and the tasks can be selected from a drop-
down menu.

For both toolboxes you can also open their individual tasks by name from the Tasks pane of HIPE.
The task dialogues will open in the Editor pane.

Getting help: If you open the tasks via the Spectrum Explorer then you can open the User Reference
Manual (URM) entry for each task by clicking on the: Cube Toolbox: "Help" button at the bottom of
the task panel; Spectrum Toolbox: small question mark icon at the bottom of the task panel. If you
opened the task from the Tasks pane, the URM entry for that task can be accessed from a Help button
from the task panel, or by right-clicking on the task name in the Tasks pane and selecting Help in
URM. The URM entries for the spectral tasks explain the command-line use of the tasks. Here we
will explain the GUI usage.

Also, the following task instructions are written assuming you have already opened the task GUI.

Warning

It is better to create a variable for the cube you wish to work on, rather than to open it from
or the ObservationContext (or other product such as a ListContext as is the case
for some PACS products) that the cube is contained within. Many of the tasks change the
data, and HIPE will not allow you to change the contents of an ObservationContext
in this way. So, if working from an ObservationContext, first extract the cube out
of it, and then work on that.

6.7.2. Defining the input, looking at the output
This is a reference section that tells you how to select the spaxels/pixels that you want any task to
run on.

The first tabs of the Spectrum Explorer are the ones that open when the Spectrum Explorer does, i.e.
one tab in each panel.

1. More tabs may be added to the Spectrum panel as various toolbox tasks display results; remember
that the tab that shows spectra selected from the cube is the first, left-most one called "plot".

2. More tabs can also be added to the Data Selection panel, either by the toolboxes (in particular the
Cube toolbox) or if you drag-and-drop further cubes or spectra to the Spectrum Explorer. Tabs
created for a new product loaded into the Spectrum Explorer carry the name of that product. Any
tabs that open within each product-tab will be created by the toolbox tasks, and these carry the name
of their function; remember that the only sub-tab from which spectra can be selected to display is
the first, left-most one called "Select spaxels".

About tasks that create new data

For the spectrum and cube toolbox tasks that create new cubes or spectra and at the same
time add them to the Data Selection panel, the focus may pass to the new product. This
should be taken into account for additional runs of the same or other tasks, as the new
product will be the new input for the task and some of the parameter entries in the task
pane may change. See Section 6.6.13 to learn about setting a preference for this focus (to
follow the selected tab or to follow the selected spectra).

286

Spectral analysis for cubes Build 15.0.3244

Figure 6.9. Tab arrangement: new tabs will appear in the Data Selection and Spectrum panels as tasks are
run. The active tabs are "plot" (Spectrum panel)and "Select Spaxels" (Data Selection panel).

6.7.2.1. Input

The Spectrum Toolbox tasks work on one or two spectral products (e.g. cubes), or on selected spectra
from the product(s). For almost all tasks, if the input is a cube, the output is also a cube—even if only
some of the spectra of that cube have been changed . The Cube Toolbox tasks work on an entire cube—
you can select out spectral or spatial ranges but the input is always the entire cube. For both toolboxes,
if working from within the Spectrum Explorer, selection of spectral or spatial regions is most easily
done within the Spectrum and Data Selection panels. If the task was opened from the Tasks pane of
HIPE, then the selection is done by typing the selection list into the parameter box, or creating the
selection list by typing in the Console and dragging it over from the Variables to the parameter box
in the task's tab.

When using the Spectrum Explorer and the Spectrum Toolbox.

• To run on one or more displayed spectra simply click on the spaxels/pixels from the Data Selec-
tion panel to see their spectra in the Spectrum panel, and at the same time this will select them as
input for the task. See Section 6.6.2 for more information on plotting spectra. The words "Task is
applied on displayed spectrum(a)“ will appear in the task panel in the "ds/ds/ds2" parameter box(es),
and only these will be input to the task.

• To run on only a few spectra of those displayed in the plot, "select" one/some of them by clicking

on the selection icon on the button bar of the Spectrum Explorer, ; and then clicking on the
spectrum to be selected (on a datapoint in it) or drawing a box around (one or) several spectra to
select those. The selected spectra are highlighted. As you select spectra, the words "Task is applied
on selected spectrum(a)“ will appear in the task panel in the "ds/ds/ds2" parameter box(es), and
only these will be input to the task. Click on the same spectrum to deselect, and you can select
several one after the other.

• To select a bunch of datapoints from one or several spectra—only the flagging task asks for this

—select the icon (from the icon bar or the Context right-click menu) and then draw a box on the
plot that encompasses your datapoint(s); the selected datapoints are highlighted. You can remove
one selection by drawing another box around it, and you can extend a selection by drawing a box
while depressing the Ctrl key (Cmd on a Mac).

In the right-click Spectrum Explorer menu, under Selection, you can also select all or deselect all
spectra displayed.

287

Spectral analysis for cubes Build 15.0.3244

• To select a wavelength/frequency range first make sure that a spectrum is displayed in the Spec-

trum panel (any spectrum from your cube will do) chose the icon (from the icon bar or the
Context right-click menu) and then draw your range on the plot by left-click and dragging the mouse
from one end of the desired range to the other; the range is indicated with a grey curtain.

Ranges can be removed by right-clicking on the drawn range and selecting "remove" or "remove
all" from the Range menu. It is good practise to clear ranges that were drawn previously to create
input to a toolbox task, before drawing any new ranges. Ranges can be resized by clicking near
the edge of the marker (a resize symbol will be seen) and dragging the edge of the marker to the
desired position. The right-click menu also gives you the option to change the colour of the marker
and of the line.

Tip

When selecting ranges to input into a task, it is a good idea to first clear out all previous
ranges, otherwise they may be carried forward to the current or a subsequent task.

• To run a task on an entire cube is simply a matter of activating the Data Selection panel tab that
holds the cube you want to use. If you have selected a spectrum (from that or any tab) you may need
to clear it first. See Section 6.6.13 to learn about setting a preference for this focus. To run on a
cube not loaded in the Spectrum Explorer, you can drag the cube from the Variables pane and drop
it onto the circle next to the "ds/ds1/ds2" parameter box(es) in the task panel (the circle is grey if
nothing has been selected/displayed and green if there are spectra shown in the plot or if you have
dragged a cube into it). You will now see the words "Task is applied on variable [name]" appear
in the parameter box.

Note

Although it is possible to select spaxels/pixels to plot from two cubes open in the Spectrum
Explorer, you must avoid doing this when running toolbox tasks.

When you select spectra via the Spectrum Explorer in this way, you can leave the selection parameter
that many tasks have as a parameter empty.

In summary, most tasks will work automatically on the product in the active (top-most) tab, or in
the displayed or selected spectra, and the order of preference can be set in the HIPE Preferences
(Section 6.6.13).

When using the Spectrum Explorer and the Cube Toolbox.

• To select a wavelength/frequency range is the same as working with the Spectrum Toolbox (see
above).

• To set the cube to work on: it is good practise to first bring to the front, in the Data Selection
panel, the tab with the cube you want to run the Cube Toolbox on, and then open the toolbox. To
run on a new cube that is open in the Spectrum Explorer, close the Cube Toolbox, bring that new
cube to the front, and open the Cube Toolbox again.

• To select spatial regions from that cube is a function that is provided by the tasks themselves
and so is explained later: but FYI the approach is to select a shaped region from a cube image that
appears in a new tab of the Data Selection panel.

When calling Spectrum Toolbox tasks from the Tasks pane. You are therefore working in the
tasks' own GUI, which will open in the Editor pane. The input cube can be dragged and dropped from
the Variables pane into the grey circle next to "ds/ds1/ds2" in the task GUI, upon which the grey circle
turns green. Replacing the input with another is done with the same action. To select spaxels/pixels
from within the cube to run the task on, you need to input a jython list of coordinates:

• First identify the cube coordinates you want, e.g. by hovering the mouse over the cube selection
image in the Spectrum Explorer or in the Standard Cube Viewer [right-click on the cube in the
Variables pane to select this viewer]; the coordinates that the viewers show at the bottom left of the
cube image are (row, column). For more information, see Section 6.3.

288

Spectral analysis for cubes Build 15.0.3244

• Define a selection as a list: let's say you want (row, column) (1,2), (2,2), (4,5) then your selection
variable is created by typing, in the Console:

sel=[(1,2),(2,2),(4,5)]

Example 6.11. Creating a selection array with spaxel coordinates.

• Some tasks allow you to type this list directly in the parameter box, for others you need to create
the variable on the command line of the Console and then drag and drop it from Variables pane to
the parameter box of the task. When running from the command line, you can usually define the
parameter "selection" as: selection=sel or selection=[(1,2),(2,2),(4,5)]. If you
want to work on the entire cube, you leave this parameter blank.

• If the task requires spectral index selection coordinates, rather than spaxel coordinates (see Sec-
tion 6.3 to learn more about coordinates), you can identify the index values for the spaxels using
the Data tree of the Spectrum Explorer: Section 6.6.18. In this case the list will look like this:

sel=[24,25,26]

Example 6.12. Creating a spectrum selection array.

• Spectral ranges can be input also as a jython list, and usually the values in the list are in the wavescale
of the data.

When calling Cube Toolbox tasks from the Tasks pane. To select spectral and spatial ranges
to run on:

• Spatial ranges are defined as row and column indices given as single numbers typed into the pa-
rameter box.

• Spectral ranges are defined as a listing of spectral indices or wavescale values. You simply type the
numbers into the parameter box: 1 2 3 (not 1,2,3, or [1,2,3]).

A comment about some of the selection parameters that many Spectrum Toolbox tasks have. The
spectra contained in a SpectrumDataset can contain a number of so-called Spectral Segments
(see the Scripting Guide for more information). For example, each subband in HIFI (non-cube) spectra
is a Spectral Segment—with each segment identified in the Data Selection panel of the Spectrum
Explorer by a different box. For such products you can often choose which Spectral Segments to
work on using the "segments" field in the panel of the Spectrum task you are running. You can also
select on so-called attributes, which for HIFI could be the things such as the observation start time
of that data frame or the position of the chopper. However, you should note that (i) for Level >=2
cubes each spaxel/pixel contains only one segment, and (ii) each spaxel/pixel has the same attributes
so you cannot differentiate between them. Hence, when working on these cubes, you can ignore the
parameters segments, selection_lookup and attributes.

Warning

The Spectrum Explorer will allow you to load more than one SpectrumContainer into it
(e.g. two cubes). You could find yourself plotting spectra from different cubes and then
trying to run a Spectrum Toolbox task on them. For most tasks this will fail, as they work
with selections from a single cube only.

You will realise you are doing this if you see the "ds" parameter in the Toolbox displaying
a small red cross. To correct this, clear the plotted spectra from the cube you are not

interested in, or instead select only those you are interested in.

6.7.2.2. Output

All tasks send their output to the Variables pane of HIPE. From there you can select any viewer
(including another instance of the Spectrum Explorer) to see them.

289

../../sg/html/Sadm.SpectraDataCubes.html#Sadm.Sec.SpectrumContainerSegment

Spectral analysis for cubes Build 15.0.3244

Many tasks will echo their commands to the Console of HIPE (this offers a quick and dirty way to
see how to call a task from the command line).

Tasks that make selections or focus on parts of the input spectra following the user's request—a wave-
length to take for the zero velocity, spaxel coordinates, etc—will add Meta data to the output, so you
can know what the value of the selection/focus that created that output was.

• For the Cube Toolbox:

• Some of the tasks send the products created to new tabs in the Spectrum panel, but these are
displays only—you cannot perform any selections from them.

• When you run a Cube Toolbox task twice, it will "overwrite" the previous output tabs—this is
to avoid cluttering up your space with tabs. But the products are still in Variables and so can be
loaded into the Editor pane to be viewed from there.

• For the Spectrum Toolbox:

• Some tasks send created cubes to the Data Selection panel as new tabs and these are active
displays—you can perform spatial selections from them.

• Some tasks send newly created spectra to the Spectrum panel "Plot" tab.

• Some tasks will send tabular output to the Data Selection panel as active displays.

You can delete any tab—the variable they "belong" to will not also be deleted. To remove them you
simply click on the "x" on the tab. Removing the product from the Variables pane will also not remove
the tab.

6.7.3. Spectrum extraction and cube cropping
There are four tasks to extract spectra from cubes or to crop a cube spatially or spectrally. Two—select
and extract—are in the Spectrum Toolbox and the others—extractRegionSpectrum and cropCube—
are found in the Cube Toolbox. Briefly, the differences between these are:

• select can be used to extract any spaxels from a cube, and these are then placed in a Spectrum2d,
which is a row-stacked spectral product rather than a 3d cube.

• extract can do the same as select and it can also be used to crop a cube spectrally, in which case
the output product is a cube.

• extractRegionSpectrum can be used to extract out a single spaxel from a cube and place it in a
SimpleSpectrum (i.e. a single spectrum product); it will also produce an averaged or summed
spectrum from a spatial region.

• cropCube can be used to crop a cube spectrally and/or spatially, and the output is a cube.

There is additionally one PACS-specific task that is offered in the Spectrum Explorer running in a
PACS-version of HIPE, to extract out a single spectrum from a cube and turn it into a Simple-
Spectrum: ConvertPacsProduct2SimpleSpectrum. This will only work on a cube of class PacsRe-
binnedCube. The spaxel coordinates must be specified in the task pane, and the slice number can
always be left on 0 when used in the Spectrum Explorer. See the PACS URM entry for this task to
learn more about using it on the command line.

6.7.3.1. select and extract: spatially and spectrally extract from a
cube

From the Spectrum Toolbox you can find the "select" and "extract" tasks (see Section 6.7.1 for instruc-
tions on opening the Spectrum Toolbox). You can also select these tasks directly from the Tasks panel.

290

Spectral analysis for cubes Build 15.0.3244

Note that for these tasks the "selection" is on spectral index number (0,1,2,3...: more specifically, it
is the PointSpectrum number) rather than cube coordinates ([0,0], [0,1],...) so you will need to read
Section 6.3 to know how to translate between the two if you run them on the command line or via
the GUI.

• select in HCSS User's Reference Manual is to choose random spaxels/pixels to take out of the cube
and put into a new, Spectrum2d product. Do not confuse this with "selecting" spectra to use
immediately as input to another task.

To identify the spectra that the task should select out, you need to plot them: see Section 6.7.2. Press
Accept and the task is executed and a new product, by default called "result", will be created and
added to the Variables pane, and a new tab containing this product will appear in the Data Selection
panel if you are working via the Spectrum Explorer. In Section 6.7.2 you will also find information
about the parameters "selection", "segments" and "selection_lookup".

• extract in HCSS User's Reference Manual will select out spectra and input them into a new product.
You can specify a spectral and or and spatial range to extract. If you set a list of spectra to extract
the output is a Spectrum2d, if you define only a spectral range the output is a SpectralSim-
pleCube, and if you define both the output is a Spectrum2d.

To identify the spectra that the task should run on, see Section 6.7.2. Identify the wavelength/fre-

quency range to extract over using the "select ranges" icon in the button bar (also explained in
Section 6.7.2), or you can write the range value into the boxes in the GUI, pressing the Return key
to add extra ranges. After selecting the input cube/spectra, press Accept and the task is executed and
a new product, by default called result, will be created and added to the Variables pane.

You can select more than one range to extract, and they do not have to be continuous. (You can
open the output product in the Spectrum Explorer and inspect it by selecting from its row-listing
in the Data Selection panel).

Tip

For both tasks, if you are running this task from the Spectrum Explorer then you have no
choice over the order the spectra are selected from the cube and placed into the output
product: it is in index numerical order. If you want any other order you should run the task
via its own GUI or on the command line: create a selection PyList (see Section 6.7.2).
Once the selection array has been created, drag and drop it from the Variables pane into
the "selection" grey circle of the task panel.

6.7.3.2. Extracting out a single spectrum with the Cube Toolbox
and changing the units

To extract out a single spectrum using the Cube Toolbox use the extractRegionSpectrum in HCSS
User's Reference Manual task. This task also allows you to extract out an average or sum of a region
but that will be explained in Section 6.7.5.2.

See Section 6.7.1 for instructions on opening the Cube Toolbox, and from there select "extractRegion-
Spectrum". Then do the following, in this order

1. First, select the "SINGLE_PIXEL" from the "regionType" parameter box.

2. Then, go to the Data Selection panel to the sub-tab "extractRegionSpectrum" there. Select the
icon, and then click on the single spaxel/pixel that you want to extract out. Note that the spectrum
will not appear in the Spectrum panel when you do this. The coordinates are sent to the appropriate
parameter box.

3. From the "arithmetics" menu you then chose to average or sum (these are clearly the same for a
single spaxel/pixel), the units of the output will be [flux]/pixel (i.e. flux in an area of a single spaxel
of that cube).

291

Spectral analysis for cubes Build 15.0.3244

4. If choosing the average option, you then also have the choice of selecting the doAreaConver-
sion option. The flux is converted by the area of the region selected (in this case, one spaxel),
and will be in units of [flux]/Sr, converted by:

a. getting the area of the spaxel in square arcsec from the WCS

b. dividing the flux by this area

c. converting from e.g. Jy/sq_arcsec to e.g. Jy/Sr by multiplying with (3600*180/π)2 (conversion
factor arcsec2/steradian).. This conversion assumes that the input units are [flux]/pixel (type
"print cube.getFluxUnit()" on the command line to check)—this is the case for most Herschel
cubes. Your fluxes will be weirdly converted if they are already in units of flux per area instead,
e.g. Jy/beam: the "/beam" part is not converted, so your final unit ought to be e.g. Jy/beam/Sr,
and will be correctly calculated for such a unit, but the unit as reported in HIPE will just be Jy/Sr.

Upon pressing Accept a SimpleSpectrum product is created and added to Variables. A display
plot of that spectrum will appear in the Plot tab of the Spectrum panel.

6.7.3.3. Cropping a cube spectrally and spatially with the Cube
Toolbox

To crop a rectangular region and/or to crop a spectral region of a cube, you can use the Cube Toolbox.
See Section 6.7.1 for instructions on opening the Cube Toolbox. The task you want is cropCube in
HCSS User's Reference Manual.

1. When you select this task a new sub-tab will appear in the cube’s tab in the Data Selection panel,
from where you can select the spatial range you want to crop over: select the rectangular region

icon , click on the cube image, and then click on the rectangle that will have appeared there to
move and resize it. The parameter boxes col|row|Min|Max will be filled with the limits you have
chosen (given in spaxel coordinates rather than image coordinates: see Section 6.3).

2. If this is all that you want to do, now press Accept.

3. If you wish to also, or instead only, define a wavelength/frequency range, the ranges must be entered
as the parameters startWave|endWave—you can enter the values in the parameter boxes manually

or define the range using the "select range" Spectrum Explorer icon from the button bar: (see
Section 6.7.2). You can only select one wavelength range (the first you define), and it is good prac-
tise to clear out any existing ranges first (right-click to access Range → Remove). When running this
task from the command line, you can define the spectral region to extract either in wavelength/fre-
quency space or as array index (see the URM in HCSS User's Reference Manual to learn more).

4. Press Accept, and a new cube will be created and added to the Variables.

Upon execution, an image of the new cube is added to the Spectrum panel of the Spectrum Explorer
and an image of the cube appears in the Spectrum panel (this is just an image; to explore the new cube
you need to open it with the Spectrum Explorer).

You can run the task twice in a row and define a new spatial region by moving and resizing the region
box in the cube image of the Data Selection panel. To run a second time with a new spectral region,
remove the existing region first.

You can also run this task via the Tasks menu. The GUI looks the same, the only difference here is
that the spectral ranges have to be entered manually.

Warning

For PACS users of PacsRebinnedCubes: the cropCube task will not work. Instead:

• to crop spectrally you can use the PACS task pacsExtractSpectralRange (see
the PACS URM to learn how to run this task), or the extract task explained above—

292

Spectral analysis for cubes Build 15.0.3244

which will create a SpectrumSimpleCube as output but thereby losing some of the
datasets of the cube; these are not important unless you wish to continue working with
this cube in the PACS pipeline.

• to crop spatially is more difficult; you can use the "extract" or "select" tasks to push
spaxels into a Spectrum2d.

6.7.4. Spectrum arithmetics
Add in HCSS User's Reference Manual, subtract in HCSS User's Reference Manual, multiply in HCSS
User's Reference Manual, divide in HCSS User's Reference Manual a scalar value to/from a cube or
spectra to/from a cube, or perform pair-wise operations on spectra in two cubes.

The tasks are in the Spectrum Toolbox (see Section 6.7.1 for instructions on opening the Spectrum
Toolbox). You can also run them directly from the Tasks panel. To know how to select the spectra
that the tasks should run on, see Section 6.7.2, and there is also information about the parameters
"segments", "selection" and "selection_lookup".

The scalar value to add, subtract etc. is entered in the param field if the "mode" is Scalar. If the "mode"
is Pair-wise then you will input the two spectrum products (e.g. two cubes) as "ds1" and "ds2", using
the standard drag-ang-drop motion (from the Variables to the circle next to the parameter box in the
task panel).

The following operations are possible:

• Scalar, one entire cube: To work on an entire cube, chose the Scalar mode and enter the scalar into
the param field, and press Accept. (See below for information on "overwrite".)

• Scalar, one cube, some spaxels only: To work on only certain spectra in the cube, see Section 6.7.2
to learn how to select the desired spectra from the cube, either via the Spectrum Explorer or via
typed commands. Then enter the scalar value in param field, and press Accept.

• Pair-wise, two entire cubes: the two cubes should be of the same length along all three dimensions.
The spaxels/pixels are combined in a pair-wise order. (See below for information on "overwrite".)

• Pair-wise, parts of two cubes: this cannot be done directly from the task, i.e. you cannot specify
a selection to be taken from two cubes. To do this you first need to use extract or select from the
cubes (as described above) to create new Spectrum2d products containing the (same number of)
spectra to be added in a pair-wise manner.

Warning

For all operations you have to select the "overwrite" button: the tasks will not work on
cubes otherwise. Because "overwrite" will overwrite the input cube, you can make a deep
copy of it before running the task:

cube_cp=cube.copy()

Example 6.13. Creating a deep copy of a cube.

After pressing Accept the task is executed and a new cube that is effectively a copy of the input cube,
ds1, but with the selected spaxel-spectra adjusted. By default it is called result (you can change the
name in the panel), and is added to the Variables pane.

6.7.5. Spectrum averaging/summing and statistics
These tasks are in the Spectrum and/or Cube Toolbox (see Section 6.7.1 for instructions on opening the
Toolboxes). You can also run them directly from the Tasks panel. To know how to select the spectra
that the tasks should run on, see Section 6.7.2, where there is also information about the parameters
"segments", "selection" and "selection_lookup".

The averaging tasks will average together spectra, rather than average all the data in a single spectrum.

293

Spectral analysis for cubes Build 15.0.3244

• The Spectrum Toolbox averaging is nice to use if you want to average a set of contiguous or ran-
domly-selected spaxels. If you know their coordinates, you can average either via the Tasks pane or
the Spectrum Explorer, but if you do not know the coordinates and want to select the spectra from
a cube image, you should use the Spectrum Explorer.

If you want to average together two entire cubes, you need to use the Spectrum Toolbox.

• The Cube Toolbox is easier to use if you want to average over a shaped area.

6.7.5.1. Averaging and statistics via the Spectrum Toolbox tasks

• avg in HCSS User's Reference Manual: Averages together a selection of spectra to create a Spec-
trum1d.

Quick explanation: select the spectra to average (see Section 6.7.2) and press Accept, whereupon
the "result" will be created.

Longer additional explanation: In Section 6.7.2 you will also find the information for parame-
ters "Selection lookup" and "Segments". If you want to average all the spaxels/pixels in an entire
cube, don't "select" but simply drag-and-drop the cube name from the Variables pane to the "ds"
parameter.

See the URM entry for the task to learn more about the different ways to do averaging: consider-
ing flags, and/or weights, and/or to average also the wavelength grids. The choice is set with the
"variant" parameter. If you set the flag variant then flagged data can be ignored—you define the
flag value to be ignored is the parameter "flagToIgnore". Datapoint weights can be considered in
the averaging. If your cube has errors instead of weights, these are used instead. See Section 6.4 for
information about flags, weights and errors.

If you have NaN values in your cube then you should select the filterNaNSpectra checkbox, oth-
erwise the NaNs will dominate the results (one NaN in a list of datapoints being averaged results
in a NaN).

The parameters "grouping" and "per group" are not useful for cubes, as there is nothing in Herschel
cubes on which one can group; this is more useful for non-cube spectral data.

• pairAvg in HCSS User's Reference Manual: Pair-average two input spectrum containers, e.g. two
cubes or a cube and a single spectrum. Pair-wise averaging means that the first spectrum in the first
and second container are averaged, and so on. In case the size of the two containers is different, the
result will contain a number of point spectra equal to the lowest size.

Note

The choosing of the "first" and "second" spectra to combine is based on their spectrum
index, not their cube coordinates: so 0,1,2,3... rather than (0,0), (0,1) etc., although this
is only important to know about if your input cubes are of different spatial sizes. To
learn how to convert between the two coordinate systems, see Section 6.3.

For cubes this task will only pair-average two entire cubes. Input the two cubes as "ds1" and "ds2"
via a drag-and-drop from the Variables pane to the circle next to these parameters in the task's GUI,
and press Accept. The output called "result" is created. To pair-wise average parts of cubes, you will
first need to use the extract or select tasks (described above) to select the (same number of) spectra
out into two new Spectrum2d, and then pair-wise average those.

See the URM entry for the task to learn more about the different ways to do averaging, which
consider flags, and/or weights (or errors), and/or to average also the wavelength grids. The choice
is set with the "variant". See Section 6.4 for information about flags, weights and errors in general.

Note that the input data should have the same frequency/wavelength grid, but this is not checked
for. You can resample them to be the same using the resample in HCSS User's Reference Manual
task (see Section 6.7.6).

294

Spectral analysis for cubes Build 15.0.3244

• accumulate in HCSS User's Reference Manual: Accumulates (averages) spectra to a common wave-
scale grid and returns a Spectrum1d with a single segment (i.e. it is a single spectrum). In contrast
to the average task it checks whether the spectra align at the wave-scale (within a given tolerance
specified by the wavescaleTolerance parameter) and automatically does a resampling if not. Fur-
thermore, the length of the spectra need not be the same.

For this task to work on cubes you need to set the "pointing tolerance" to a high number (so the
sky offsets of the spaxels/pixels from each other is effectively ignored). To set the wavelength

range(s) to include, use the range selection icon of the Spectrum Explorer (Section 6.7.2) and
the wavelength ranges you chose will be entered in the "range" parameter box. Or you can type the
numbers in directly yourself, particularly if running the task via its own GUI or on the command
line. You can select spectra to work on using the methods explained in see Section 6.7.2. See the
task's URM entry to learn more about the other parameters.

The advantage of this task over the avg task is that the individual spectra in the input product need
not have the same wavescale or length of spectra; however, as the wavescale and length of the
spectra is the same for all spectra in a cube, this plays no role here.

• statistics in HCSS User's Reference Manual: Performs statistical operations on the datasets, calcu-
lating the mean, rms, median and percentiles (quantiles).

Quick explanation: To select the spectra that the tasks should run on, see Section 6.7.2. After chos-
ing the cube, and perhaps also a spaxel/pixel selection, your next choice is the mode: perChannel
to work across the wavelength/frequency grid, e.g. you want to work out what the rms is for each
wavelength point across an entire cube; acrossChannels to work along the spectral grid for each
individual spectrum; or both. For the acrossChannels mode you can also select wavelength ranges

to include or exclude: using the range selection (Section 6.7.2), upon which your chosen ranges
will appear in the table in the task's GUI, or by typing the numbers directly into the table, and then
choosing between "exclude" and "include" from the drop-down menu to the left of the table; this
sets the task parameters "exclude" and "range", respectively (you can also set this for the perChan-
nel mode, but it will ignore the request). Press Accept and the result, called stats, will be a set of
Spectrum1d for the perChannel mode (these can then be inspected in the Spectrum Explorer) or
a TableDataset for the acrossChannels mode.

Longer additional explanation: In Section 6.7.2 you will also find the information for param-
eters "selection lookup" and "segments". With the "variant" checkboxes you can ask to include
flag, weights (or error), and wavelengths in a special way in the statistical calculations: see the
URM in HCSS User's Reference Manual entry for the task to learn more. If you set the flag variant
then flagged data can be ignored—you define the flag value to be ignored as the parameter "flag-
ToIgnore".

The two modes of operation available from the drop-down menu:

• perChannel: this mode operates per channel, i.e. per wavelength/frequency point. Taking the
mean as an example, if you had, say, ten spectra in your dataset, this mode would calculate the
mean in the first data bin (or channel) from all ten spectra, and then for the second bin, then the
third, and so on. In other words, you are looking at all the spectra together, frequency/wavelength
point by frequency/wavelength point.

• acrossChannels: this mode operates across the wavelength/frequency range of each spectrum in
the data. In other words, it works on each input spectrum separately, working on all the frequen-
cy/wavelength points in each. Taking the same example as above the result would be ten mean
values. This mode produces a TableDataset that can be inspected in HIPE with the Dataset
Viewer, allowing one to read off the values and from where you can export to a text file (see
Chapter 2). When using this mode you can also use sigma clipping, by supplying the clip value
and a flag value to be assigned to the clipped data. Data will be clipped when it is above clip-
value*sigma (standard deviation). The parameters to set are "clipvalue" and "clipflag", where
the latter is a flag value you want these clipped datapoints to be given.

295

Spectral analysis for cubes Build 15.0.3244

With this mode you can also select ranges (e.g. a spectral line) to include or exclude (chose the
icon from the Spectrum Explorer button bar and draw the range(s) on the plot: see Section 6.7.3),
and choose whether the range is to be included or excluded from the drop-down menu to the left
of the parameter table, by clicking on exclude|include ranges. (You can set the ranges if you ask
for "perChannel" mode also, but it will be ignored.)

Finally, the "integrated flux" box allows you to ask for the integrated flux over the spectra and
region you have selected to be computed. The wavelength scale must be strictly monotonic.

6.7.5.2. Averaging and summing via the Cube Toolbox and chang-
ing the units

You can create a SimpleSpectrum (a single spectrum product) that is the sum or average of a spaxel
region using the Cube Toolbox, using the task extractRegionSpectrum in HCSS User's Reference
Manual. See Section 6.7.1 for instructions on opening this toolbox.

Quick explanation: chose whether you want to sum or average from the "arithmetics" menu; then
chose whether you want to work on an entire cube, a single spaxel, or a shaped region ("regionType"),
and if you chose for a shaped region or single spaxel, then go to the cube image in the extractRegion-
Spectrum tab of the Data Selection panel and create (and then edit) the shape/single pixel by first

selecting the icon (e.g.) and then making your choice on the cube image; chose whether you want
the units in [flux]/Sr (doAreaConversion clicked) or just [flux] (not clicked). Press Accept.

Longer additional explanation: You must first selection what type of region you want from the task
tab, then select the region on the cube. The coordinates will be send to the task tab if you do it in
this order.

For elliptical regions the edge spaxels have their flux scaled by the relative area of the part covered
by the ellipses' contour to the total area of the spaxel.

You can also extract a single spaxel with this task: see Section 6.7.3.

From the "arithmetics" menu you can chose average or sum. From the doAreaConversion button you
can chose to have the area included in the calculation—the flux is converted by the area of the region
selected, and will be [unit]/Sr (per steradian) in the output spectrum. This is done as follows:

If choosing the average option, you then also have the choice of selecting the doAreaConversion
option. The flux is converted by the area of the region selected (in this case, one spaxel), and will be
in units of [flux]/Sr, converted by:

1. get the area of the spaxel in square arcsec from the WCS

2. divide the flux by this area

3. convert from e.g. Jy/sq_arcsec to e.g. Jy/Sr by multiplying with (3600*180/π)2 (conversion fac-
tor arcsec2/steradian).. This conversion assumes that the input units are [flux]/pixel (type "print
cube.getFluxUnit()" on the command line to check)—this is the case for most Herschel cubes. Your
fluxes will be weirdly converted if they are already in units of flux per area instead, e.g. Jy/beam:
the "/beam" part is not converted, so your final unit ought to be e.g. Jy/beam/Sr, and will be cor-
rectly calculated for such a unit, but the unit as reported in HIPE will just be Jy/Sr.

Upon pressing Accept a SimpleSpectrum product (called "spectrum") is created and added to
Variables. A display plot of that spectrum will also appear in a new tab in the Spectrum panel.

6.7.6. Spectrum manipulation: resampling, smoothing,
replacing, gridding, stitching, and folding

296

Spectral analysis for cubes Build 15.0.3244

These tasks are offered by the Spectrum Toolbox: see Section 6.7.1 for instructions on opening this
toolbox. To select the spectra that the tasks should run on, see Section 6.7.2. The "overwrite" checkbox
that some of these tasks have will replace the input cube with the output cube, the default is to create
a new, separate output cube. For all tasks, read their URM entries to learn about the details of what
(and how) they do.

• resample in HCSS User's Reference Manual: Resamples flux values of the input cube with respect
to a modified wavelength/frequency grid. This task will always change all the spectra in a cube,
even if you try to specify spectral selections.

Various interpolation schemes are offered (set via the "scheme" drop-down menu). The schemes
are typically a filter method in combination with an interpolation scheme and an integration scheme
to assure flux conservation. The default scheme uses a box filter in combination with trapezoidal
integration and linear interpolation. A second scheme consists of using a box filter in combination
with Euler integration and nearest neighbour interpolation. A third scheme is based on a Gaussian
filter.

You can supply a wavelength/frequency grid that the data should be resampled to as an array of
Double1ds, e.g.:

grid=Double1d([56.1, 56.2, 56.3, 56.4,...])

Example 6.14. Creating a wavelength/frequency grid for resampling data.

which you can either type directly into the "grid" parameter box, or you can create as a variable (on
the Console command line) and drag and drop it from Variables to the circle next to the parameter
box in the task panel. Alternatively, you can simply supply a fixed width via the "resolution" pa-
rameter, where resolution value you supply is actually twice the width that the data is resampled to:
if you want to resample data to, say 0.5 km/s (so a 'width' of 0.5 km/s per bin) then you supply a
resolution parameter of 1 km/s. The unit of the resolution is either set by the "unit" selection button
or takes that of the input cube. Flags and weights/errors, if present, are also resampled.

If you use a Gaussian filter, you are required to set the "kernel" (this box will appear when you
set scheme to "Gaussian"). This is a smoothing filter width (the Gaussian's sigma rather than its
FWHM).

By default the density option is set to True (the box is checked) and this means that the flux data
is treated as a flux density (per wavescale unit); if set to false the flux is treated as a per wavescale
bin quantity (i.e. the integrated flux per bin).

• smooth in HCSS User's Reference Manual: Smooths the data in the spectral domain via a Box or
Gaussian (of user-selected width) filter. This task will always change all the spectra in a cube, even
if you try to specify spectral selections.

The "width" parameterises the kernel functions: if the "unit" is set to "pixels", the width is rounded
to the nearest integer and taken as the width of the box (for the Box smoothing) or as the standard
deviation (not the FWHM) of the Gaussian kernel function (for Gaussian smoothing). Consult this
task's URM entry to learn about the "edge" parameter, which is used to determine how the smoothing
works at the edges of the spectra.

The "variant" parameter sets whether you include weights and flags in the task. If you set the flag
variant then flagged data can be ignored—you define the flag value to be ignored as the parameter
flagToIgnore. Datapoint weights can be considered, giving you weighted averages for the smoothed
values. If your cube has errors instead of weights, these are used instead: see Section 6.4. (See
Section 6.4 for information about flags, weights (and errors) in general.)

If you have NaN values in your cube then you should select the ignoreNaNs checkbox, otherwise
the NaNs will dominate the results (one NaN in a list of datapoints gives a result of NaN).

297

Spectral analysis for cubes Build 15.0.3244

The smoothing units you can set in the GUI are rather limited; but it is possible to smooth data on
any wavescale using the command line and specifying. e.g. unit="km/s" .

• replace in HCSS User's Reference Manual: Replaces the data of the desired wavelength/frequency
ranges in one cube with the data of the same wavelegth/frequency ranges in another cube. For
example, if the first cube has a range with bad data, that for the second cube is filled with good
data, you can replace the good with the bad. The input cubes must be of the same length along the
two spatial dimensions, but do not have to be the same length in the spectral dimension. However,
the entirety of the second cube is placed into the first cube, so the second cube should extend over
the spectral range you want to replace, and no more. (You can use the extract task to extract out a
spectral range: Section 6.7.3). See the URM in HCSS User's Reference Manual entry to learn about
the mathematics of the replacing, which is set via the mode parameter.

• stitch in HCSS User's Reference Manual: Stitches together spectra or spectral segments that overlap.
This is mostly used for HIFI data to stitch subbands. It is currently not useful for Herschel cubes
since it will not stitch together two cubes, rather it will stick together different segments of the
same cube—but Herschel cubes do not have segments. It is therefore useful only for non-cube
multi-spectral products.

The task parameters control the stitching: "variant" is to control how the stitching works (how the
overlap regions are handled); "edgeTolerance" controls the task's search for overlapping points;
"unit" is used to set the spectral unit that the stepSize and splitPoints are expressed in; "stepSize"
is used to define a linear wavescale/frequency step the spectra are resampled to. "splitPoints" is
a additional parameter that comes up if you select "splitPoints" for the "variant". Choosing this
variant means you are telling the task where, in the overlapping ranges of the spectra, the points
are taken to split and then join the spectra. The split points are specified as a Python list (e.g.
splitPoints=[1,2,3,4]). Consult the URM in HCSS User's Reference Manual entry to learn more.

• fold in HCSS User's Reference Manual: A HIFI-specific tool that folds frequency-switched spectra
(it will not work on SPIRE or PACS cubes). The frequency throw is found in the meta data and is
picked up automatically by the task. If the parameter "shift" is set to True, the spectrum is shifted
in frequency scale by half the throw distance so that the resulting spectrum is centred between the
original and the "switched" spectrum.

See below for some command-line example of how to use these tasks with real data.

spireObs = getObservation(obsid = 1342227519, useHsa = True)
spireCube = spireObs.refs["browseProduct"].product.refs["HR_SSW_cube"].product
spireCube2 = spireObs.refs["browseProduct"].product.refs["HR_SLW_cube"].product
resample
resampledCube = resample(ds = spireCube, density = True, resolution = 1.0)
smooth
smoothedCube = smooth(ds = spireCube, filter = "box", width = 10)
replace (requires, as per the documentation, that the two input cubes are of the
 same size)
extract from the second cube only the part of the spectra that overlaps
SSW: from 945 GHz to 1570 GHz
SLW: from 450 GHz to 1015 GHz
pixnum = spireCube2.wcs.naxis3
extractedCube = extract (ds = spireCube2, minFreq = Double1d(pixnum, 950.0), maxFreq
 = Double1d(pixnum, 1000.0))
replacedSlices1 = replace(ds = spireCube, by = extractedCube, mode = "replace")

Example 6.15. Using resampling tasks with cubes.

6.7.7. Spectrum flagging
flagPixels in HCSS User's Reference Manual: Flags pixels in a spectrum according to a wavelength
mask that the user can set. This will flag the pixels in the cube you are working on, no separate output
cube is created.

298

Spectral analysis for cubes Build 15.0.3244

Note: this task does not work on any PACS cubes and may not on SPIRE cubes either. For PACS and
SPIRE, flagging during the data reduction is anyway part of their pipelines.

6.7.7.1. Pre-requisites

A pre-requisite for this task to work is that the cube should contain a flag dataset.To check for the
presence of a flag dataset you can use the Product viewer on your cube (chosen via a right-click on the
cube in the Variables pane), which will show, in its listing, all the datasets in the cube. If you run the
task on a cube without the necessary flag dataset, then a standard java error message will be returned.
Another prerequisite is that the task should be able to modify the data, and so you cannot open the
task on a dataset that is still embedded in an ObservationContext.

Tip

If you want to add a flag dataset, you can try the following:

set up the array (by default filled with 0)
flag = Short3d(len(cube.wave),cube.wcs.naxis2,cube.wcs.naxis1)

Now set the values in the flag array,
and then add the flag dataset to the cube
cube.setFlag(flag)

Example 6.16. Declaring a Short3d array as flags for a cube.

"Set the values in the flag array" can be done: by copying a pre-existing flag dataset, if you
have one that has the flag values you exactly want; via your own scripting; or by attaching
the default flag dataset and then manually editing the values via the task explained in
Section 6.7.7. Note that creating and working with flags while doing your data reduction
is something that is only recommended to be done within the PACS and SPIRE Herschel
data-reduction pipelines, while for HIFI this task can be used but it will be better explained
in the HIFI DRG. And as mentioned above, this task not work on PACS cubes.

6.7.7.2. Running the task

The task lies in the Spectrum Toolbox (see Section 6.7.1 for instructions on opening the Spectrum
Toolbox). You can also run it directly from the Tasks panel.

Quick explanation: Display the spectrum/spectra you want to flag data from, and then select the

datapoints to flag using the select point(s) item of the Spectrum Explorer: (see Section 6.7.2). The
datapoints to flag and the spectra they belong to are selected with the same movement, so it is best to
display only the spectra you want to flag datapoints of. You set the flag value/type using a parameter
box/listing if using the task's own GUI: which you get depends on which instrument build of HIPE
you are using (see below). If running from the Spectrum Explorer you can also select with a right-
click on a selected point to select from a "Point Spectrum" menu.

Longer additional explanation: There are some differences in the way you run this task via the
Spectrum Explorer or via the task's own GUI:

• Via the Spectrum Toolbox of the Spectrum Explorer: To define the frequency/wavelength range
to flag and at the same time the spectra for the flagging to work on, you can use the select point(s)

item of the Spectrum Explorer which can be found in its button bar (: see Section 6.7.2 to learn
how to use this selection). That allows you to select either a single point (single click) or a range of
points (draw a box), and at the same time all the spectra included in your selection will be included
in the running of the task. Hence, it is recommend to run this task with only the spectra you wish
to work on displayed in the plot. Several selections can be made.

Click and/or drag with the left mouse button to select one or more spectral points. This selection then
becomes the "mask" parameter. You can use the setFluxToNaN checkbox if you want the flagged
datapoints also set to NaN, but this can also be set using the right-click described just next. The
"flag" parameter box is provided for you to entre/chose the flag to set for these datapoints.

299

Spectral analysis for cubes Build 15.0.3244

You can also chose flag values to set by right-clicking on the selected points to bring up a PointS-
election menu which allows various flagging options:

• flag: you will then be asked what flag value you want these data to have.

• flag & remove: add a flag to those wavelength points and the data values are set to NaN.

• deselect.

• create variable(s): this creates a Selection class product that will be placed in the Variables
pane.

As soon as you select any of the above options, the task is executed. You do not need to press the
Accept button. If you do press the Accept button, the task will simply be executed again.

• Via the task GUI: To define the input cube ("ds") you drag and drop the cube from the Variables
pane into the grey circle next to "ds", upon which the grey circle turns green. Replacing the input
with another is done with the same action. If you want to not only set a flag for some datapoints
but set the flux values to NaN, then check the setFluxToNaN box. In the "flag" parameter box you
enter the value you want the flag to have or chose from the offered drop-down menu.

To set what datapoint you want to be flagged, you need to set the parameter "mask" to the index
values of those wavelengths/frequencies. This parameter is also used to define which spectra from
the cube you want to have the flag set for. Defining these two is actually rather awkward: see the
examples in the URM in HCSS User's Reference Manual entry for the task. For example, one way
to define "mask" is:

mask={1:[1,20,667], 2:[30,690]}

Example 6.17. Creating a mask using list slicing.

for spectrum array index 1, wavelength/frequency array indices 1,20,667, and spectrum array index
2, wavelength/frequency array indices 30, 690. Working out what these indices are is not easy, and
for this reason we recommend you run the task via the Spectrum Explorer.

For either method, if you do not specify a range but you do specify spectra to flag, then the flags will
apply to all datapoints of the selected spaxels/pixels.

The values for the flags that you can set is instrument-dependent. In the "flag" box you can type in any
number you like. Set your own or use a number that corresponds to flags your instrument has: consult
the data reduction or instrument guides for more information.

Note

For your information (and maybe only for HIFI): flag values are calculated as 2 to the
power of (n+1), where n is a bit number. The default value used is 2 to the power of 30. Flag
values that are recognised by instrument pipelines or instrument-specific data reduction
tools are documented in the instrument Data Reduction Guides. There is no general 'ignore'
or 'bad data' flag, although a value of 1 for bad and 0 for good is a common choice, for
PACS and SPIRE at least.

6.7.8. Spectrum wave unit conversion
convertWavescale in HCSS User's Reference Manual: This Spectrum Toolbox task ransforms the
wavescale between frequency, velocity, wavelength and wavenumber. When converting to velocity
you must supply a reference frequency and the units of the reference frequency. Note that all spectra
in a cube are changed, not only any previously-selected spectra.

Running this task via the Spectrum Explorer or its own GUI is the same: since no spectral selections
can be done, there is no difference in how they work. Working from the task panel directly you should

300

Spectral analysis for cubes Build 15.0.3244

drag and drop the cube from the Variables pane into the grey circle next to "ds", upon which the grey
circle turns green. Replacing the input with another is done with the same action. Then choose the
units you want to convert to and press Accept.

6.7.9. Weight/error and flag propagation
Weights and errors in datasets are set by the instrument pipelines and are propagated by the spectral
arithmetics tasks described above. All Herschel cubes contain a weights and flags array, SPIRE cubes
may also have errors. General information on these arrays can be found in Section 6.4.

In practice, the spectral arithmetics tasks only propagate weights (w) and use the standard weight-

sigma relation to propagate errors, w = σ-2 to work on errors.

Until HIPE 9.0, weight propagation was carried out using a simplistic scheme. In HIPE 9.0 the prop-
agation was done such that errors are also correctly propagated for scalar and pair-wise addition, sub-
traction, multiplication, division and pair-average. A weight propagation scheme that also correctly
propagates errors for the remaining tasks was set in place in HIPE 10.0. The table below shows the
weight propagation scheme used in HIPE 9.0 and 10.0 now, and throughout the subscript 1 refers to
the first dataset passed to the task and the subscript 2 to the second. The errors are propagated with
the same equations, where w=1/e2.

Task Weight propagation
scheme

Comment Flag/mask propaga-
tion scheme

Pair-wise add/subtract w = 1/w1 + 1/w2 If the denominator is
zero then a zero weight
is returned

bitwise OR

Scalar add/subtract unchanged unchanged

Pair-wise multiply/di-
vide

w = (1/u1 + 1/u2) * f -2 where uk = wk * fk
2

and f is flux. If the re-
sulting flux is zero then
a zero weight is re-
turned

bitwise OR

Scalar multiply/divide w = w / k 2 where k is the scalar unchanged

Pair-average warithmetic mean = 4 * (1/
w1 + 1/w2), wweighted =
(w1 + w2)

If the denominator is
zero then a zero weight
is returned. The arith-
metic mean is calculat-
ed with variant="flux",
the weighted mean with
variant = "flux-weight".

bitwise OR

Smooth Same smoothing as
chosen for the fluxes

 bitwise-OR logic

Resample same scheme as used
for the fluxes

 bitwise-OR logic

6.7.10. Making 2d flux maps from cubes
Flux mapping is provided by the Cube Toolbox via two tasks. In all cases the mapping is non-, or
semi-interactive. Interactive fitting with the SpectrumFitterGUI is an alternative way to make such
maps: for instructions see Chapter 7.

• To make direct integrated flux maps you can use integrateSpectralMap in HCSS User's Reference
Manual which you select from the drop-down menu of the Cube Toolbox. This task adds up all
the flux between 0 and the flux points of your line. Hence, if you wish to integrate the flux of a

301

Spectral analysis for cubes Build 15.0.3244

spectral line only, you should subtract the continuum first. Removal of the continuum can be done
with another Cube Toolbox task (see Section 6.7.13).

• To make flux maps using the velocity mapping task, select computeVelocityMap in HCSS User's
Reference Manual. This velocity task also produces 2d maps of the line peak flux and the integrated
line flux (everything between the line—be it absorption or emission—and 0) either by fitting the
line with a Gaussian or by computing the moments. For this task to work properly, you must remove
the continuum and should also crop your cube around the spectral line of interest. Removal of the
continuum can be done with another Cube Toolbox task (see Section 6.7.13).

The integration approach of the Cube Toolbox is especially useful for spectral profiles that are too
complex to fit with analytical functions. To find the Cube Toolbox in the Spectrum Explorer, go to

the "Cube Toolbox" icon: . The toolbox will open to the right of the Spectrum panel.

6.7.10.1. Integrated flux maps

integrateSpectralMap in HCSS User's Reference Manual will sum up all of the flux values that are
associated with each wavelength/frequency point contained within the spectral range you define. No
interpolation between data-points is done. If you want a 2d map of emission/absorption line flux only,
you should first remove its continuum/baseline (see Section 6.7.13), and then continue with this task
on the baseline-subtracted cube.

To run the task from the Cube Toolbox you need to enter the start and end array points of your spectrum

that you want to integrate over. Do this by selecting ranges (Section 6.7.2: the icon), for which
you first need to have a spectrum plotted in the Spectrum panel (in the "plot" tab); or you can type the
numbers into the box (e.g. 88.211 88.549 for startArray and 88.278 88.597 for endArray). It is good
practise to remove any pre-existing ranges before defining new ones (right-click to access Range →
Remove). You can also set the ranges on the command line:

start=Double1d([88.158,88.428])
end=Double1d([88.269,88.578])

Example 6.18. Creating start and end point array for integration.

and drag and drop "start" and "end" to the small circles (grey when not filled, green when filled) in
the integrateSpectralMap panel and next to the "end|startOfRanges" boxes. The values will be in the
units of your data (e.g. micrometres for PACS). Several spectral ranges can be input to the task at
the same time.

Upon clicking Accept, an image will appear in a new tab in the Spectrum panel. Each layer of this
image is a 2d map from a range you selected. Scroll through the images (if you selected more than
one range) with a slide-bar at the bottom of the "images (integrateSpectralMap)" tab.

The resulting map or maps are placed into a SimpleCube. To extract the individual SimpleIm-
ages you can do one of the following:

1. Right click from inside the image in the "images (integrateSpectralMap)" tab and select the item
"Extract current layer". This "extractedLayer" will then appear in the Variables.

2. On the command line, working on the output ("IntegratedMap" by default):

myimage=images.getSimpleImage(layer) # layer is a number

Example 6.19. Getting a layer from the images dataset of a cube.

The layer numbers begin from 0, and the images are placed in the SimpleCube in the order they
were specified in (note that if you select the ranges via the Spectrum panel, then the order is always
organised by wavelength value). This order can also be found by looking at the "LayerInfo" dataset
of the "IntegratedMap" output (use the Product viewer on "IntegratedMap" to see this). This gives
you a table of index number with the start and end of ranges information following. Or you can type:

302

Spectral analysis for cubes Build 15.0.3244

print images["LayerInfo"] # see what columns are there
print images["LayerInfo"]["LayerIndex"],images["LayerInfo"]["StartOfRange"]

Example 6.20. Inspecting the contents of the images dataset of a cube.

The units of the data are their flux unit times spectral_unit (e.g. Jy·µm). See Section 6.7.16 to learn
how to convert this to other units.

6.7.10.2. Gaussian line fit, and moments flux maps

You can also make flux maps—line peak and integrated line flux—using the Cube Toolbox task com-
puteVelocityMap in HCSS User's Reference Manual. The velocity task uses two algorithms: fitting
a Gaussian to the line, and computing the moments. Flux maps come out automatically from this
task, along with the velocity maps. The way these work, and how to use the task, is explained in
Section 6.7.11.

The units of the data is of the integrated flux map for this task is its flux unit times velocity (e.g.
Jy·km/s). See Section 6.7.16 to learn how to convert this to other units.

6.7.11. Velocity maps
To make velocity maps—radial velocity and dispersion—from spectral cubes you can use a task from
the Cube Toolbox. To find the Cube Toolbox in the Spectrum Explorer, go to the "Cube Toolbox"

icon: . The toolbox will open to the right of the Spectrum panel. The task you want is called
computeVelocityMap in HCSS User's Reference Manual. The task will also compute two flux maps:
integrated line flux (everything between the line and 0 flux) and peak line flux.

Note

You can also make velocity and flux maps using the SpectrumFitterGUI, or the com-
mand-line SpectrumFitter: this is documented in worked examples of Chapter 7.

The velocity mapping task recommends:

1. that you have subtracted or divided the continuum, i.e. that it is at 0 (for emission lines) or 1 (for
absorption lines),

2. there is only one spectral line of interest in your cube.

Not doing either of these will give you wrong results. To tune your cube to one spectral region of
interest, you can crop it spectrally using the extract task (Section 6.7.3) of the Spectrum Toolbox or the
cropCube task of the Cube Toolbox: Section 6.7.3. To learn how to remove the continuum (baseline),
see Section 6.7.13, and then continue with this task on the baseline-subtracted cube.

There are two ways to compute these maps: non-interactive Gaussian fitting, or a moments method.
You choose one of the two in the "velAlgorithm" parameter of the tab. You must also enter the refer-
ence wavelength (the value for zero velocity), and whether the line is emission or absorption (isEmis-
sion radio button). Press Accept to execute the task.

• The Gaussian algorithm will fit a single Gaussian to the brightest peak in your spectrum, using the
HIPE fitter functions, for each pixel/spaxel. The names of the output products can be set in the task
GUI (in "Outputs").

Before computing the velocities the spectral grid is converted to velocity using the input reference
(wavelength or frequency). The equations used in this task are given in the URM in HCSS User's
Reference Manual entry. The task will produce the following:

1. A velocity map: a SimpleImage called velocityMap by default, containing the datasets image
(the velocities), chiSquared (the χ

2 of the fit), and error (the error returned by the fitter task used
to fit the Gaussian).

303

Spectral analysis for cubes Build 15.0.3244

2. A dispersion map: a SimpleImage called dispersionMap by default, this being the sigma (not
the FWHM) of the Gaussian. This map also has an error dataset (the error returned by the fitter
task used to fit the Gaussian).

3. A SimpleImage of the maximum flux (maxFluxMap) and of the integrated flux (lineIn-
tensityMap), where the integrated flux is calculated from the equation for a Gaussian. These
maps also have an error dataset (the error returned by the fitter task used to fit the Gaussian).

4. A vel[ocity]Cube, which is your input cube but with axes of km/s rather than the input spectral
unit.

5. And a fittedLineCube, which contains the model fit to each spaxel from which the velocities
and fluxes were computed. The X-axis here is also km/s, so you can compare the model to the
data by opening the Spectrum Explorer on the velCube and the fittedLineCube together (see
Section 6.6.5).

• The moments method. This method calculates the three moments (see the URM in HCSS User's
Reference Manual entry for the equations): M0 is the integrated flux, M1 is the velocity, M2 is the
velocity dispersion (similar to the sigma of the Gaussian fit). This method also returns the maximum
flux in the array. The moments are calculated on a spectral region that is hunted for by the task,
i.e. for each spaxel/pixel, the task itself identifies where your spectral line lies. This is explained in
the URM in HCSS User's Reference Manual entry of the task. Before computing the velocities the
spectral grid is converted to velocity using the input reference (wavelength or frequency).

The task will produce the following:

1. A velocity map: a SimpleImage called velocityMap by default, containing the datasets image
(the velocities), error (the propagated error computed with the standard deviation values that are
calculated by the moments method: see the URM in HCSS User's Reference Manual entry to
know what these stddev values are), and windows (the velocity windows that the task computes
[see its URM in HCSS User's Reference Manual entry to learn about this] and inside of which
the spectral line should be located).

2. A dispersion map: a SimpleImage called dispersionMap by default, this being the sigma (not
the FWHM) of the Gaussian. This map also has an error dataset (the propagated error computed
with the standard deviation values that are calculated by the moments method: see the URM in
HCSS User's Reference Manual entry to know what these stddev values are).

3. A SimpleImage of the maximum flux (maxFluxMap) and of the integrated flux (lineIn-
tensityMap), where the integrated flux is the sum of the flux-data-points in the spectral line.
These maps also have an error dataset (the propagated error computed with the standard devia-
tion values that are calculated by the moments method: see the URM in HCSS User's Reference
Manual entry to know what these stddev values are).

4. A vel[ocity]Cube, which is your input cube but with axes of km/s rather than the input spectral
unit.

5. No fittedLineCube is produced, instead an emptyCube is produced (and this should be ignored).

Before computing the velocities the spectral grid is converted to velocity using the input reference
(wavelength or frequency). Note that the radio astronomy convention is used: moving from frequency
to velocity: v = c·(f0 -f)/f0, moving from wavelength to velocity: v = c·(w-w0)/w.

The unit of the integrated flux map is the flux unit [e.g. Jy] times km/s, the velocity maps are in km/
s, and the peak flux map is in the flux unit of your data.

The images created by this task will appear in the Spectrum panel as inactive displays (no selections
can be done from them), each in its own tab, and the image products will appear in the Variables pane
of HIPE, from were they can be double-clicked and displayed with an image viewer. The cubes also

304

Spectral analysis for cubes Build 15.0.3244

appear in the Spectrum panel as inactive displays, and in the Variables pane from where you can open
them with the Spectrum Explorer. Remember that you can change the spectral layer the cube image
is made from in the Data Selection panel using its slide bar at the bottom. A second running of the
same task will overwrite previously-created displays, but the products created will always be found in
the Variables pane: each subsequent product created with the same name will have an iterator added
(1, 2, 3....) to the name.

6.7.12. Position-velocity maps
The PV map task will create a 2d image: along the horizontal axis is position (offset along a line
drawn on a cube) and the vertical axis is velocity, and the flux units are those of your data. You can
input the width of the line (in spaxel/pixel size, e.g. 1 is +/-0.5 spaxel width). To run this task select
computePVMap in HCSS User's Reference Manual from the drop-down menu of the Cube Toolbox.

Then draw your slit (your line) on the cube using the line selection icon (see: Section 6.6.2): where
you click in the cube image becomes the bottom-left end of the line, and you can resize and move
the line from there (to any direction and angle). The starting and ending rows and columns appear in
the corresponding parameter boxes of the panel as you move this line about. Then enter the reference
wavelength/frequency (where 0 km/s is to be found) and click Accept.

Before computing the velocities the spectral grid is converted to velocity using the input reference
(wavelength or frequency). Note that the radio astronomy convention is used: moving from frequency
to velocity: v = c·(f0-f)/f0, moving from wavelength to velocity: v = c·(w-w0)/w. For more information
on the computation, see the URM in HCSS User's Reference Manual entry of the task.

There are two parameters to help deal with the maps created from data with extreme aspect ratios
(e.g. when you spectral range is very much longer than your spatial range). If you set to True the
"correct aspect ratio" (check the radio button), then the task checks the aspect ratio of the PV map
against the minimum value you give as the minAspectRatio parameter (value cannot be greater than
1). This minAspectRatio parameter is the minimum dimension ratio of the map, and is row/column
(height/width: position is along the width and velocity along the height). If the aspect ratio exceeds
your minimum, it calls the scale in HCSS User's Reference Manual task to rescale the map. It sets the
values for the parameters "x" and "y" of the scale task (which are column, row) in the following way:

• x = (row/column)*minAspectRatio when row/column >1.0; and y = 1

• y = minAspectRatio / (row/column) when row/column <= 1.0; and x = 1

The task produces an image in the Variables pane and in the Spectrum panel. The value and units of
the map appear on the bottom-right of the image in the Spectrum panel as you scroll over it.

6.7.13. Removing the continuum from cubes
In the Cube Toolbox there is a task to remove the "baseline", or continuum. This is a necessary pre-
requisite for creating accurate velocity and flux maps using the Cube Toolbox (as detailed in the pre-
vious section).

The output of this task is the subtracted or divided cube, and remember that if you want to continue
working on it, you will need to open a new instance of the Spectrum Explorer on the new cube.

This task does an automatic fit to the continuum. To indicate the spectral regions to use in the fitting

use the range selection (Section 6.7.2: the icon) on a spectrum from any spaxel/pixel of your cube.
These ranges are added to the "end|startOfRanges" boxes as space-separated lists. You can also create
the ranges yourself:

start=Double1d([88.158,88.428])
end=Double1d([88.269,88.578])

Example 6.21. Defining some Double1d arrays for range selection.

305

Spectral analysis for cubes Build 15.0.3244

and drag and drop these variables from the Variables pane to in the Cube Toolbox task panel, next
to the "end|startOfRanges" boxes (look for the the small circles, which are grey when not filled, and
green when filled). You then input the degree of the polynomial (polyDegree). The parameter divide
is to allow you to choose whether to subtract the fitted continuum or to divide by it. Then Accept the
fitting and the whole cube is fit with the ranges and order you defined. The fit is then subtracted from
or divided into the cube spectra.

"fitInfo" is a product that contains a TableDataset with the information of the fitting to each
spaxel. If you click on "fitInfo" in Variables to open it with a Product viewer, and from the viewer click
on the "FitInfo" in the "Data" section, you will see this information: for each spaxel row and column
coordinate, the parameters of the polynomial are given, as well as the standard deviation and χ

2.

Upon pressing Accept two cubes are created: baseCube which contains the polynomial fits, and
subCube which contains the continuum-subtracted|divided spectra. To compare one to the other,
open either with the Spectrum Explorer and drag and drop the second into the Data Selection panel;
you can then select the same spaxels from both to see the overplotted spectra in the Spectrum panel:
Section 6.6.5.

Do remember that if using this task before running the velocity mapping tasks, you will need to open
the cube in the current or a new Spectrum Explorer instance. The cube you ran removeBaseline-
FromCube from is not overwritten.

6.7.14. Dealing with baseline issues
To learn how to use the baseline smoothing and fitting tasks, written for HIFI but usable for other
instruments, read the section in the previous chapter: Section 5.5. These tasks remove regular signals,
sine-waves, from the baselines. However, they do not work on a full cube, rather they work on one
spectrum at a time. Hence, the instructions in the previous chapter will work for cubes also.

6.7.15. Exporting to ASCII or FITS
The task exportSpectrumToAscii in HCSS User's Reference Manual allows you to write out
your cube/spectra to a text file. It is a task that can be found in the Spectrum Toolbox, and it is described
in the ASCII chapter of the Data Analysis Guide: Section 2.12.

The task simpleFitsWriter is also offered via the Spectrum Toolbox, and this will save spectral
products to FITS files. See Section 1.16 for more detail.

6.7.16. Converting units for Cube Toolbox flux maps
With the Cube Toolbox you can make flux maps via the velocity task and via the integrate flux task.
The flux units you get from these are different: the velocity task returns flux unit [eg. Jy] times km/s
and the integrated task returns flux unit [eg. Jy] times spectral_unit [e.g. µm]. This is because the tasks
sum up under (or over) an emission (absorption) line over the velocity/spectral dimension.

To help you compare the results from the two tasks that return flux maps, and also to convert the units
to the more physical W/m2, you can use these equations:

To convert from Jy·km/s to Jy·µm
(or from K·km/s to K·GHz, or any other similar combination)
#
Let f_jykm be the flux in e.g. Jy·km/s
Let f_jymum be the flux in e.g. Jy·µm
Let w_mum be the line wavelength in e.g. µm
Let c be the speed of light in km/s
c = herschel.share.unit.Constant.SPEED_OF_LIGHT.value
c=c/1000.0
then:
f_jymum = f_jykm * (w_mum/c)

To convert from Jy·km/s to W/m2

306

Spectral analysis for cubes Build 15.0.3244

#
Let f_wm be the flux in W/m2
f_wm = f_jykm * (w_mum/c) * (2.99e-12/w_mum**2)

To convert from Jy·µm to W/m2

#
Let f_wm be the flux in W/m2
f_wm = f_jymum * (2.99e-12/w_mum**2)

Example 6.22. Converting the units of the flux maps generated by the Cube Toolbox

Note

Obviously, "Jy" is a unit of flux density rather than flux, but the word "flux" here is short-
hand for whatever the signal of your spectrum is recorded in. Similarly, when we say
"integrated flux" we mean that the "flux" in the area under the emission line (or over the
absorption line) has been summed up.

To apply this to a map (a SimpleImage) edit the following to your specifications:

To convert the units of a map, a SimpleImage,
e.g. from f_jykm to f_wm
c = herschel.share.unit.Constant.SPEED_OF_LIGHT.value
c=c/1000.0
mapdata=map.getImage()
w_mum = 88.3 # the central wavelength of the line
mapdata = mapdata * (w_mum/c) * (2.99e-12/w_mum**2)
map.setImage(mapdata)
map.setUnit(herschel.share.unit.Unit.parse("W/m2"))

Example 6.23. Converting the units of a map represented as a SimpleImage.

6.8. Combining the PACS and SPIRE full SED
for point sources

It is possible to observe the entire SED from 50 to 680 µm with two PACS observations—covering
the bands B2A and B2B and their accompanying R1 ranges—and one SPIRE observation—covering
the SSW and SLW bands—and in HIPE there is a script to combine the spectra of point sources that
cover part of all of this range. The script can be found in the HIPE (PACS and SPIRE builds) menu:
Scripts → PACS or SPIRE Useful scripts → Spectroscopy: Combine PACS and SPIRE spectra. It uses
public observations as a demonstration.

Note that this task does not mathematically combine the spectra, it simply pushes them together into
the same Spectrum1d. The advantages of this is that you can keep them together, including writing the
Spectrum1d out to disk as FITS. A Spectrum1d is a class of spectrum that contains columns of flux,
weight, flag, wavelength, and segment: with this segment number you can distinguish spectra that
came from different sources (e.g. PACS can get segment numbers 1 to 4 and SPIRE can get segment
numbers 5 and 6).

The process is quite straightforward, despite the length of the script. Most of the script is taken up
with the functions that do the combining. These need to be read into HIPE before they can be used:
you do by aligning the cursor arrow that is on the left-hand side of the Editor pane with each of the 4
occurrences of "def" (e.g. "def prepPacsSpec") and pressing the single green arrow at the top of HIPE.
Further instructions for running the script are included in the script. The steps are:

1. Extract the point source spectra from your cubes; this has to be done on a PACS HIPE build for
PACS data and a SPIRE HIPE build for SPIRE data, or on an all-instrument build, since these tasks
are instrument-specific.

For PACS there are two tasks to extract the point source spectrum, these are explained in the PACS
Data Reduction Guide (chps 8.3 an 8.4), and the combining script includes an example of how to
run the most commonly-used task of the two.

307

Spectral analysis for cubes Build 15.0.3244

For SPIRE this is done in a task that is provided (as a jython function) in the combining script.

Tip

If you don't have an all-instrument build, you can run e.g. the PACS part in a PACS
build of HIPE, write the file out as FITS, and then open a SPIRE build and read the
PACS file back in to HIPE.

2. The PACS and SPIRE spectra will each be pushed into two Spectrum1d products, one for PACS
and one for SPIRE, in which the different input spectra will have different segment numbers. If
you are working with full SED coverage data then you will have 4 PACS spectra which you push
into a Spectrum1d and 2 SPIRE spectra which you push into a Spectrum1d but you can work
with more or fewer spectra. This can be done on any build of HIPE, as the tasks involved are
instrument-independent. For PACS you are offered the chance to set flags for bad data/regions and
for SPIRE you are offered the chance to change the wavelength units to micrometers.

3. Finally you will combine the PACS Spectrum1d with the SPIRE Spectrum1d product into
a single, new Spectrum1d, with all spectra being converted to the same X-axis units ("GHz",
"micrometer", "cm-1"). The flux units must be Jy (aka Jy/pixel or Jy/spaxel).

4. Note that we have added an error column to the PACS+SPIRE Spectrum1d. This is not a standard
part of the Spectrum1d, but since SPIRE has errors we did not want lose them and so added that
as a free-style column. For PACS this is filled with 0, but the weights column is filled: taking the
weights from the input spectra.

You can view all the Spectrum1d you create with the Spectrum Explorer. The new spectra will
appear in the Variables pane and double click on the output will show the result in the Spectrum
Explorer, as shown in Figure 6.10, after adding an auxiliary upper x-axis with the wavelength in
microns. You can also inspect their Meta data: the script copies over the relevant Meta data from the
input products. Use the Product viewer or Dataset viewer to see Meta data. Finally, any Spectrum1d
can be saved as a FITS file.

Figure 6.10. A screenshot of the combined PACS and SPIRE spectra for AFGL 618 (=CRL 618).

308

Build 15.0.3244

Chapter 7. Spectral Fitting

7.1. Spectrum fitting
In this chapter we show how to fit spectra. Fitting can be done using the Spectrum Fitter GUI (SFG),
which provides a user-friendly interface and allows you to immediately see the results of the fitting.
For command-line fitting you can use the Spectrum Fitter (which is the core of the SFG). Any Spec-
trumContainer can be fit, such as Spectrum1D, Spectrum2D, the HIFI and SPIRE extensions
of Spectrum1/2D, SpectralSimpleCubes and the PACS extension of SpectralSimple-
Cube.

In addition to fitting features in a single spectrum, which is how you will typically start fitting, the fitter
tools allow you to automatically fit models to a set of data (multi-fitting), which is useful when working
with large sets of data and with spectral cubes. It is also possible to make fits using several models
with linked parameters (combo-fitting), which is useful, for example, for fitting hyper-fine lines; this
options can only be done with command-line fitting. You can also constrain fitting parameters to
within defined limits. You can save the models you define to HIPE to be re-used in another session
and there are various export options available for the fitting results. It is also possible to create your
own models to use with the fitting tools.

This chapter concerns fitting spectra. It is possible to fit to array datasets such as Double1d using
the various fitter functions available in HIPE and this is described in the Scripting Guide in Scripting
Guide. The Spectrum Fitter and Spectrum Fitter GUI are built upon these fitter functions but are
designed to work specifically on spectra.

We begin with a general introduction on how the GUI and the command-line approaches work, and
follow that with worked examples that are tuned to what Herschel users are likely to do. The rest of
this chapter contains detailed information about the usage of the SFG and the Spectrum Fitter that will
allow you to fine-tune your spectrum fitting and take best advantages of the capabilities offered by
the spectrum fitting package in HIPE.

Tip

Spaxels and pixels: mean the same thing, but HIFI uses "pixel" while PACS and SPIRE
use "spaxel". These are the spatial-spectral unit of the cube, so one spaxel/pixel is one
spatial element of your cube (one "square") with a full spectrum contained within it. If
you change your spatial grid, e.g by regridding the cube, the spaxels/pixel is still the same
thing, it is just that their sizes have changed.

Tip

Worked examples: scripts that take the user through the processing of fitting cubes using
command-line fitting have been provided in the PACS build of HIPE ("Scripts" menu).
While they work from PACS example observations and are designed for those type of
data, the fitting parts of these scripts will also work, with only slight changes, on HIFI
and SPIRE cubes.

7.1.1. Using the Spectrum Fitter GUI: an overview

7.1.1.1. Starting the GUI

Both the SFG and the Spectrum Fitter can be used with anything that you can display in the Spec-
trum Explorer. If you are unfamiliar with fitting then you should begin with the Spectrum Fitter GUI,
particularly because—as shown in the worked examples in the following sections—you can export
a script from the Spectrum Fitter GUI that can be used as a seed for future scripts you can write to
do spectrum fitting.

309

Spectral Fitting Build 15.0.3244

The SFG is available in the Tasks panel (because it must be registered to work on Spectrum Containers,
which makes HIPE show it as an available task) but it should only be opened from the Spectrum
Explorer. To open the SFG from the Spectrum Explorer, follow these steps (and see the figure below):

1. From your spectrum/cube in the Variables view, right click and select the Spectrum Explorer (often
a double click will also do this). (The use of the Spectrum Explorer is explained in Chapter 6 for
spectral cubes and Chapter 5 for single spectra.) The Spectrum Explorer opens in the Editor view
of HIPE.

2. From there, display one spectrum—the one you want to fit or, if working with multi-spectra datasets
such as cubes, the one on which you wish to test the models to fit to the entire dataset. The way a
spectrum is selected/deselected for display depends on whether you are fitting to a spectrum in a
spectrum dataset or in a cube. For a spectrum dataset, click on a square in the row indicating the
spectrum you want to fit in the Data Selection panel (see Section 5.3.1 to learn more). For a cube,
click on a single spaxel/pixel from the cube image of the Data Selection panel of the Spectrum
Explorer (see Section 6.6.2 to learn more). In both cases, the selected spectrum will appear in the
Spectrum panel, this is illustrated in Figure 7.1 for a SPIRE cube and a HIFI WBS spectrum.

Figure 7.1. Selecting one spectrum to fit with the Spectrum Fitter GUI. Here a pixel near the centre of
the cube (highlighted with a green box) is displayed in the top left Spectrum Explorer and the second
subband of a HIFI WBS spectrum is displayed in the bottom right Spectrum Explorer.

3.
Click on the SFG icon in the Spectrum Explorer button bar: . Alternatively, you can open the
SFG from the Dialogue menu you get when you right-click in the Spectrum panel.

4. A new panel will appear to the right of the spectrum plot: this is the SpectrumFitterGUI panel.

If you try to open the SFG on multiple spectra—or on no spectra—a warning message will appear
informing you that have not selected any spectra to fit and that you should do so. Clicking OK will
generate a message in the toolbox "Initializing failed, press Reset to retry". Ensure that you have
selected a spectrum before reselecting the SFG.

If you do have multiple spectra plotted, you can select (or highlight) the spectrum of interest by clicking

on the arrow icon in the Spectrum Explorer button bar () and then clicking on the spectrum, which
should then be plotted with a solid line and dot marker symbols. Selecting the SFG will then open
it on the selected spectrum. To learn how to select cube spectra from the Spectrum Explorer, read
Section 6.7.2, and for other spectra read Section 5.4.2. However, this is not a recommended way of
using the Spectrum Explorer, as the plot will later become very busy with more spectra created by
the SFG.

310

Spectral Fitting Build 15.0.3244

7.1.1.2. What you see when the SFG is opened

The SFG opens up in the same space as the tasks parameter form in the Spectrum Toolbox or the Cube
Toolbox. There are four panels in this Spectrum Explorer, each with a different purpose.

Figure 7.2. The SFG accessed via the Spectrum Explorer, and showing a Polynomial fitted to one pixel
from a SPIRE cube. The labelled Spectrum Explorer and Fitter GUI panes are described in the text below.

• Spectrum panel: The selected spectrum and a weight line are plotted here. Models will be added as
you start fitting, and the final fit and its residual will also be displayed here.

• Data Selection panel: In here a new tab, called FitResult, will appear. It contains selectable
rows including the input spectrum and a weight line (click on the coloured button to show or hide
them in the plot panel above), and once fitting is started it will also contain the models, the total
(or global) model, and the residual after fitting. In each row representing a model the following are
also shown: the names of the model parameters, their values and the standard deviation of the fit
from the data as well as the integrated flux under the model.

The data plotted in the Spectrum panel is colour-matched with the coloured button in the Data
Selection under the column headed "0", you can plot or remove from the plot by clicking on these
buttons. In Figure 7.2 the colours are: the spectrum you chose (dark blue), the total model (dark
blue, again, because it is not plotted), the polynomial model (brown—it is the only model and thus
the same as the total model), the residual (magenta) and the weights (green).

• Working area: The working area of the SFG is in the Toolbox panel, on the right. In different tabs
you are able to: work with models; assign weights to data; select the fitter engine to be used; export
the fitting results and models; and use the multifitter to apply models to multiple sets of data. These
are described in the following sections.

• Preview panel: This panel in the lower right will show a preview of a spectrum in the Data Selec-
tion panel when clicking on its row or hovering over a spaxel of a cube. The preview panel is not
significant in the use of the SFG.

7.1.1.3. Procedure to fit to a single spectrum

A typical procedure to follow when fitting to a single and relatively uncomplicated spectrum may go
like this:

1. Plot one spectrum in the Spectrum Explorer.

311

Spectral Fitting Build 15.0.3244

2. Open the Spectrum Fitter GUI.

3. Add a model. This is done in the working area. See Figure 7.3 (you may need to resize the panel
to see it all):

Figure 7.3. The working area of the SFG.

To add new models, you will click on addModel. Then select the type of model you want from the
drop-down menu. An initial estimate will be applied to the data and at the same time the model
drawn on the spectrum plot. You can add as many models as you wish. For simple spectra containing
one spectral line and a simple continuum the result you see upon initialisation (this happens as soon
as a model is selected) is usually pretty good, and when adding new models the SFG usually makes
a decent guess at the parameters.

4. Adjust the model(s). You can change the model parameters in the area assigned to each model in
the Models tab. For the polynomial model you will need to select and Update the order. For many
of the parameters for the other models you can use the mouse to make selections in the Spectrum
Panel, see Section 7.6 and Section 7.11 for instructions. If, upon initialisation, your chosen model
could not make a first guess at the parameters, you can set the manually in this way. There are other
steps you can take to optimise a model fit:

• In the Weights tab behind the Models tab you can set weighted regions that are taken into account
when fitting is done so that you can give more significance to a strong feature or less significance
to very noisy regions. You can also mask out regions so they are not included in the fitting (e.g.
mask out spectral lines so that a polynomial can fit a continuum well) by setting weights. See
Section 7.8.

• In that same Weights tab you can also ask that the weights in the spectrum (i.e. that are already
present in the data) are included in the fitting. However, note that you cannot use data weights
and also set weighted regions: the data weights are never taken into account if weighted regions
are set.

• You can add more models and you can also choose to not use them in a fit, or to delete them,
see Section 7.14.

• In the Engine tab behind the Weights tab you can change the fitter engine to use. The default
usually produces a good result but see Section 7.26.

5. Press Accept at the bottom on the Working Area to make a global fit. This fit applies all the models
you have defined to the original spectrum (the one you displayed when opening the SFG). The fitter
always works on the original data (not to e.g. the residual of a previous fit), see Section 7.12.

6. Inspect the fitting results in the Spectrum Explorer. The individual models, the total model and the
residual will all be found in the FitResult tab of the Data Selection Panel, you can plot/remove

312

Spectral Fitting Build 15.0.3244

them by clicking on their coloured buttons. You can also find this FitResult variable in Variables
(this product contains the details of the fit), see Section 7.13.

7. Save (export) the fit results. Using the Export tab in the working area, you can save a script of your
actions and save the original data, the residual and the models, see Section 7.16 and Section 7.17.
(The residual can be run through the SFG again for additional fitting.)

Upon fitting, a set of results is immediately produced and sent to the Variables pane: a single con-
text called SFGResultsContext containing the: model spectrum(a), total spectrum, residual
spectrum as individual products. The class of these spectra is the same as the class of the input,
meaning that if you fit a cube then these outputs are also cubes, but with only the selected spaxel of
each cube having a spectrum in it. The export tab is useful if you want to save to disk in the same
or a different format. A product called "FitResult" is also produced: this contains the fitting results
as shown in the FitResult tab you can see in the Data Selection panel of the Spectrum Explorer.

8. You may wish to work on the residual with other data processing tools. When you export the fit
results you have an option to save the residual or the models in the same format as the original
data. Taking this option will add a product called (by default) SFGResidualDataset to the
SFGResultsContext. This contains your residual in some spectral format. You can click on
this variable name as listed in the SFGResultsContext product (e.g. in the Product Viewer or
Outline pane) to display it in the Spectrum Explorer and you can drag it into the Variables view to
make a new variable to work on. From the Variables you can also export as FITS.

7.1.1.4. Procedure to fit a cube or multi-spectrum dataset

Warning

You should make a variable of the dataset you wish to fit rather than opening a spec-
trum/cube directly from the Observation Context in the Observation Viewer. If you do not
work from a variable (i.e. if you do not actually extract out the spectrum or cube from the
Observation Context), the SpectrumFitter will not know where to look for the rest of the
spectra you fit to and will hang. No warning message is given in this circumstance.

The procedure to fit multi-spectrum datasets, such as cubes, follows on from the fitting to a single
spectrum.

1. First fit a single spectrum and get the model-set that you like, as described above. Alternatively,
load a model XML file from a previous fitting, see Section 7.17 and Section 7.20.

2. Then go to the MultiFit tab in the Working area. You can choose to save the parameters of the
multi-fit (upon execution) to an ASCII file on disk from here. Fit the entire dataset with the model(s)
by clicking the Accept button at the bottom of the panel.

If any spaxels/pixels could not be fit, a message will appear informing you of the number of failed
fits. Any spaxel/pixels that are entirely NaNs (e.g. the edge spaxels of mosaic cubes) will result
in a failed fit.

3. Inspect the fitting results. In addition to any ASCII file you produced you will see, in the Variables
View, the following new products: MultiFit_Residual, MultiFit_TotModel, MultiFit_M1[M2,
M3...], which are all SpectralSimpleCubes with the indicated spectral results in them; M1,
M2, M3, etc are the individual models you defined).

Also created are: MultiFit_Parms, which is a product containing TableDatasets that hold your
results, and MultiFit_ParameterCube, which contains the fitting results as a ParameterCube
(see Section 7.28 to learn more about this).

313

Spectral Fitting Build 15.0.3244

Figure 7.4. The MultiFit_Parms output.

If you want to tie models together (combo model) then you need to do spectrum fitting on the command
line, using the Spectrum Fitter. See Section 7.23.

Bear in mind that when working with a cube, it is possible that the spectra differ substantially from
spaxel/pixel to spaxel/pixel, and this could affect the accuracy of the results. The Spectrum Fitter
GUI in multi-fit mode is an automatic fitter, and so cannot account for sharp and large changes to the
spectra across the cube.

7.1.2. Using the Spectrum Fitter (command-line fitting):
an overview

The best way to learn how to script fitting is to follow the Worked Examples in the following sections,
which each contain a full script of the fitting done after a GUI-based description. This includes fitting
single spectra and multi-spectral datasets, and includes creating images from the results of fitting
on cubes. The remainder of this chapter also contains code snippets in each section to show how to
perform the actions described in the command line, again after the GUI-based description.

Whether you use the graphical interface or a script to fit spectra is primarily down to your own pref-
erence. Scripting is, of course, very efficient and can be the best way to deal with large amounts of
data. The fitting tools require initial estimates before making a fit, which can be difficult to do by eye,
and—as for all fitting tools—if the initial estimate supplied is not a good one the fitting can be very
bad or even fail. An advantage of using the GUI is that it makes the initial estimates for you based on
the original data. If you prefer to script it can be helpful to make initial fits to a good-quality spectrum
in your dataset using the GUI, before making a script of that fit and modifying it for your needs.

In the command line, the format in which data is passed to the SpectrumFitter depends on the type of
data (spectrum or spectral cube) being used.

The SpectrumFitter class accepts all the main Herschel spectral types: SpectralSegments,
Spectrum1d, Spectrum2d and spectral cubes. Whenever you start the Spectrum Fitter, a plot
window is opened by default, unless you set an additional parameter to False:

sf = SpectrumFitter(mySpectrum) # Plot window created
sf = SpectrumFitter(mySpectrum, False) # Plot window not created

Example 7.1. Creating a new instance of the Spectrum Fitter with and without a plot window.

If your SpectrumDataset contains multiple spectra, you can specify the spectrum to fit to by
giving the pointSpectrum and segment number:

314

Spectral Fitting Build 15.0.3244

sf = SpectrumFitter(mySpectrumContainer, spectrum, segment)

Example 7.2. Creating a Spectrum Fitter specifying the particular spectra by segment number(s).

Remember that pointSpectra, corresponding to the dataset number, are numbered starting from
0, while segments are numbered starting from 1.

If your input is a cube, you can instead indicate the spaxel row and column coordinate of the spectrum
you want to select for fitting:

sf = SpectrumFitter(myCube, column, row)

Example 7.3. Creating a Spectrum Fitter specifying the spectra by cube coordinates.

Coordinates in cubes

In the cube image: At the bottom left of the cube display you will see indicated the (row,
column) of the spaxel/pixel under the mouse. If this says, e.g (5,1), then your mouse will be
6 spaxels/pixels high along the vertical axis (the counting starts at 0) and 2 spaxels/pixels
along the horizontal axis. This is the reverse of the usual convention for Astronomical
images.

The Spectrum Fitter follows normal Astronomer convention and of (column, row) and
it calls these (X,Y). Therefore, if you see (5, 1) as you hover your mouse over your cube
image, you should use the coordinates (1, 5) in the Spectrum Fitter.

You can also select one spectrum from a cube using spectrum and spectrum segment indices with the
following syntax, including setting the last parameter to True:

sf = SpectrumFitter(myCube, spectrum, segment, True, True)

Example 7.4. Creating a new instance of the Spectrum Fitter specifying both segment number and the
display of the plot window.

For cubes, the segment value is always 1. The first True parameter refers to the creation of a plot
window.

Instead of writing a script from scratch, you can use the Save as script option in the Export tab of
the SFG to save a script that will recreate the last global fit performed (Section 7.1: and remember
to press Accept to actually save the script). You can use this script as a template to create your own
for other data. Hence, beginning with the SFG before using the Spectrum Fitter on the command line
is a good idea.

Note that the script saved by the SFG starts at the point where the data to be fit is loaded into the Fitter
(depending on your previous actions, the data passed to the Fitter may be a FitResult), you must
script any earlier actions yourself; use the History tab of the Console to see the commands you ran
before. Note also that the script is not completely tailored to what you just did before you saved it—
some parts of the script never change.

Two useful extra things that can be done with the command-line fitting are:

• The combo model, with which you can tie models parameters to each other. For example, two
Gaussians could be constrained to have the same FWHM as each other. See Section 7.23. This is
unique to command-line fitting.

• Limiting fit parameters, where you can limit a fit to a parameter to fall within a given range. See
Section 7.9.

7.1.3. Fitting tips
• When fitting a Polynomial to a baseline and also fitting a spectral line you may have more success if

you use an initialisation range for the Polynomial, see Section 7.6, rather than trying to use weights.
The reason for this is that weights are applied to all models, including the one you use for the line.

315

Spectral Fitting Build 15.0.3244

• When fitting a baseline/continuum and line profiles, you could try first fitting and subtracting or
dividing the baseline/continuum, and then fitting the lines only. When fitting to a cube with the
Spectrum Fitter, a residual cube is created automatically; if you wish to divide by the continuum
instead of subtract you can use the Spectrum Toolbox "divide" task with the original-cube and the
fit-cube as inputs (see Chapter 5 and Chapter 6 for more information).

• If a fit fails, try allowing any parameters you have fixed to float. This should help you to identify
where the fit is failing. If the fitting still fails then try temporarily not using one model at at time
until the data can be fit, you can then try tweaking the parameters of the problematic model until
a fit is attained.

When fitting to spectral cubes, the MultiFit_Parms output from the multi-fitter will indicate the
spaxel/pixel coordinates of the fits that failed, so you can check on those (and not forgetting the
swap in coordinates between the SFG and the display, mentioned in the Warning above).

• When automatically fitting to complicated or varying spectral profile in a dataset try running the
multifitter several times and constraining the fitter to a specific feature on each attempt. For example,
in the case of an emission line that changes to an absorption across a field, fit to the emission first by
setting the limits of the amplitude to be positive. Then fit to the absorption by limiting the amplitude
to be negative, see Section 7.9. (Then you may have to merge the results.)

• For information on the fitting routines upon which Spectrum Fitter is built, see the Scripting Guide:
Section 5.8 in Scripting Guide. See also the fitting reference documentation.

• When chosing the reference spectrum to fit first before multifitting on a cube, try selecting one of
the brightest ones rather than an average one; it can produce better overall results.

7.2. Worked Example: Fitting a polynomial to
the baseline/continuum

In this simple example we make a Polynomial fit to the baseline of a PACS spectrum. The data used
is the public pointed line spectroscopy observation with obsid 1342191353.

1. Get the observation:

obs = getObservation(1342191353, useHsa=True)

Example 7.5. Retrieving an observation whose data will be used for a Polynomial interpolation.

Take the level 2 HPS3DPB: N1 R(0,0) ListContext and create a variable from the 0:
L2N1 SpectralSimpleCube within it by dragging the cube to the Variables view. Or, on the
command line type:

cube = obs.refs["level2"].product.refs["HPS3DPB"].product.refs[0].product

Example 7.6. Extracting a product from the observation that will be used for Polynomial interpolation.

Open the cube variable you just created in SpectrumExplorer and click on the (40, 63) spaxel to
plot the spectrum.

Why make a variable? Not all aspects of the SFG, e.g. multifitting, will work properly if you work
from the ObservationContext; it is good practice to create a variable to work on.

316

../../hcss_drm/ia/numeric/toolbox/fit/doc/reference.html

Spectral Fitting Build 15.0.3244

Figure 7.5. Plot one spectrum (a spaxel/pixel) and open the Spectrum Fitter GUI.

2. Open the SFG by pressing the fitting icon in the Spectrum Explorer button bar, see Figure 7.5. The
SFG will open as described in Section 7.1.1.

Note that the cross-hair that indicates the layer the cube is displayed at is still displayed and cannot
be removed. If it interferes with your fitting you can move it away from the line by adjusting the
layer the cube is displayed at to be the first or last layer by going back to the tab for the cube in Spec-
trum Explorer (called cube in Figure 7.15) and moving the slider below the cube, see Figure 7.15.

3. Add a Polynomial Model by pressing addModel and selecting a Polynomial model from the drop-
down menu (the default choice is a Gaussian). Chose and Update the order of the polynomial. The
model is automatically initialised and plotted against the data.

317

Spectral Fitting Build 15.0.3244

Figure 7.6. Add a Polynomial model using addModel and press Accept to fit.

4. Let's see how well the fitter will do automatically. Press Accept, see Figure 7.6, to fit using this
initial Polynomial as input to the fitter.

The fitted model and residual are added to the plot and we can see that the fit to the baseline is
not very good near to the line - the end points of the spectrum have influenced the fit more than
desired. We need to lower the weighting of the fit there.

Figure 7.7. Reset the Spectrum Fitter GU to start work on the original spectrum again.addModel and
press Accept to fit.

5. So, let's start over. Press Reset, see Figure 7.7, and add the Polynomial model again.

A FitResult variable was created when you started the SFG. when you reset it a FitResult_1
is created, this is the variable that will contain the fitting results from this restarted round of fitting.

318

Spectral Fitting Build 15.0.3244

6. Now set weights by going to the Weight tab. Weights are set by drawing a range on the spectrum
using the Select Ranges mode of the Spectrum Explorer, see Figure 7.8.

Weights are automatically set to one in the weighted region and zero elsewhere so the simplest way
to lower the weighting at the edges of the spectrum is to draw a range over the central part of the
spectrum that you want to fit to.

Figure 7.8. Set weights by opening the Weights tab and drawing a range on the spectrum.

Note that it is not necessary to 'mask out' the line when doing this: the Polynomial will be initialised
according to the first and last 10% of the data in the region where the weight is non-zero, so for
this spectrum the line has no impact on the Polynomial initialisation.

7. Now go back to the Models tab, the weights will still be drawn on the spectrum but the ranges
drawn will disappear - but you will see them again, and be able to modify them when you go back
to the Weights tab - and re-initialise the Polynomial by pressing Init Fit Parms, see Figure 7.9.

319

Spectral Fitting Build 15.0.3244

Figure 7.9. After setting weights go back to the Models tab and re-initialise the fit.

8. Press Accept again to make the fit and view the results in the plot; the model parameters can be
found in the table below the plot.

The fit is still not satisfactory. In this case, the line wings are influencing the fit and we actually
do need to mask out the line. Take note that if you do mask out the line and then tried to also fit a
Gaussian in the same fitting session, the Gaussian fit would fail because the weighting at the line
would be zero.

Figure 7.10. Setting the weights to zero at the line edges still did not produce a satisfactory fit.

9. Reset the fitter again and this time set weights either side of the line.

320

Spectral Fitting Build 15.0.3244

Figure 7.11. Set weights to one either side of the line in the Weights tab before reinitialising the Polyno-
mial fit in the Models tab.

10.Press Accept. Finally! A decent fit to the baseline around the line. In the case of this data you could
go on to attempt fitting a second order Polynomial to fit the slope at the edges of the spectrum.

Figure 7.12. A script, the models and the residual can be saved in the Export tab.

11.You can quickly inspect the fit parameters in the GUI. In the Model tab the fit parameters are
updated with the final fit values, while the box to the right contains the standard deviation. In
the Data Selection Panel you find the fit parameter for each value in the model and the standard
deviation in the row for each model, the total fit parameters are not given. Note that the widths
reported in the Data Selection Panel are sigma, not FWHM, irrespective of how you set up the
width parameter in the GUI.

12.To save a script, go to the Export tab and check the Save script box, enter the file name and location
of choice and press Accept to save a script of the work done since the last Reset, see Figure 7.12.

321

Spectral Fitting Build 15.0.3244

From that save tab you can save other results (see Section 7.16 and Section 7.17), however the point
of this exercise is just to see how the fitting works, and there is not much point saving the results
of a continuum fit to one spaxel of a cube. Later examples will demonstrate the saving aspects of
the SFG.

7.2.1. Worked Example: Fitting a polynomial to the
baseline/continuum in the command line

The script produced by the SFG for the above example is below. Note that because the fitting was
done following a resetting of the SFG, the input is taken from FitResult_1 spectrum rather than
the original cube; a line has been added to the script to allow you to extract the spaxel from the cube
used in the example, and a second line has been added to show you how to print out the fitting results.

#
Script written by SpectrumFitter, version: SpectrumFitter 9.51
#
Start the fitter as SpectrumFitter(data, i, j, False).
Your data is not a CUBE, so i, j are taken as PointSpectrum, SpectralSegment
 indices.
For CUBE data, they are taken as x,y in the CUBE.
The 'False' takes care the there is no visualisation. Remove it,
or set it to True to have visualization.
#

NOTE (not written by the Spectrum Fitter)
After following the walkthrough above, the fitting is from the FitResult_1
 variable
and the real instantiation of the Spectrum Fitter is the following (commented)
 line
which would appear in the script written by the Spectrum Fitter.
sf = SpectrumFitter(FitResult_1, 0, 0, False)

NOTE (not written by the SpectrumFitter)
For a self-contained example that fits the data from the cube in one go,
use the following three lines (that were not written automatically by the Spectrum
 Fitter)
obs = getObservation(1342191353, useHsa = True)
cube = obs.refs["level2"].product.refs["HPS3DPB"].product.refs[0].product
sf = SpectrumFitter(cube, 63, 40, False)

#
Specify fit engine (1 = LevenbergMarquardt, 2 = Amoeba, 3 = Linear,
4 = MP, 5 = Conjugated Gradient).
#

sf.useFitter(1)

#
Add the models and set the 'fix'ed.
#

M1 = sf.addModel('Polynomial', [0.0], [1.7055387364757806])
M1.setLimits([Double.NEGATIVE_INFINITY],[Double.POSITIVE_INFINITY])

#
Set the weight masks.
#

sf.setMask(63.01283, 63.12284, 1.0)
sf.setMask(63.23385, 63.38187, 1.0)

#
Do the fit, calculate the residual.
#

sf.doGlobalFit()
sf.residual()

322

Spectral Fitting Build 15.0.3244

see the parameter, p1, for the polynomial fitted here
print M1.getFittedParameters()

##
Following are statements to export the data. Un-comment (remove
the '# ') to execute them.
##
To export a model, the total model, or the residual in the same
format as the input:
##
#res = sf.getResidualAsInput()
#tm = sf.getTotalModelAsInput()
#m1 = sf.getModelAsInput(M1) # replace M1 by any other model if needed.
##
The models, total model and residual can be saved into an ASCII
file. For every item that is saved, two file are written. One with
the wave and flux data in two columns, the other with some meta
information. The name of the files are formated as:
[base]_[item].[ext] and [base]_[item]_info.[ext], where [item] is
either 'res' for residual, 'tm' for total model' or the model name
as given in the 'addModel' command.
[base] and [ext] are:
##
#base = 'BaseName' # Change into anything you want, it may include an
absolute of relative path.
#ext = 'txt' # Change into anything you want.
##
You also must set the column separator character:
##
#sep = ' '
##
Save the residual, total model and the first model into ASCII files:
NOTE: Not written by the Spectrum Fitter
Creating a temporary directory for writing the fitting results
from java.nio.file import Files
tempdir = Files.createTempDirectory("sf")
base = str(tempdir)+"/mymodel"
ext = "asc"
sep = ";"
sf.saveResidualAsAscii(base, ext, sep)
sf.saveTotalModelAsAscii(base, ext, sep)
sf.saveModelAsAscii(M1, base, ext, sep)
##
The models can also be save to an XML file: [base].xml. This file
can be loaded into a next session with the SpectrumFitterGUI, use
the button: 'loadModels'.
Add more Mi if you have more models.
sf.saveModelParmsToXML(str(tempdir)+'/models.xml', [M1])
Load back the model (not possible with the ASCII version of the model)
This currently only works with the MultiFitter
sf.addModelXML(str(tempdir)+'/models.xml')

Example 7.7. Script automatically (some manual changes added for the sake of clarity) generated by Spec-
trum Fitter (example 1).

Warning

The order of the coordinates for the spaxels for a cube that the "SF" expects is column,
row, not (row, column) which is the usual order that coordinates are handled in HIPE.

7.3. Worked Example: Fitting a polynomi-
al to a spectral cube (or any multi-spectrum
dataset)

This example follows on from that of fitting a Polynomial to a single spectrum: Section 7.2, using
the same observation (PACS: obsid=1342191353). You will follow that same procedure as described

323

Spectral Fitting Build 15.0.3244

above, and once you are satisfied with your fit to a single spaxel, you can continue on to fit all the
spaxel/pixels as below.

1. Turn to the MultiFit tab, see the figure below. Pressing Accept from here will then fit to the entire
cube the models you defined for the single spectrum. The progress bar at the bottom of HIPE will
show you the progress of the fitting (it should be fast for this simple case).

2. Before "Accepting" to fit the entire cube, you can choose to have an ASCII file sent to disk. This
file will contain the results of the fits to all spaxels/pixels for all the models you defined. See the
figure below for an explanation of the file's contents, which are described in the comments at the
top lines of the file.

#
Fit parameters for models.
Written by: SpectrumFitter 9.51, 24JUN2013
Date: 26SEP2013-02:15:55
#
The output contains the following models:
M1 = Polynomial; parameters [p0, p1, ..., integrated value]
#
Output columns are:
ps segm (indices of the spectrum in the SpectrumContainer.)
[model name] [model parameters and standard deviations in order]
[background value (for the non-poly models only)]
#
Column Name Unit
C1 polycoeff_0 Jy/pixel
C2 stdev of C1 Jy/pixel
C3 Integral Jy pixel-1 micrometer

#
C1 C2 C3
0 0 M1 +1.71E+00 +1.37E-02 +8.72E-01
1 0 M1 +2.00E+00 +2.57E-02 +1.02E+00
2 0 M1 -1.79E-02 +1.37E-02 -9.11E-03
3 0 M1 +1.73E+00 +1.06E-03 +8.82E-01
4 0 M1 +1.73E+00 +1.06E-03 +8.82E-01

You can also ask to save a script of the fitting from here: using the Export tab to do this will not
include the multifitting aspects.

Warning

The order of the coordinates for the spaxels for a cube that the "SF" expects is column,
row, not (row, column) which is the usual order that coordinates are handled in HIPE.
This also applies to the order of the spaxel coordinates in the output files that list the
parameter results: the output sent to HIPE and the ASCII files sent to disk.

3. The fitter will tell you how many spectra it failed to fit - note that this will happen a lot for PACS
cubes since their border spaxels are NaN arrays (because there is no spatial coverage there) for
which clearly no fit can be done.

4. Several products are created and sent to Variables View. These are all prefaced with "MultiFit_" and
all except one are cubes. These cubes are the: residual ("MultiFit_Residual"), total model ("Mul-
tiFit_TotModel"), and the model you defined ("MultiFit_M1"). You can open these cubes in the
Spectrum Explorer and compare them to each other (see Section 6.6).

The fourth output product contains the fit parameters for each spaxel/pixel and each model (but
not for the total model) and is called MultiFit_Parms - double-clicking on this in Variables will
open it in a Product viewer, where you can see it contains a set of individual TableDatasets,
one per spaxel and model.

324

Spectral Fitting Build 15.0.3244

Figure 7.13. The contents of MultiFit_Parms

A final product created is MultiFit_ParameterCube, which is a ParameterCube holding the
details of the model fit and the fitting results. In a later example (Section 7.5) we will use this to
make images from fitting results.

Note, for the cube used in this example you may notice that the parameters of the fits for neigh-
bouring spaxels are exactly the same: don't worry about this, it is a feature of this PACS cube, it
is not a mistake of the fitting.

Warning

The order of the coordinates for the spaxels for a cube that the "SF" expects is column,
row, not (row, column) which is the usual order that coordinates are handled in HIPE.
This also applies to the order of the spaxel coordinates in the output files that list the
parameter results: the output sent to HIPE and the ASCII files sent to disk.

7.3.1. Worked Example: Fitting a polynomial to a spec-
tral cube (or any multi-spectrum dataset) in the com-
mand line

To do the multi-fitting described above on the command line you can follow the script given below.

First, fit a single spaxel/pixel to define the models (and check the result), we will use the same
example from Section 7.2, and hence the same parameters for the model. This script below is a slightly
annotated version of that produced by "Save script" from the SFG.

#
Working on a SpectralSimpleCube called "cube", on a spaxel
of row 40, column 63, and asking to not show the fit results
in a PlotXY display
Remember that the coordinates input into the SpectrumFitter are swapped
around with respect to the coordinates you see in the display image of the
cube in the SFG (or in any image Displayer)
#
sf = SpectrumFitter(cube, 63, 40, False)

325

Spectral Fitting Build 15.0.3244

#
Specify fit engine (1 = LevenbergMarquardt, 2 = Amoeba, 3 = Linear,
4 = MP, 5 = Conjugated Gradient).
#
sf.useFitter(1)

#
Add the models and set the 'fix'ed. (Note: setting "fix" has not yet
been demonstrated)
M1 = sf.addModel('polynomial', [1.0], [-1990.952694249804,32.56995326749514])

#
Set the weight masks.
#
sf.setMask(63.02211, 63.13405, 1.0)
sf.setMask(63.22926, 63.39769, 1.0)

#
Do the fit, calculate the residual.
#
sf.doGlobalFit()
sf.residual()

Export the model to disk, so they can then
be read into the Multifitter
model = [M1]
sf.saveModelParmsToXML("/Users/me/firstspecfit.xml", model,True)
(the True saves the masks also)

Example 7.8. Script automatically generated by Spectrum Fitter (example 1), and modified for this exam-
ple.

Now extend this to the entire cube, and then extract the resulting cubes and parameters of the fits:

Fit
mf = MultiFit(cube)
mf.setModels("/Users/me/firstspecfit.xml") # the models saved above
mf.doFit()

Extract the result cubes
residual = mf.getResidual()
totalModel = mf.getTotalModel()
Poly = mf.getModel(0)
-->model nr 0 is the polynomial model (the only one defined)

Extract the parameters
Params = mf.getProduct()
ParamCube = mf.getParameterCube

Example 7.9. Multifitting a cube using exported models.

"Params" is the table of parameter results, the same as is produced by the Multifitter of the SFG, to
understand its contents see Figure 7.13. "ParamCube" is a ParameterCube, which holds the details
of the models fit and the fitting results, done on a cube, and from which we will later make fitting
maps (Section 7.5).

You can open the three cubes in the Spectrum Explorer to inspect them and compare e.g. the total
model to the original data (see Section 6.6).

7.4. Worked Example: Fitting Gaussians and
a polynomial to a spectrum

In this simple example we fit several Gaussians and a polynomial to a HIFI spectrum. The data used
is the public DBS raster map observation with obsid 1342205481.

326

Spectral Fitting Build 15.0.3244

1. Get the observation:

obs = getObservation(1342205481, useHsa=True)

Example 7.10. Retrieving an observation from the HSA to use its data for multimodel fitting.

Navigate through the Observation Context tree to the Level 2.5 → cubesContext → cubesCon-
text_WBS-H-USB → cube_WBS_H_USB_1 and "create a variable" (right-click menu) from the
cube_WBS_H_USB_1 cube, or drag-and-drop that cube to the Variables panel. It will get the
name "obs_level_2_5_cubesContext_cubesContext_WBS_H_USB_cube_WBS_H_USB_1 (but if
you drag-and-drop the cube, immediately after dropping you can type to change its name).

Open the cube variable you just created in SpectrumExplorer and plot the (0, 2) pixel.

Why make a variable? Not all aspects of the SFG, e.g. multifitting, will work properly if you work
from the observation context, it is good practice to create a variable to work on.

2. Open the SFG by pressing the fitting icon in the Spectrum Explorer button bar, see Figure 7.14.
The SFG will open as described in Section 7.1.1.

Figure 7.14. Plot one spectrum (a spaxel/pixel) and open the Spectrum Fitter GUI.

Note that the cross-hair that indicates the layer the cube is displayed at is still displayed and cannot
be removed. If it interferes with your fitting you can move it away from the line by adjusting the
layer the cube is displayed at to be the first or last layer by going back to the tab for the cube in Spec-
trum Explorer (called cube in Figure 7.15) and moving the slider below the cube, see Figure 7.15.

327

Spectral Fitting Build 15.0.3244

Figure 7.15. The cross-hair indicating the layer the cube is displayed at may be obtrusive, you can move
it to the edge of the spectrum in the Spectrum Explorer Data Selection Panel.

3. Add a Polynomial Model by pressing addModel and selecting a Polynomial model from the drop-
down menu (the default choice is a Gaussian), see Figure 7.16. The model is automatically ini-
tialised and plotted against the data. To learn more detail about fitting Polynomial models see the
worked example in Section 7.2 above.

Figure 7.16. Add a Polynomial model using addModel in the Models tab.

4. Add a Gaussian by pressing addModel again. The Gaussian model is the default and it will initialise
one model on the brightest line feature in the spectrum. For this data, more than one Gaussian
model will be required so set the initial guess for the amplitude and position for this Gaussian by
clicking in one of the Amplitude and x-position of Peak fields in the GUI - the two fields will turn
yellow - and then choosing the position with the mouse on the plot, see Figure 7.17). The width of
the Gaussian is set in the same fashion, by clicking the FWHM/sigma point to one side of the line.

328

Spectral Fitting Build 15.0.3244

You can toggle between the Gaussian sigma and FWHM using the button beside that field in the
GUI; the description to the very left is the parameter in force).

Figure 7.17. Add a Gaussian model using addModel and set the position and amplitude of the peak by
clicking on the spectrum.

5. Now add a second Gaussian, offset from the first to account for the small 'bump' seen to the right
of the main line (see Figure 7.18). The Gaussian will, as always, initialise on the brightest feature
in the spectrum, so set the position, amplitude and width as required. All of the added models are
described in the table in the FitResult tab in the Data Selection Panel, the models can be displayed
and removed from the plot in the same way as any spectrum can.

Figure 7.18. Use addModel to add another Gaussian.

6. Finally, add a Gaussian for the absorption. You will want to set the amplitude to have the appropriate
negative value by clicking on a point below the zero level (at about -5 in this case) at the desired

329

Spectral Fitting Build 15.0.3244

line centre. To do so, zoom out by drawing around and below the line using the zoom mode of the
Spectrum Explorer, see Figure 7.19.

Figure 7.19. Add another Gaussian for the absorption, you will need to zoom out in order to set the
amplitude of the line below zero. Press Accept to fit.

7. Now you should press Accept to fit to the line (circled in Figure 7.19). In Figure 7.20, the plot has
been rescaled again using the zoom mode to show the fit and models more clearly.

Figure 7.20. The total model and Polynomial fit are plotted over the original spectrum, while the Gaus-
sian models appear below with the residual.

8. Upon fitting, a set of results is automatically sent to the Variables panel, with the name "SFGRe-
sultsContext". Inside this will be several spectral products: each model, the total model, the residual,
with names such as "SFGModelM4Product". Since the product fitted in this example is a Spec-
tralSimpleCube, these outputs are also, but with real spectra only in the spaxel that was fit.

330

Spectral Fitting Build 15.0.3244

A "FitResult" is also sent to the Variables panel, inside of which are the parameter values and
model types that you just fit: this is a copy of the FitResult tab that is at the bottom half of the
Spectrum Explorer.

9. To save a script of the fitting to disk, go to the Export tab and select Save a Script, enter the file
name and location to save the file to, see Figure 7.21, and press Accept. You can also save model
results or fitted spectra to disk from this tab, first selecting the models to save from the top of the
panel; on some operating systems (particularly Windows) you may need to Shift + left click on
each model individually to successfully save the parameters for all the models, on other operating
systems you may be able to only Shift + left click the first and last models in the list in order to
save the fit parameters. Saving to disk also saves to the HIPE, and an "SFGResultsContext" will
again be sent to the Variables panel, containing whatever spectrum products you asked to save.

Figure 7.21. A script and the model parameters (and also the residual) can be saved from the Export tab.

7.4.1. Worked Example: Fitting Gaussians and a poly-
nomial to a spectrum in the command line

The script saved by the Spectrum Fitter for all the actions described above is given below. (Note that
your script may not be exactly the same, e.g. if the Gaussians were defined in a different order or the
cube has a different name.)

#
Script written by SpectrumFitter, version: SpectrumFitter 9.51
#
Start the fitter as SpectrumFitter(data, i, j, False).
Your data is not a CUBE, so i, j are taken as PointSpectrum, SpectralSegment
 indices.
For CUBE data, they are taken as x,y in the CUBE.
The 'False' takes care the there is no visualisation. Remove it,
or set it to True to have visualization.
#

NOTE (not written by the Spectrum Fitter)
The two lines below are the access to the data used in the walkthrough documented
 in the manual
They are not present in the script written automatically by the Spectrum Fitter
The instantiation of the constructor for the Spectrum Fitter has been modified
 accordingly.
hifiObs = getObservation(obsid = 1342205481, useHsa = True)
hifiCube =
 hifiObs.refs["level2_5"].product.refs["cubesContext"].product.refs["cubesContext_WBS-
H-USB"].product.refs["cube_WBS_H_USB_1"].product

331

Spectral Fitting Build 15.0.3244

sf = SpectrumFitter(hifiCube, \
 2, 0, False)

#
Specify fit engine (1 = LevenbergMarquardt, 2 = Amoeba, 3 = Linear,
4 = MP, 5 = Conjugated Gradient).
#

sf.useFitter(1)

#
Add the models and set the 'fix'ed.
#

M1 = sf.addModel('Polynomial', [0.0], [3.221400533512354])
M2 = sf.addModel('Gauss',
 [10.867101459399871,1900.5222727424598,0.07054248387645083])
M3 = sf.addModel('Gauss',
 [0.3682626632453154,1901.0146803934288,0.0042807177972186165])
M4 = sf.addModel('Gauss',
 [-10.682926709786162,1900.5165568434227,0.06624463178887545])
M1.setLimits([Double.NEGATIVE_INFINITY],[Double.POSITIVE_INFINITY])
M2.setLimits([Double.NEGATIVE_INFINITY,Double.NEGATIVE_INFINITY,Double.NEGATIVE_INFINITY],
[Double.POSITIVE_INFINITY,Double.POSITIVE_INFINITY,Double.POSITIVE_INFINITY])
M3.setLimits([Double.NEGATIVE_INFINITY,Double.NEGATIVE_INFINITY,Double.NEGATIVE_INFINITY],
[Double.POSITIVE_INFINITY,Double.POSITIVE_INFINITY,Double.POSITIVE_INFINITY])
M4.setLimits([Double.NEGATIVE_INFINITY,Double.NEGATIVE_INFINITY,Double.NEGATIVE_INFINITY],
[Double.POSITIVE_INFINITY,Double.POSITIVE_INFINITY,Double.POSITIVE_INFINITY])

#
Do the fit, calculate the residual.
#

sf.doGlobalFit()
sf.residual()

print out the parameters of e.g. the first Gaussian with
print M2.getFittedParameters()
The parameters are listed in the same order that they are given in "sf.addModel"
 above

##
Following are statements to export the data. Un-comment (remove
the '# ') to execute them.
##
To export a model, the total model, or the residual in the same
format as the input:
##
#res = sf.getResidualAsInput()
#tm = sf.getTotalModelAsInput()
#m1 = sf.getModelAsInput(M1) # replace M1 by any other model if needed.
##
The models, total model and residual can be saved into an ASCII
file. For every item that is saved, two file are written. One with
the wave and flux data in two columns, the other with some meta
information. The name of the files are formated as:
[base]_[item].[ext] and [base]_[item]_info.[ext], where [item] is
either 'res' for residual, 'tm' for total model' or the model name
as given in the 'addModel' command.
[base] and [ext] are:
##
#base = 'BaseName' # Change into anything you want, it may include an
absolute of relative path.
#ext = 'txt' # Change into anything you want.
##
You also must set the column separator character:
##
#sep = ' '
##

332

Spectral Fitting Build 15.0.3244

Save the residual, total model and the first model into ASCI file:
##
#sf.saveResidualAsAscii(base, ext, sep)
#sf.saveTotalModelAsAscii(base, ext, sep)
#sf.saveModelAsAscii(M1, base, ext, sep)
##
The models can also be save to an XML file: [base].xml. This file
can be loaded into a next session with the SpectrumFitterGUI, use
the button: 'loadModels'.
Add more Mi if you have more models.
#
#sf.saveModelParmsToXML('models.xml', [M1])
#

Example 7.11. Script automatically generated by the Spectrum Fitter (example 3), slightly modified for
this example.

7.5. Worked Example: Fitting multiple lines
(Gaussians) and a Polynomial baseline to a
cube and making maps of the results

7.5.1. With the GUI

For the purposes of this example we will use a SPIRE spectrum and limit the fitting to a few emission
lines. If you want to instead tie models together (combo model) or limit fit parameters within certain
values (set limits) then you can follow the information given in Section 7.23 and Section 7.9, inserting
the relevant lines of code into the script example given here.

Fitting multiple Gaussians and a polynomial using the Spectrum Fitter GUI is not so very different to
the procedure for fitting just a polynomial to a cube (Section 7.3). We will begin the tutorial with a
fit to a single spaxel, and then proceed to the MultiFitting.

1. Get the observation:

obs = getObservation(1342204919, useHsa=True)

Example 7.12. Retrieving an observation from the HSA to use it in a multimodel fitting through the GUI.

Take the level 2 cube, the HR_SLW_apodized_spectrum, by opening the observation with the
Observation Viewer and dragging and dropping the cube to the Variables View, or typing on the
command line:

cube = obs.refs["level2"].product.refs["HR_SLW_apodized_spectrum"].product

Example 7.13. Extracting a product to use the data for multimodel fitting through the GUI.

Open the cube in SpectrumExplorer and click on the (6, 2) spaxel to plot the spectrum.

Why make a variable? Not all aspects of the Spectrum Fitter GUI, e.g. multifitting, will work
properly if you work from the observation context; it is good practice to create a variable to work on.

333

Spectral Fitting Build 15.0.3244

Figure 7.22. Plot one spectrum (a spaxel/pixel) and open the Spectrum Fitter GUI.

2.
Open the SFG by pressing the fitting icon in the Spectrum Explorer button bar (). The SFG will
open as described in Section 7.1.1.

Note that the cross-hair in the plot indicates the layer the cube is displayed at, and cannot be re-
moved. If it interferes with your fitting you can move it away from the line by adjusting the layer
the cube is displayed at to be the first or last layer by going back to the tab for the cube in Spectrum
Explorer.

3. In a change from the procedure before, this time we are going to first set the weights to mask out
regions that are not wanted in the fitting. This is because we want to fit to only three emission lines
over a short wavelength range in this example.

Set weights by going to the Weight tab. Weights are set by drawing a range on the spectrum using
the Select Ranges mode of the Spectrum Explorer. Weights are automatically set to one in the
weighted region and zero elsewhere, so by drawing a range over the three emission lines plus some
continuum will make the fitter only work within that range. In this example we will set the range
(value 1) from about 754 to 860 GHz. It will also help if you now zoom in on this range (click the

zoom icon at the top of the Spectrum explorer and then draw your zoom on the plot: if you
want to see the residual the fitter will sent to this plot, ensure your range goes below 0).

Figure 7.23. Set weights by opening the Weights tab and drawing a range on the spectrum.

Note that the Polynomial will be initialised according to the first and last 10% of the data in the
region where the weight is non-zero, so make sure these areas are continuum.

334

Spectral Fitting Build 15.0.3244

4. Add a Polynomial Model by pressing addModel and selecting a Polynomial model from the drop-
down menu (the default choice is a Gaussian). The model is automatically initialised, but you first
need to set the order and press Update. The initial fit and plotted against the data, and the fit results
are sent to a FitResults tab in the Data Selection panel in the lower part of the Spectrum Explorer.
Adjusting the polynomial order can be done by typing it in a box and "updating", and after changing
you can press Accept to update the fit and plot the fitting results (model and residual). Naturally,
the polynomial will not fit well if your data contain several emission lines, but at present this does
not matter.

Figure 7.24. Add a Polynomial model using addModel and press Accept to fit.

5. In this example we will further define 3 Gaussians, at about 771, 807 and 835 GHz. You will see
from the spectrum that in fact some of these lines have a second feature on one side, but for this
example we will ignore these. (You could fit them yourself by defining additional Gaussians.)

Add a Gaussian by pressing addModel again. The Gaussian model is the default and it will initialise
one model on the brightest line feature in the spectrum. Alternatively you can set the initial guess for
the amplitude and position for this Gaussian by clicking in one of the Amplitude, X-Position of peak
fields in the GUI - the two fields will turn yellow. The x+y-position is chosen with a subsequent
mouse-click on the plot at the correct x+y-axis value, and this will work whether you are asking
to fit an emission or an absorption feature.

If you want to define the width also (not necessary for this example), click on the Sigma field
and then click to one side of the line near its sigma point (sigma ≈ FWHM/2.3). You can toggle
between the Gaussian sigma and FWHM using the button beside that field in the GUI; the left-most
description beside the box tells you which parameter is in force.

The Spectrum Fitter will make a Gaussian fit, and again don't worry if the fit is bad (although the
x-axis position should be correct!).

Figure 7.25. Add a Gaussian model using addModel and set the position and amplitude of the peak by
clicking on the parameter boxes ("Amplitude" or "X-Position") to the right and then on the spectrum.

6. Now add a second (and after that a third) Gaussian, which will still initialise on the brightest feature
in the spectrum (it always does), so set position and amplitude as before. Press Accept, to fit these

335

Spectral Fitting Build 15.0.3244

3 Gaussians and the polynomial together to the spectrum. The fitted model and residual are added
to the plot, and all of the added models are described in the table in the FitResult tab in the Data
Selection Panel. The models can be displayed and removed from the plot in the same way as any
spectrum can (see Section 5.3.1).

7. If you are satisifed with this, you can now go to the MultiFit tab and apply those models to the
entire cube. Pressing Accept from here will then fit to the entire cube the models you defined for
the single spectrum.

Figure 7.26. To fit an entire cube, use the MultiFit tab

8. Before "Accepting" to fit then entire cube, you can ask to have an ASCII file sent to disk. This file
will contain the results of the fits to all spaxels/pixels for all the models you defined. See the output
below with an explanation of the file's contents. The explanations are inside curly brackets ({}).

#
Fit parameters for models
Written by: SpectrumFitter 9.34, 27MAR2012
Date: 20SEP2013-04:02:25
#
The output contains the following models:
M1 = polynomial; parameters [x-axis crossover, slope, integrated volue]
M2 = gauss; parameters [amplitude, centre, fwhm, integrated value]
M3 = gauss; parameters [amplitude, centre, fwhm, integrated value]
M4 = gauss; parameters [amplitude, centre, fwhm, integrated value]
#
Output columns are:
x y (indices of the spectrum in the Cube.)
[model nameJ [model parameters and standard deviations in orderJ
[background value (for the non-poly models only)]
{two first columns are spaxel col, row}
0 0 Fit Failed.
1 0 Fit Failed. {M1: model is a polynomial: parameters are p0,stddev(p0),p1,
 stddev(p1) and the integration under the line}
2 0 M1 -3.50E-17 +4.39E-18 +5.52E-20 +5.48E-21 +2.53E-15
2 0 M2 +1.65E-17 +8.86E-19 +8.07E+02 +6.44E-02 +2.60E+00 +1.52E-01 +4.57E-17
 9.56E-18
2 0 M3 +3.95E-18 +8.80E-19 +7.71E+02 +1.83E-01 +2.89E+00 +4.30E-01 +1.21E-17
 7.60E-18
2 0 M4 +2.11E-18 +9.63E-19 +8.35E+02 +2.85E-01 +2.08E+00 +6.70E-01 +4.67E-18
 1.11E-17
3 0 M1 -3.52E-17 +4.14E-18 +5.63E-20 +5.17E-21 +2.83E-15
3 0 M2 +2.06E-17 +8.46E-19 +8.07E+02 +5.25E-02 +2.53E+00 +1.24E-01 +5.53E-17
 1.02E-17
3 0 M3 +4.42E-18 +8.33E-19 +7.71E+02 +1.64E-01 +2.82E+00 +3.86E-01 +1.33E-17
 8.22E-18
3 0 M4 +2.40E-18 +9.04E-19 +8.35E+02 +2.56E-01 +2.15E+00 +6.04E-01 +5.50E-18
 1.18E-17
4 0 Fit Failed.
5 0 Fit Failed. {M2|3|4: models 2,3,4 are Gaussian, and the parameters are amp,
 stddev(amp), central wave,
6 0 Fit Failed. stddev(central wave), fwhm, stddev(fwhm) and the integrated
 (line) flux [with no error]}
7 0 Fit Failed.
8 0 Fit Failed.
0 1 Fit Failed. {Failed fits: no parameters are reported}

336

Spectral Fitting Build 15.0.3244

You can also ask to have a script that contains the fitting commands—from when you selected the
"reference" spaxel to fit until the multifitting is done—to disk.

Warning

The value of the line width for the Gaussian profiles reported in this ASCII file is the
FWHM (full-width-half-maximum, which is sigma*2.3548). In contrast, the value of
the line width that is in the MultiFit_Parms product that the MultiFitter also creates
and which you will find in the HIPE Variables panel is the sigma of the line.

The same is true for the output of the SpectrumFitter, i.e. when you fit a single line:
any ASCII output to disk reports the FWHM, any output to HIPE reports the sigma,
if your line model is a Gaussian.

Warning

The order of the coordinates for the spaxels for a cube that the "SF" expects is column,
row, not (row, column) which is the usual order that coordinates are handled in HIPE.
This also applies to the order of the spaxel coordinates in the output files that list the
parameter results: the output sent to HIPE and the ASCII files sent to disk.

9. The fitter will tell you how many spectra it failed to fit (in this example it should be about 37). Fits
fail in the case of spaxel/pixels containing NaNs, for example, in the location of missing bolometer
detectors, or wherever the defined model is a very poor fit to the data.

10.Several products are created and sent to Variables. These are all prefaced with "MultiFit_" and
all except one are cubes. These cubes are the: residual ("MultiFit_Residual"), total model ("Multi-
Fit_TotModel"), and each of the individual models you defined ("MultiFit_M1" etc). You can open
these cubes in the Spectrum Explorer and compare them to each other (see Section 6.6).

A fourth output product contains the parameters of the fits and is called MultiFit_Parms - dou-
ble-clicking on this in Variables will open it in a Product viewer, where you can see it contains a
set of individual TableDatasets, holding the individual model parameters for each spaxel/pixel
(recall the warning about the reported width values):

Figure 7.27. The contents of MultiFit_Parms

Warning

The order of the coordinates for the spaxels for a cube that the "SF" expects is column,
row, not (row, column) which is the usual order that coordinates are handled in HIPE.
This also applies to the order of the spaxel coordinates in the output files that list the
parameter results: the output sent to HIPE and the ASCII files sent to disk.

A final output is called MultiFit_ParameterCube, and this is what will be used to make images of
the fitting results. This ParameterCube is not a spectral cube, but rather it contains the results
of fitting done on a cube, and the details of the models, in such a way that one can recreate the
model-fit cubes from it. This will be used to make images of the fitting results later.

337

Spectral Fitting Build 15.0.3244

To do the multi-fitting on the command line, follow the script given next.

7.5.2. On the command line
First, fit a single spaxel/pixel to define the models (and check the result). This script has been modifed
slightly from that produced by "Save a script", which produced the script that will repeat the fit you
did on the single spaxel in the explanation above.

Get the data
obs = getObservation(1342204919, useHsa=True)
cube = obs.refs["level2"].product.refs["HR_SLW_cube_apod"].product

(1) fit a single spaxel/pixel

sf = SpectrumFitter(cube, 2, 6, False)
Remember that the coordinates input into the SpectrumFitter are swapped
around with respect to the coordinates you see in the display image of the
cube in the SFG (or in any image Displayer)

#
Specify fit engine (1 = LevenbergMarquardt, 2 = Amoeba, 3 = Linear,
4 = MP, 5 = Conjugated Gradient).
#

sf.useFitter(1)

#
Add the models and set the 'fix'ed. (Setting "fix" has not yet
been demonstrated)

M1 = sf.addModel('polynomial', [2.0], \
[-4.348775725735947E-17,4.6906344783025225E-20,5.092175923218101E-23])
M2 = sf.addModel('gauss',
 [4.262995605854649E-17,806.7468159200247,1.1695420595470503])
M3 = sf.addModel('gauss',
 [1.1423712924644597E-17,771.0924013923408,1.1168446099436533])
M4 = sf.addModel('gauss',
 [5.0414019995950075E-18,835.6878789721305,1.3976400964618703])

#
Set the weight masks.
#

sf.setMask(754.0402, 859.7335, 1.0)

#
Do the fit, calculate the residual.
#

sf.doGlobalFit()
sf.residual()

Export the model to disk, so they can then
be read into the Multifitter
model = [M1,M2,M3,M4]
sf.saveModelParmsToXML("/tmp/firstspecfit.xml", model,True)
(the True saves the masks also)

Get the SpectralLineLists
Lists for all the models
sll = sf.getLineList()
List for specific models
models = [M1, M2]
lls = sf.getLineList(models)

Example 7.14. Example script fitting a spectrum with multiple models as exported by HIPE.

Now extend this to the entire cube, and then extract the resulting cubes and parameters of the fits:

338

Spectral Fitting Build 15.0.3244

Fit
mf = MultiFit(cube)
mf.setModels("/tmp/firstspecfit.xml")
mf.doFit()

Extract the result cubes
residual = mf.getResidual()
totalModel = mf.getTotalModel()
Poly = mf.getModel(0)
Gauss1 = mf.getModel(1)
Gauss2 = mf.getModel(2)
Gauss3 = mf.getModel(3)

Extract some parameters
Params = mf.getProduct()
ParamCube = mf.getParameterCube

Example 7.15. Multifitting a cube with a set of exported models.

"Params" (a table of fitting results) and "ParamCube" (a ParameterCube of fitting results+model
details) are the same as produced by the Multifitter of the SFG: see Figure 7.27.

7.5.3. Making 2d maps from the fit results
To make 2d maps of the fit parameters for the peaked profiles (e.g. Gaussians) you fit to a cube is
a matter of extracting them from the ParameterCube created by the fitting: either "MultiFit_Pa-
rameterCube" or "paramCube", depending on whether you followed the GUI or the command-line
example above. It is only possible to extract images created from the parameters of the models, e.g.
for a Gaussian model, the wavelength, peak, and sigma width, but it is possible to use these parame-
ter datasets as a basis to create other maps, such as velocity or integrated line flux (intensity), or to
change the units.

1. First you need to locate the variable that contains the parameters. If you did command-line fitting
you now type:

ParamCube = mf.getParameterCube

Example 7.16. Extracting the parameters from the results of the multifitting.

If you used the GUI, then the variable you want is called "MutiFit_ParameterCube".

2. The image layers are held in the ParameterCube in the same order that the models were specified
and the same order that each model holds its parameters. Hence, if the first model is a 2nd order
polynomial, the first three image layers is p0, p1, and p2 for the polynomial. If the second model
is a Gaussian, then the next three image layers are amplitude, centre, and width, and so on.

To extract the images of the wavelength, peak flux, sigma, and fwhm of the first Gaussian fitted
in the example here, e.g.:

peakMap = MultiFit_ParameterCube.getSimpleImage(3)
waveMap = MultiFit_ParameterCube.getSimpleImage(4)
sigmaMap = MultiFit_ParameterCube.getSimpleImage(5)
fwhmMap = sigmaMap.copy()
fwhmMap.image = fwhmMap.image*2.3548 # to convert from sigma to FWHM
fwhmMap.error = fwhmMap.error*2.3548

These are SimpleImages, each with the error array taken from the standard deviation fitting
results and the WCS taken from the cube that was originally fitted.

3. However, we want a map of the radial velocity and of the integrated flux. The maps extracted above
can be converted to an "intensityMap" and a "velocityMap" in the following way:

Get all the SimpleImages

339

Spectral Fitting Build 15.0.3244

peakMap = MultiFit_ParameterCube.getSimpleImage(3)
waveMap = MultiFit_ParameterCube.getSimpleImage(4)
sigmaMap = MultiFit_ParameterCube.getSimpleImage(5)

Get the data arrays
peakArray = peakMap.getImage()
sigmaArray = sigmaMap.getImage()
waveArray = waveMap.getImage()
peakError = peakMap.getError()
sigmaError = sigmaMap.getError()
waveError = waveMap.getError()

Conversions - using the equations of a Gaussian and a
basic error propagation
speedC = herschel.share.unit.Constant.SPEED_OF_LIGHT.value
speedC = speedC/1000. # into km/s
restLine = 806.7 # rest wavelength for your fitted line
intensityArray = peakArray * sigmaArray * SQRT(2*java.lang.Math.PI)
intensityError = SQRT((peakError/peakArray)**2 * \
 (sigmaError/sigmaArray)**2)*intensityArray
intensityMap = peakMap.copy()
intensityMap.setImage(intensityArray)
intensityMap.setError(intensityError)
velocityArray = speedC*(waveArray-restLine)/waveArray
velocityError = velocityArray*waveError/waveArray
velocityMap = waveMap.copy()
velocityMap.setImage(velocityArray)
velocityMap.setError(velocityError)

The radial velocity image here follows the radio convention:
c*(fitted_wavelength-rest_wavelength)/fitted_wavelength

Herschel is an FIR telescope so we use the radio convention for computing velocites from frequen-
cy or wavelength. The equation given above applies to spectra in frequency units. For spectra in
wavelength units (i.e. PACS) you will use the equation v = c*(lambda-lambda0)/lambda if you wish
to replicate this convention. The difference with respect to optical astronomy is in the denominator
for the equation: lambda rather than lambda0.

4. Map Units. The output from the Spectrum Fitter does not include units. To can add the name of
units, follow these examples

velocityMap.setUnit(herschel.share.unit.Speed.KILOMETERS_PER_SECOND)
intensityMap.setUnit(cube.getFluxUnit().multiply(cube.getWaveUnit()))

Example 7.17. Manually setting the unit of the velocity and intensity maps

The intensity map is the multiplication of the peak and the Gaussian sigma, and hence the units are
the mutliplication of those units. Hence, for the SPIRE data fitted here, the units are W/(m2·Hz·s-
r)·GHz The unit of the peak flux ("amp" as written above) is the flux unit of your data, and the unit
of the integrated flux is that flux unit times the wavelength/frequency unit.

Note that some of the units of the fitted cube are carried though into the ParameterCube as Meta
data: the flux and wave unit and their description.

Converting units. If you want more physical units, such as W/m2, for the integrated flux maps, you
can convert the units in the following way. These examples are of the most common PACS, SPIRE,
and HIFI units that you will encounter.

• To convert from Jy·micron to W/m2: Jy and micron are the units of PACS data. While you are
building your flux image, the changes to the script above are:

...
intensityArray = peakArray * sigmaArray * SQRT(2*java.lang.Math.PI)
intensityArray = intensityArray * 2.99e-12/waveArray[row,col]**2
...
intensityMap.setUnit(herschel.share.unit.Power.WATTS.divide\

340

Spectral Fitting Build 15.0.3244

 (herschel.share.unit.Area.SQUARE_METERS))

Example 7.18. Worked example of a manual conversion of all data in a cube from Jy·u to W/m while
creating flux maps.

• To convert from W/(m2Hz Sr)·GHz to W/(m2Sr): this is the unit of SPIRE cubes (which are
mostly of extended sources). You only need to get rid of the "GHz", and so change the script that
is given above to:

...
intensityArray = peakArray * sigmaArray * SQRT(2*java.lang.Math.PI)
intensityArray = intensityArray * 1e9
...
intensityMap.setUnit(cube.getFluxUnit().multiply(herschel.share.unit.Frequency.HERTZ))

Example 7.19. Worked example of a manual conversion of all data in a cube from W/(m2 Hz Sr) to W/
m while creating flux maps.

If you want to get rid of the "Sr" in the unit, it is recommended you convert the cube units before
you do any fitting. A task to do this should be provided as part of the SPIRE extended pipeline.

• For HIFI, to get units of T times frequency [K km/s] it is recommended that you first convert the
cube to have velocity on the X-axis using the task convertWavescale. Other conversions, such as
to Jy, should also be done on the cube prior to fitting, using the HIFI-provided tasks (check the
HIFI documentation).

See the Scripting Manual for more information about working with SimpleImages, Wcs, Table-
Datasets, and SpectralSimpleCubes and also for the list of units accepted in HIPE.

7.6. Adding and Initialising Models
When using the SFG (the GUI):

• If you have set a preference (via the HIPE Preferences panel) to have models automatically fitted
when the SFG is opened you will find these already displayed in the plot, with the model parameters
filled in the Models panel to the right of the plot.

• The initial centroid and intensity parameters of "peaky" models, such as Gaussians and Sincs, are
estimated from the position and value of the channel that deviates most from the mean of the spec-
trum, while the initial width is estimated from the position of the channel closest to the estimated
centroid that has a value half of the estimated intensity. A Polynomial model is always initialised
with order 0. The start and end points of the Polynomial are taken to be the average of the first 10%
and last 10% of the data (containing non-zero weights) and a line is drawn between the two.

• To add a model, press the addModel button in the Models tab. By default a Gaussian model is
applied, However, you can choose what model will be the default model to apply from the drop-
down Default Model menu in the HIPE preferences. The initial fit estimates are written to the GUI
form and also in the Data Selection Panel beneath the plot.

• By default the models have the names M1, M2, etc, but you can change this.

• You can change the model from the drop-down menu of model types (click on "Gauss") and the
GUI form will update for the new model selected.

• Rather than initialise the model over the entire spectrum, you can draw ranges to initialise the model
in. You can do this using the select range mode of Spectrum Explorer: press the select one or more

ranges icon () in the button bar at the top of the Spectrum Explorer; click and drag to select
ranges in the plot window; and then press Init Fit Parms (initialise fit parameters) in the model panel.
Removing the markers afterwards does not affect the initialisation. When drawing ranges you may
find it helpful to zoom in on the plot, you can do this using the zoom mode of the Spectrum Explorer.

341

../../sg/html/sg.html

Spectral Fitting Build 15.0.3244

Note

This is not the same as masking regions in the spectrum for inclusion or exclusion in
the fit, that is done by setting weights (see Section 7.8), and which must be done from
the Weight tab. You can tell the difference between the two as setting an initialisation
range will not add rows to the table in the Weights tab.

When initialising "peaked" models such as Gaussians, you will only draw one initialisation range
per model: if you draw more than one range then the last one drawn will be the one taken when you
"Init Fit Parms" for any particular model. You can draw as many initialisation ranges as you need
for more linear models, like the Polynomial model. The Polynomial is always initialised as a first
order model, even if you select a higher order. Linear models require less precise initial estimates
(0 would be sufficient) so this is enough for the fitter to work from. The Polynomial initialisation
is calculated based on the first and last ten percent of the selected region.

The advantage of this approach is that you do not need to mask out a line in the middle of your
spectrum in order to apply a Polynomial fit.

• Further models can be added to the data by pressing the addModel button again.

When using the command line: we assume you have begun the SpectrumFitter ("sf") following the
instructions in Section 7.1.2.

• Models are added and initialised in one step. For example, a Gaussian model is set up by:

a0 = 12.3 # amplitude
x0 = 5.6 # location of line peak
s0 = 2.5 # sigma (NOT FWHM)
#
model = sf.addModel('gauss', [a0, x0, s0])
and you can add any number of other models (M1, M2, etc)

Example 7.20. Adding a new model to an instance of the Spectrum Fitter

7.7. Configuring the Spectrum Fitter GUI to
automatically apply a fit upon opening

It is possible to configure the SFG to automatically fit models to spectra on start up. You can set
this up in the SFG section of HIPE preferences (found in the Edit menu). You may choose to have a
Polynomial and a Gaussian model automatically fitted (typical choices for PACS and HIFI spectra),
or a Polynomial and a Sinc model (a typical choice for SPIRE spectra), or you can choose in another
of the models available to the SFG from the drop-down the User models menu, see Table 7.1 and
Table 7.2 for a list of available models.

You can also set a typical width for Gaussian, Sinc, Lorentz and Voigt models in the preferences.

7.8. Setting weights
Using the SFG: selecting weighted ranges in the Weights tab.

• Weighted regions can be set to direct the fitting to or away from certain parts of a spectrum. They
should not be used to try to set ranges over which to initialise models, instead the initialisation
should be done as described in section Section 7.6 above. However, effectively-speaking you can
set weighted regions at any time in the fitting process (even before you set the models).

• You can define any number of weighted regions. Each region can have its own weight. After clicking

on the Weights tab of the SFG, you can define the region using the select ranges icon in the

342

Spectral Fitting Build 15.0.3244

button bar and drawing the range on the plot with the mouse. The values will be entered in the GUI
automatically and a new box will appear for the next weight. Values in the GUI can be edited by
dragging the edge of the marker in the plot, and a right click will give access to a menu that includes
the option to remove the range. Alternatively you can enter and edit the ranges by hand, in this case
you need to click Add to add a new range.

On the command line instructions: we assume you have begun the SpectrumFitter ("sf") following the
instructions in Section 7.1.2.

• Weighted regions are set by:

x0 = 4.5 # start of weighted region
x1 = 8.5 # end of weighted region
w = 0.5 # weight value
sf.setMask(x0, x1, w)

Example 7.21. Setting weighted regions for the fitting using the setMask method.

The above will set weights to be 0.5 in the region x0 to x1 (if w were not specified the weight
would be set to 1) and all other regions receive a weighting value of 0.

Here a potential point of confusion sets in. Outside of any specified region, weights will automati-
cally set to zero. Even if you set weights to zero in the range x0 to x1! This means that if you want
to effectively mask a region out (exclude it from the fit) then you need to set the weight of the data
points outside of that region to something higher than zero, e.g.:

Set weights in range x=1 to x=3 to zero (exclude x=1 to x=3 from fit),
in a spectrum spanning x=-10 to x=10
#
x0 = -10
x1 = 1
x2 = 3
x3 = 10

sf.setMask(x0, x1, 1)
sf.setMask(x2, x3, 1)

Example 7.22. Setting "binary" weights to effectively mask out ranges of the spectrum from the fit.

You can also set a weight for the entire x-axis with:

weight is a Double1d with the same length as the x-axis
sf.setWeight(weight)
#
Give the x-axis the weights in the data, for a spectrum called
"segm"
sf.setWeight(segm.getWeight())

Example 7.23. Setting a mask array that weights every point in the x-axis.

• You can define any number of weighted regions. Each region can have its own weight.

General instructions for both methods:

• A weight has a value greater than 0. By default, all weights are set to 1. However, if you select a
region and set weights in it, then the weights everywhere else in the data (in which a weight is not
set) will be set to zero.

• Weights are used to assign a weighting to the data when a fit is applied and apply to all models
that are initialised when the Accept button is pressed of the fitting is commanded. This means, for
example, that if you have defined weights everywhere except for the line in a spectrum in order to
fit a Polynomial and then decide to fit a Gaussian to the line you should also add a weight to the
line otherwise the weight there will be zero (see point above).

343

Spectral Fitting Build 15.0.3244

However, recall that the Polynomial model is initialised on the averages first and last 10% of the
data (of each region containing non-zero weights) in the spectrum, see Section 7.6, so it may not
be necessary to assign weights for fitting Polynomials for fitting to uncomplicated spectra. If you
find it is necessary to use weights to get a good Polynomial fit then you may get better results by
fitting to the residual after the Polynomial has been subtracted.

• Weights can be used effectively to mask out a region, or regions, from the global fit.

• If some regions of your data are particularly noisy and you do not wish them to affect the fit too
much then either mask them out completely (by setting the weights everywhere else to a non-zero
value) or give them a low weighting.

• If your data contains a weights column (in a dataset called "weight"), then you can also apply any
weighting already present in the data, such as pipeline defined weights or weights you have applied
yourself by checking the "use data weight" box. However, if you also define weighted regions, then
the data-weights are not into account.

To learn about using weights when fitting multi-spectra datasets (e.g. cubes) see Section 7.21.

7.9. Setting limits to model parameters
It is possible to set limits on parameters to be used in models. In the GUI this is done by clicking on the
Low and High boxes for each model parameter in the Models panel and filling in the desired limits by
hand. By default, these boxes are filled with NEGATIVE_INFINITY and POSITIVE_INFINITY
and do not set any limit on the parameter. It is not possible to click on the spectrum to fill the limits.

Limits applied to a model or models will be passed to the multifitter, see Section 7.21 for more infor-
mation about fitting models to multiple datasets using the multifitter.

In the command line, limits are set using setLimits, following the format,

m.setlimits(parameter index, lower limit, upper limit)

Example 7.24. Setting limits for MultiFitting.

For example, assume you add a Gaussian model and want the centroid (the parameter with index 1)
to be within 12.5 and 13.5:

sf = SpectrumFitter([your data])
m = sf.addModel('gauss', [...])
m.setLimits(1, 12.5, 13.5)

Example 7.25. Setting limits for a particular model parameter in the MultiFitter.

You can also do the same thing by limiting all the parameters in the model. This is using the format:

m.setLimits([lower limits for all the parameters of the model, comma seperated],\
 [upper limits for all the parameters of the model, comma separated])

Example 7.26. Setting limits for all the parameters of a model in the MultiFitter (generic).

The Gaussian model has three parameters: amplitude, centroid and (sigma) width. To limit the centroid
parameter as above you would use:

m.setLimits([0, 12.5, 0], [0, 13.5, 0])

Example 7.27. Setting limits for all the parameters of a model in the MultiFitter (with values).

344

Spectral Fitting Build 15.0.3244

In this case we have not applied any limits to the first (amplitude) and third (width) fit parameters
because the lower and upper limits are the same (0), therefore the second case is exactly the same
as the first.

If you do not set any (or all of the) limits in the GUI and then export a script, you will find that the
unset limits are set to NEGATIVE_INFINITY and POSITIVE_INFINITY, which are the default
values filled in the GUI. This is equivalent to setting the max and min limits both equal to zero (or
any other identical pair of numbers).

Note that if a parameter value is outside the interval [low, high], it will be silently changed to the
nearest boundary (lower or higher limit). This is a useful indication that the fitter could not find a
uniquely good fit within the ranges you set.

7.10. Fixing model parameters
You can fix a model parameter so that it can not be varied in the fitting routine. Do to so in the GUI,
check the Fixed box beside each parameter field in the Models panel.

In the command line, use the setFixed method. This uses the format m.set-
Fixed([0,1,2,...]), where m is the name of the model and 0, 1, 2,... are the indices or the
model parameters (for as many model parameters as you need). For example:

set a model Gaussian
m = sf.addModel('Gauss' [10.0, 4.5, 0.35])
fix amplitude (first parameter)
m.setFixed([0])
or fix amplitude and width (third parameter)
m.setFixed([0,2])

Example 7.28. Fixing the value of a model parameter during fitting.

When you fix a parameter the errors and chi squared are zero.

If you fix a parameter for a model fit and then apply that model to multiple datasets using the multifitter
(see Section 7.21), the parameter will be fixed for all datasets.

7.11. Modifying Models
Models can be edited by modifying the parameters in the panel that appears on pressing addModel,
or by using the command-line equivalents. "Modifying" in most cases means: the order, the initial
parameters, setting limits, fixing values. These various actions are all described in separate sections
of this chapter: this is not repeated here.

The most commonly used models have specialised forms in the Models tab of the GUI, that allow you
to easily modify the models.

• Polynomial. The order of the Polynomial is set by entering a number in the box and clicking
on "Update". The GUI will be updated for the order of the Polynomial selected. The remaining
parameters are filled when the fit is done.

• Peaked profiles. Specialised GUI forms exist for Gaussian, Lorentzian, Voigt and Sinc models.
In the case of these peaked profiles, the model parameters can be modified by entering numbers
into the boxes or by mouse interaction. Click in the box beside "Intensity" or "X-position of peak"-
they both will turn yellow-and click on the plot where the peak (or absorption dip) should be.

The width of the profile is passed in the same way, e.g., for a Gaussian click in the box beside
“width"-the contents will be highlighted yellow again-and then click near the X-axis position of the

345

Spectral Fitting Build 15.0.3244

line width in the plot (in other words, move the mouse to one side of your spectral line and click on
the line at the X-and-Y point that is half-way between the line peak and the continuum level). When
clicking on the plot be careful to avoid plot axes or plotted lines, which will select these objects
(selection is denoted by a thicker line).

For the Gaussian profile the FWHM value for the width value is given below the width box. Note
that the value reported in the FitResult tab will always be sigma, not FWHM.

• See Table 7.1 and Table 7.2 for more information about models. You can also find command-line
help about the models and their parameters, for example for the Polynomial model, one you have
set up an "sf" on the command line :

print sf.info('polynomial')

Example 7.29. Printing the model information, including expected parameters.

• After modifying your models you can see the change to the initialisation by clicking on the Update
Plot button.

• You can fix parameters by checking the fix check box next to each parameter. To fix parameters
in the command line:

m = sf.addModel(...)
fixed = [i0, i1, ...]
m.setFixed(fixed)

• You can go back to the previous initial fit values by pressing Previous Parms (previous parameters).
You can keep on going back until you reach the very first set of initial parameters.

• All models can be reset to their initial values (or values before the last fit) by pressing the Reset
all Models button in the Models tab.

7.12. Applying a fit
• Once you have your model initialised in a way that you are happy with, you can click on Accept at

the bottom of the panel. A global fit will be performed, summing all of the models you have applied
to the entire spectrum (that contains weights).

• You can continue to apply new models at this stage, the models will be applied to the original data.

• In the command line, the global fit is done with:

sf.doGlobalFit()

Example 7.30. Running the fit after setting parameters and (optional) limits and masks.

7.13. Inspecting fit parameter results
For fits to single spectra,

• Parameter results appear in a table inside a new tab in the Data Selection Panel (below the Spectrum
Panel). Values and standard deviations for fit parameters are shown next to the parameter names,
which are self-explanatory; the individual parameters are listed in columns called Name_0(1,2..),
Value_0(1,2,..) and StdDev_0(1,2,..).

Note that the width reported for Gaussian models is not the FWHM but the Gaussian σ: FWHM =

2 (2 ln 2)0.5σ or approximately 2.3548 σ.

346

Spectral Fitting Build 15.0.3244

In addition, the Integrated column shows the integrated flux of the model over the whole spectrum
region. See Section 7.19.

• You can print the model fit parameters for a model called "m" using:

print m.getFittedParameters()

Example 7.31. Printing the fitted parameters of a model.

• You can get a table of the fitted results from "sf" with:

table= sf.getResult()

Example 7.32. Creating a table of fitted parameters.

This includes the fitted values and their fitting errors.

For fitting to cubes and other multi-spectra products,

• When using the MultiFit part of the GUI, before pressing to Accept the fitting, you can chose to
send the fitting results to an ASCII file on disk, and that file will look something like this:

#
#
Fit parameters for models.
Written by: SpectrumFitter 9.51, 24JUN2013
Date: 18NOV2016-07:24:13
#
The output contains the following models:
M1 = Polynomial; parameters [p0, p1, ..., integrated value]
M2 = Gauss; parameters [p0, p1, ..., integrated value]
#
Output columns are:
x y (indices of the spectrum in the Cube.)
[model name] [model parameters and standard deviations in order]
[background value (for the non-poly models only)]
#
Column Name Unit
C1 polycoeff_0 Jy/pixel
C2 stdev of C1 Jy/pixel
C3 polycoeff_1 Jy pixel-1 micrometer-1
C4 stdev of C3 Jy pixel-1 micrometer-1
C5 Integral Jy pixel-1 micrometer
C6 amplitude Jy/pixel
C7 stdev of C6 Jy/pixel
C8 center micrometer
C9 stdev of C8 micrometer
C10 width micrometer
C11 stdev of C10 micrometer
C12 Integral Jy pixel-1 micrometer
C13 Background Jy/pixel

#
C1 C2 C3 C4 C5 C6 C7
 C8 C9 C10 C11 C12 C13
0 0 Fit Failed.
1 0 Fit Failed.
2 0 Fit Failed.
3 0 Fit Failed.
…
4 4 M1 -3.30361721E+00 +1.20588841E+00 +5.33732251E-02 +1.90837532E-02
 +3.58062675E-02
4 4 M2 +3.61274193E-02 +1.60796976E-02 +6.31961934E+01 +6.52472109E-03
 +1.27967941E-02 +6.68855547E-03 +1.16536816E-03 6.88E-02
5 4 M1 -1.03159484E+00 +8.75524873E-01 +1.78953934E-02 +1.38554343E-02
 +5.13172872E-02
5 4 M2 +5.07607838E-02 +1.13305452E-02 +6.31914419E+01 +3.47677301E-03
 +1.36031077E-02

347

Spectral Fitting Build 15.0.3244

…

In this file are the spaxel column and row coordinates, the fitting results, the errors, integrated flux-
es, and for peaked models also the value of the continuum/baseline of the spectrum at the wave-
length/frequency of the peak.

Warning

The value of the line width for the Gaussian profiles reported in this ASCII file is the
FWHM (fwhich is sigma*2.3548). In contrast, the value of the line width that is in the
MultiFit_Parms product that the MultiFitter also creates and which you will find in the
HIPE Variables panel is the sigma of the line.

The same is true for the output of the SpectrumFitter, i.e. when you fit a single line:
any ASCII output to disk reports the FWHM, any output to HIPE reports the sigma, if
your line model is a Gaussian.

The names of the models and the order the parameters (and errors) are given in is indicated at the
top of the file. The first two columns are spaxel column and row. Note that this order is swapped
from the order that spaxel coordinates are usually handled in HIPE. Failed fits occur always for
spectra that contain only NaN values, as will be the case for spectra at the edge of mosaic cubes.

• When using the GUI, after the fitting is done a set of results is sent to the Variable panel: Mul-
tiFit_Params contains the fitted parameter values. Click on the product in the Variables and the
viewer will open in the Console. The models are listed in the Data tab, with M1, M2, M3.... and
the spaxel (column, row) coordinates indicated. Click on any of these lines, and a table of those
parameters will open.

• When using the MultiFitter on the command line, the same parameter file as MultiFit_Params can
get obtained with

Params = mf.getProduct()

before you do the fitting. Saving the output as ASCII to disk is done by setting

mf.setFileName("/Users/me/parameters.txt") # or whatever filename you want

before executing the multifiting, and the ouput is the same as that produced by the GUI.

For more information about the output from the MultiFitter, see Section 7.21.

7.14. Deleting models and excluding models
from a fit

• To delete a model, click on the delete button in the model panel. It will be deleted from the model
panel and also the selector panel, where it will be replaced by DELETED. The global fit will not
be modified until the next time you calculate one.

To delete model M1 in the command line:

sf.removeModel(M1)
#
Delete all models
sf.empty()

Example 7.33. Removing one or all models from an instance of the Spectrum Fitter.

• To exclude a model from the global fit without deleting it, uncheck the use box in the model panel.

7.15. Resetting and restarting fitting

348

Spectral Fitting Build 15.0.3244

Or "resetting" and "starting afresh". What's the difference?

If you Reset the SFG you will still be able to plot the data in an old FitResult but you will lose
access to the models used. If you "start afresh" using the New Fitting button you open a completely
new version of the SFG and retain access to the models used in the old version. This can be helpful
for comparison if you are fine-tuning two different modelling approaches.

• Resetting on the original spectrum. If you have multiple items from the FitResult in the
top tab in the Data Selection Panel plotted in the display, then resetting the SFG by pressing the
Reset button at the bottom of the task GUI will:

• Remove all the model panels from the task GUI.

• Remove all of the spectra in the FitResult you were working on from the plot.

• Create a new FitResult variable in which to work (called FitResult_1,2,3… by default).
Loaded in this FitResult tab will be the spectrum that you chose to do the fitting on previously.

The original spectrum is now displayed in the plot and you can start fitting the data again.

Pressing Reset when only the original spectrum in the FitResult is plotted will also cause the
SFG to reset on the original spectrum as described above.

• Resetting on the residual. Pressing Reset when only the residual in the FitResult is plotted
will also cause the SFG to reset on the residual as described above.

To continue fitting on the residual in the command line:

sf = SpectrumFitter(MySpectrum) # Start the fitter, here on MySpectrum
m1 = sf.addModel(...) # Add models
sf.doFit() # fit the model that has been added most recently to the data.
sf.residual() # calculate the residual
sf.fitOK() # take the residual as new data
m2 = sf.addModel(...) # Add a model, now to the residual
sf.doFit() # fit the model, here m2

Example 7.34. Mostly complete example on iterative fitting (using the residual for the next step).

• Resetting on a different spectrum. If the top tab in the Data Selection Panel is not a FitRe-
sult and only one spectrum is displayed in the Spectrum Panel then pressing Reset will reset the
Spectrum Fitter GUI on the displayed spectrum.

• Starting a new Spectrum Fitter GUI. The New Fitting button follows the rules described for
resetting above but creates a completely new SFG (SpectrumFitterGUI[2]) that will run in parallel
with the original SpectrumFitterGUI. You can switch between the different fittings using the drop-
down box just below the Spectrum Fitting tab in the top of the SFG window.

When you create a new instance by pressing the New Fitting button the spectra and model plots
of the previous instance of the SFG are also removed from the display, except the “Spectrum" that
was being fitted there. The new instance of the SFG creates a new FitResult variable.

This can make it somewhat confusing to keep track of which spectra and models belong to which
fitting result. At present, the best recommendation is to rename your fitResult variables to
something meaningful and to take advantage of the "All" button in the selector panel to add and
remove all plots from the display as you inspect each FitResult.

7.16. Saving a script
You can save a script of the actions in the SFG. In the Export tab check the Save Script box. Enter a
name, remembering to include the .py extension, and press Accept at the bottom of the task GUI to

349

Spectral Fitting Build 15.0.3244

save the script to the directory from where HIPE was started. Alternatively, press the Select button to
choose the location the script will be written to.

It is a common mistake to forget to click on Accept after selecting the file location-if you forget, no
script will be saved!

In the command line a script is saved with:

sf.writeScript(filename, name of input spectrum product)
The input spectrum product is a string, with quotes, e.g. "spec"

Example 7.35. Exporting a fitting script with the same actions performed in the GUI

For MultiFitting via the SFG, saving a script is done in the MultiFit tab, this saving all commands
from when you chose the reference spaxel until the multifitting.

On the command line you can save a script also, but this includes only the multifitting part. This is
done by setting the filename of the script just after having set "mf=MultiFit(cube)"

mf.setScriptFilename(filename)

7.17. Saving the residual and models
We start with an explanation of the single spectrum case, i.e. using the spectrum fitter to one spectrum
(either a single-spectrum product or a single spaxel/pixel in a cube).

Always remember to press Accept at the bottom of the task GUI to save after having selected what
and how to save.

In the command-line examples below it is assumed that you started the SpectrumFitter (sf) following
the instructions in Section 7.1.2.

• Residuals. In the Export tab, check the Save Residual Spectrum box and enter the path and file-
name to which the residual should be saved. You can enter this by hand or use the Select box to
the right.

Then select the file format from the File Format drop-down menu. Choose from:

• Plain Text File: this will save the residual spectrum as an ASCII file. You also need to select
how the columns will be separated from the Text drop-down menu, where you can choose from
Single Space, Tab or comma separation.

The command-line version is:

sf.saveResidualAsAscii(filename, extension, separator)
Where the separator is one character, e.g., ',')

Example 7.36. Saving a residual data as an ASCII file.

The file name you selected is appended with _res when it is written to disk. An info file is also
generated, which gives the date of creation, the column headers and the type of data saved.

• Local Pool: this will create a SFGResultsContext, which will appear in the HIPE Variables
pane. This will contain a SFGResidualProduct, which is the residual in the same format
as the input data. Note that if you fitted to one pixel in a cube, the result will be a cube of the
same size containing only the residual in the pixel you fitted to and zeros in other pixels. The
SFGResultsContext can be saved to local pool by right-clicking on the variable name and
selecting Send To → Local Pool. This option is useful if you intend to continue working on the
residual in HIPE.

To obtain the residual in the same format as the input data, use the following in the command line.

350

Spectral Fitting Build 15.0.3244

sf.getResidualAsInput()

Example 7.37. Retrieving the residual in the same format as the input was.

You would need to wrap this into a Product before you can save it in a local pool on disk.

You can choose both of these options together to save the residual in both text and lcoal pool format
at the same time. You can also save the residual along with the model parameters and model spectra,
as descrbed below.

• Model Spectra. In the Export tab, click on the name(s) of the model(s) you want to export. You
can select more than one by holding down the Shift key (you may need to click on each model

name with the mouse rather than use Shift + drag or Shift + ↑/Shift + ←, this seems to be platform
dependent). These model names are those defined in the model tab next to the drop-down model
type menu, by default they are M1, M2, M3...

Then check the box Save Model Spectrum and enter the path and filename to which the model
spectra should be saved. You can enter this by hand or use the Select box to the right.

Then select the file format from the File Format drop-down menu. Choose from:

• Plain Text File: this will save the residual spectrum as an ASCII file. You also need to select
how the columns will be separated from the Text drop-down menu, where you can choose from
Single Space, Tab or comma separation.

On the command line this is:

To save model M1
sf.saveModelAsAscii(M1,filename, extension, separator)
or to save the total model
sf.saveTotalModelAsAscii(filename, extension, separator)

Example 7.38. Exporting the (total) model details as an ASCII file.

The filename you specified will be appended with "_M1", "_M2", etc for each model you selected
to save, where the model number is associated with the model name. However, if you already
have some models in your session you will find that the model numbering continues on from
those models. The file for the total model will be appended with "_tm". In addition, an info file
that contains the column headers for the ascii file and details of the date of formation is created
for each model file and is appended with "_info".

To give a concrete example, if you saved model1 as an ascii file with:

sf.saveModelAsAscii(M1,"/Users/me/model1", "txt", ",")

Example 7.39. Exporting model details as an ASCII file.

then model1_M1.txt and model1_M1_info.txt will be created in /Users/me/.

• Local Pool: this will create a SFGResultsContext, which will appear in the HIPE Variables
pane. This will contain a SFGModelXProduct, which is the model spectrum in the same format
as the input data and where "X" is the model number. Note that if you fitted to one pixel in a
cube, the result will be a cube of the same size containing only the residual in the pixel you fitted
to and zeros in other pixels. The SFGResultsContext can be saved to local pool by right-
clicking on the variable name and selecting Send To → Local Pool.

On the command line you can obtain the model spectra in the same format as the original data
in the following way:

To save model M1 351

Spectral Fitting Build 15.0.3244

M1model = sf.getModelAsInput(M1)
To save the total model
TMmodel = sf.getTotalModelAsInput()

Example 7.40. Getting the model or total model in the same format as the input data.

You would need to wrap this into a Product before you can save it in a local pool.

Note that if you are working on a multi-spectrum dataset, such as a cube, if you fit only one
spaxel/pixel of that cube and then save the result in this way, the result will be a cube with only
the chosen spaxel/pixel fitted.

• Model Parameters. To save the parameters you need to select which model(s) to save from the
top panel of the of the Export tab. You can select more than one by holding down the Shift key
(you may need to click on each model name with the mouse rather than use Shift + drag or Shift

+ ↑/Shift + ←, this seems to be platform dependent). These model names are those defined in the
model tab next to the drop-down model type menu, by default they are M1, M2, M3... The total
model is a combination of all the models used in the fitting and, as such, it is not possible to save
the total model parameters.

Then choose from saving as a text file or generating a product to save to local pool as described
above for the residual and model spectra. The parameters are stored in the SFGResultsContext
as SFGModelMXParameters, where "X" is the model number.

The model parameters can be saved to disk in various formats in the command line.

• Text:

models = [M1, M2, ...]
sf.saveFitParametersAsASCII(filename, models)

Example 7.41. Saving the fit parameters to an ASCII file.

• XML file: this is done as part of Save model spectrum as text described in the list above: the file
created will be called "SFGModelParameters.xml". This file can be used to load models back
into HIPE for future use.

On the command line this is:

models = [M1, M2, ...]
sf.saveModelParmsToXML(filename, models)

Example 7.42. Saving the model fit parameters as an XML file.

• As a TableDataset:

To save the parameters of a model M1 as a TableDataset
called "M1_tds":
M1_tds = sf.getModelAsTds(M1)
or, to save the data as a TableDataset wrapped in a product:
Model1 = sf.getModelAsProduct(M1)
To save the parameters of all models as individual
TableDatasets wrapped up in a Product called "Mall_tds"
models = ['Model1', 'Model2' ...]
Mall_tds = sf.getModelsAsProduct(models)

Example 7.43. Getting the model parameters as a TableDataset.

Note, there is an issue when using getModelsAsProduct. You must specify the models as
'Model1', 'Model2', ... exactly as written, irrespective of what the models are labelled in the SFG.
The SFG by default labels models as 'M1', 'M2', etc - and you are free to label models as you
please - however, the code underneath getModelsAsProduct only recognises the models
under the name of 'Model1', 'Model2'. This is a 'feature' that will remain in HIPE.

352

Spectral Fitting Build 15.0.3244

The script generated with the Save script option also shows how to save models and parameters in all
these formats in the command line. In addition, any cubes or spectra that are created by the fitting can
be Saved As a FITS file by right-clicking on the name of the product in the Variables pane.

For MultiSpectra fitting, a description is given in Section 7.21. To summarise:

• Fitting multiple-spectra products via the MultiFitting tab of the GUI: upon executing a fit, a set of
results is produced:

1. MultiFit_M1,2..., MultiFit_TotModel, MultiFit_Residual: these are all products of the same for-
mat as that fit (i.e. they are cubes if you fit a cube), and contain the model spectra for each model,
for the total model, and the residual of the total model subtracted from the data

2. MultiFit_Params: see Section 7.21 for an explanation of this file, which contains the fitting pa-
rameter results.

3. MultiFit_ParameterCube: a "cube" containing the model details and the fitting results in such a
way that images and model cubes can be created from it. See Section 7.28 for more detail.

The Export tab does not apply to multifitting.

• Using the multifitter on the command line: after having done the fitting the results can be extracted
with various methods:

residual = mf.getResidual()
totalModel = mf.getTotalModel()
model_1 = mf.getModel(0)

The output spectral products are of the same class as the product fit, i.e. fit a cube, get cubes back.

7.18. Saving a SpectralLineList
You can also save the model fit parameters into a SpectralLineList, but only when fitting on the
command-line. This is a Product containing a Dataset which holds the type of line-like model(s) such
as, Gaussian, Lorentzian, Sinc, etc. applied to the spectrum and their position, widths and amplitudes
along with their standard deviations.

You can use the LineList to record your model information, as a type of line identification annotation
in a plot, or you can use it to help identify lines in other spectra.

• To retrieve a LineList in the SpectrumFitter use:

sf.getLineList()
or for a subset of models models = ['name1', 'name2', ...]
sf.getLineList(models)

Example 7.44. Saving the model fit parameters as a SpectralLineList for use with other spectra.

• You can overlay the LineList on your spectrum by dragging the LineList product into an already
open plot in Spectrum Explorer.

• To save the LineList to disk, right click on the Product name in the Variables pane and select the
Send To option. You can save a LineList as a FITS file, a text file or to local pool.

For more information see SpectralLineLists.

7.19. Obtaining a line integral
• The SFG integrates under every fit. The value is shown in the selector panel and, more usefully,

in the text file when the models are saved as ASCII. The values in the text file have an associated
standard deviation and, for the non-Polynomial models, a background value.

353

Spectral Fitting Build 15.0.3244

• In the command line, the integral is obtained by:

where "m" is a model that has been defined, see
Section 7.6:
intflux = m.getIntegral()

Example 7.45. Getting the integral of the model line.

• The integrated flux (or, more correctly, in the case of PACS and SPIRE, integrated flux density)
is calculated using the Trapezium rule to connect the datapoints and "add up" the flux under the
line. Note that, the numerical result from this method does depend on the spectral dispersion: if
you have a low spectral resolution (big gaps between datapoints) then the flux may be very slightly
underestimated. Hence, that the value this reports may not be exactly the same as the value you will
get with the analytical formula for your model, e.g., for a Gaussian, the area under the curve can

be calculated as amplitude * fwhm * (2 *π)0.5.

An example of how to calculated the integrated flux for a 2d image taken from a MultiFitting done
via the SFG on a cube can be found in Section 7.5, and we repeat the relevant lines here:

Get all the SimpleImages
peakMap = MultiFit_ParameterCube.getSimpleImage(3)
sigmaMap = MultiFit_ParameterCube.getSimpleImage(5)

Get the data arrays
peakArray = peakMap.getImage()
sigmaArray = sigmaMap.getImage()
peakError = peakMap.getError()
sigmaError = sigmaMap.getError()

Conversions - using the equations of a Gaussian and a
basic error propagation
intensityArray = peakArray * sigmaArray * SQRT(2*java.lang.Math.PI)
intensityError = SQRT((peakError/peakArray)**2 * \
 (sigmaError/sigmaArray)**2)*intensityArray
intensityMap = peakMap.copy()
intensityMap.setImage(intensityArray)
intensityMap.setError(intensityError)

Example 7.46. Computing the integrated flux after MultiFitting a spectral cube.

See the example in Section 7.5, and also Section 7.28 to learn about converting the units and adding
them to the images.

• Errors. The stddev of the parameters are also reported, as you can see in the example above.

7.20. Using Saved models
To use previously saved models, click on loadModels in the Models tab and locate the XML file
on disk.

354

Spectral Fitting Build 15.0.3244

Figure 7.28. Loading previously saved fitting models.

7.21. Automatic fitting of multiple datasets
Note

You should make a variable of the dataset you wish to fit rather than opening a spectrum
from the Observation Context in the Observation Viewer. If you do not work from a vari-
able, the SpectrumFitter will not know where to look for the rest of the spectra you fit to
and will hang. No warning message is given in this circumstance.

Having defined a fit (including any parameter limits, see Section 7.9, or fixed parameters, see Sec-
tion 7.10,) to one spectrum you can now apply these initial model parameters to many spectra in one
dataset automatically, for example, a spectral cube. You can also use a model that has been saved to
XML file, see Section 7.17 and Section 7.20.

• Go to the MultiFit tab. Pressing Accept will fit the entire dataset with the same set of initial model
parameters just defined. The data are fit in the order they appear in the dataset (look in the Dataset
Viewer if necessary to see this).

• Note that the same initial model parameters are applied to all the data, not the same model parameters
found as a best fit for the initial spectrum. If your initial parameters were not good but the fit was
acceptable, you could fit the single spectrum again with the better parameters given as the initial
guesses.

• If any of the spaxels/pixels/spectra in dataset cannot be fitted a message will appear informing you
of the number of failed fits.

• The fitter ignores NaN data so any fully-NaN spectra in you data set should have a residual and
model that is NaN. However, these fully-NaN spaxels at the edge of the field of view of PACS
mosaic cubes seem to fail in the fitting, rather than being ignored. For such cubes some of the
"failed" fits will simply be NaN spectra rather than 0 spectra.

• The fitted parameters can be written to text file by checking the "Write ASCII file with parameters"
box in the multi fit tab.

An example of the ASCII file output of the multi-fitter is below:

#
Fit parameters for models.
Written by: SpectrumFitter 9.34, 27MAR2012
Date: 06MAY2012-01:45:56
#
The output contains the following models:
M1 = polynomial; parameters [x-axis crossover, slope, integrated value]
M2 = gauss; parameters [amplitude, centre, fwhm, integrated value]

355

Spectral Fitting Build 15.0.3244

#
Output columns are:
x y (indices of the spectrum in the Cube.)
[model name] [model parameters and standard deviations in order]
[background value (for the non-poly models only)]
#
0 0 Fit Failed.
1 0 Fit Failed.
2 0 Fit Failed.
...
5 1 M1 +2.21E+00 +6.97E+00 -2.48E-02 +7.88E-02 +1.19E-02
5 1 M2 +1.99E-01 +5.19E-02 +8.83E+01 +5.51E-03 +5.37E-02 +1.30E-02 +1.14E-02
 2.51E-02
6 1 M1 +2.21E+00 +6.97E+00 -2.48E-02 +7.88E-02 +1.19E-02
6 1 M2 +1.99E-01 +5.19E-02 +8.83E+01 +5.51E-03 +5.37E-02 +1.30E-02 +1.14E-02
 2.51E-02
7 1 M1 +2.21E+00 +6.97E+00 -2.48E-02 +7.88E-02 +1.19E-02
...

• The "Fit failed" are obvious messages. The "0 0", "1 0" are the spaxels/pixels column, row indices:

Warning

About coordinates. The coordinates that the SFG reports in the ASCII file are the
flip of the coordinates you see when you move your mouse over a cube image in the
Spectrum Explorer.

In the cube image: At the bottom left of the cube display you will see indicated the
(row,column) of the spaxel/pixel under the mouse. If this says, e.g (5,1), then your
mouse will be 6 spaxels/pixels high along the Y-axis (the counting starts at 0) and 2
spaxels/pixels long the X axis.

In the Spectrum Fitter multifit output, as well as the coordinates reported in the
FitResult tab for a single spaxel/pixel fit : the coordinates—5,1 above for the first
line with results—are flipped with respect to this, i.e. 5, 1 is column, row.

• The parameters are reported in order,

• For the case reported above a first order polynomial was fit as model M1, so the first and second,
third and fourth values are the value+standard deviation for the first parameter (x-axis crossover)
and second parameter (slope), and the fifth value is the integrated value (flux under the line over
the spectral range that your spectrum has in it).

• For the second model in the case above, M2, the Gaussian parameters amplitude(+stddev), cen-
tre(+stddev), and FWHM(+stddev) [note: FWHM not sigma] are the first 6 values, followed
by the line integrated flux(+stddev) and finally the value of the continuum under the peak of the
Gaussian.

• The integrated value is calculated as described in Section 7.19.

The output of the multi-fitter also produces the following new products in the Variables pane: Mul-
tiFit_Residual, MultiFit_TotModel, MultiFit_M1, MultiFit_M2 [and MultiFit_M3,4.. if you defined
more models), which are all SpectralSimpleCubes with the indicated spectra in them.

The product MultiFit_Parms is also created, which is a product containing TableDatasets that
hold your results:

356

Spectral Fitting Build 15.0.3244

Figure 7.29. The MultiFit_Parms output

The coordinates reported are the same as those given in the ascii output.

You can access the MultiFit_Parms data thus:

print MultiFit_Parms["(x,y)=(4,1)-M2"]["Parameters"].data
print MultiFit_Parms["(x,y)=(4,1)-M2"]["StdDev"].data

Example 7.47. Printing several data in MultiFit_Parms.

where the wording in quotes above is exactly what you see when you look at the MultiFit_Parms
with the Product viewer, as the figure above shows. The order of the parameters is indicated in the
TableDataset when you view it as shown above and is the same order as printed to the ascii output file
(e.g. amplitude, centre, width, and integral for a Gaussian model). The "width" reported here is the
sigma value, not the FWHM. Unlike with the ascii output, the continuum value under the peak for
peaked models (e.g. the Gaussian) is not reported.

Bear in mind that when working with a cube, it is possible that the spectra differ substantially from
spaxel/pixel to spaxel/pixel, and this could affect the accuracy of the results. The SFG in multi-fit
mode is an automatic fitter, and so cannot allow for all possibilities of variation of spectrum from
spaxel/pixel to spaxel/pixel.

Using the multifitter in the command line requires you to use previously saved XML files. A com-
mand-line 'recipe' for multi-fitting goes as follows:

mf = MultiFit(data) ## data must be a SpectrumContainer

mf.exclude(p, s) ## do _not_ fit PointSpectrum p, SpectralSegment s
(for cubes this does not work on spaxel coordinates, so the "s" is
always 0 and the p is the spaxel in PointSpectrum order
see Chap 6 for more information on "cube coordinates")
... # exclude any number of spectra you want
mf.setModels("/path_to_previously_saved_XML_file/file.xml")

mf.setMask(x0, x1, w) # see note about weights/masks below
... # set any number of Masks you want

mf.doFit()

residual = mf.getResidual()
totalModel = mf.getTotalModel()
model_n = mf.getModel(n) # (n is number of model in the XML file)

Example 7.48. MultiFitting a SpectrumContainer with a set of previously exported models.

357

Spectral Fitting Build 15.0.3244

and you can also see the worked examples near the top of this chapter for a longer recipe.

On the command line, weights are handled differently by the multi-fitter than by the SFG and the
Spectrum Fitter. Setting a weight in the Spectrum Fitter and Spectrum Fitter GUI automatically sets
the weight in that region to 1 (or whatever you specify) and zero elsewhere. Therefore you can 'mask
out' a region for fitting in the GUI by setting weights either side of the region you wish to exclude.
When using the multi-fitter, setting a weighted region does not change the weight values outside of
the masked region and so if you wish to exclude a part of the spectrum from the fit you must explicitly
set the weight to zero there.

It is not possible to ask for MultiFitter to use the data-weights when doing fitting from the command
line, and it will ignore any such request if MultiFitting from the GUI.

7.22. Continuing work on the residual outside
of the Spectrum Fitter GUI

If you export the residual (or model) in the same format as the original data a FitProduct will be
created. As it is a product, you can save it to pool or to a FITS file, or to export to VO tools. Within
the product the residual is stored as the same spectral type of data as your input.

To view this spectrum you can double click on its name in the Variables pane and use the Product
Viewer, from where the spectrum can then be plotted in the Spectrum Explorer.

If you wish to pass this spectrum to other data processing tools in HIPE, such as the tasks of the
Spectrum Toolbox, then you need to extract the spectrum from the product. You can do this by clicking
on the product, and from the Outline pane or from the display in the Product viewer open in the Editor
pane, dragging and drop the spectrum name into the Variables view. The command-line syntax to do
this will be echoed in the console.

7.23. Using the Combo Model
The Combo model only works for fitting single spectra, it cannot be carried though to multi-fitting.

It is possible to fit several models that have a fixed relation between them using the ComboModel.
This facility is only available in the command line.

A ComboModel is a combination of multiple 'normal' models where a relation can be set between
parameters of the 'normal' models (called internal model). For example, a ComboModel can have 2
Gaussians where the centre positions have a fixed distance, the amplitudes have a relation like A1:A2
= 1:0.75, and the sigmas are equal.

It is only possible to combine the same type of model (e.g., Gaussian, or Lorentzian), but you can
combine as many of them as you like.

When setting up ComboModels you must first specify the relation between the parameters and only
then can you set the parameters.

The example below is a script for a Combo of two Gaussians. The distance is fixed to 5 [units of the
X axes], the relation between amplitudes is 1:0.75, the sigmas are allowed to run free.

x_1 = ... # initial guess for X-position of the first gaussian
a_1 = ... # initial guess for amplitude of first gaussian
s_1 = ... # initial guess for sigma of first gaussian
s_2 = ... # initial guess for sigma of second gaussian

sf = SpectrumFitter([your data])
(see Section 7.1.2) to know how to
properly do the above command

358

Spectral Fitting Build 15.0.3244

cm = sf.addCombo('gauss', 2) # add two Gaussian models
linking parameter index 1 (the wavelength here), and the linking values
cm.setAddParms(1, [0,])
fix the relative peak values (parameter index 1)
cm.setMultParms(0, [1, 0.75])
cm.setParameters([a_1, x_1, s_1, s_2])
sf.doFit()

Example 7.49. Using ComboModels with a specific relationship between fit parameters.

(To see all the methods that the combo model has, look up the DRM entry for SpectrumComboModel.)

Fixing the distance between parameters is done with:

setAddParms(index, [p1, p2, ..., pn])

Example 7.50. Setting the parameters of the added model.

where the index is the index of the parameter in the internal model, so 0 for the Gaussian amplitude,
1 for the wavelength, 2 for the sigma. The [p1, p2, ..., pn] are the values of the parameters for the n
internal models relative to 'some value'. In the example ([0, 5]), this 'some value' is the actual position
of the first Gaussian, hence '0'. The second Gaussian is distance 5 from the 'some value' (in whatever
units your data have, so for a spectrum in microns, this distance would be 5 microns). If you happen to
know that the first Gaussian has a distance of 'd' from some position, then you could specify: [d, (d+5)].

Fixing the 1:0.75 relation is done with a multiplicator relation: setMultParms(index, [p1, p2, ..., pn]).
Since this is a multiplication, when fixing a relation with respect to the actual value in the first Gaus-
sian, p1 must be 1 (where it is 0 in the additive relation). Of course p1 need not be 1. If you would
have specified [1.25, 0.75] then the relation between the amplitudes would have been 1:0.6.

To set parameters to be equal, you would specify:

setAddParms(index, [0, 0, ...])
or
setMultParms(index, [1, 1, ...])

Example 7.51. Setting the parameters of a multi model fitting or a MultiFitting.

Specifying the initial parameters can be with the full number of parameters, so 3xn for n Gaussian,
or with the reduced number of parameters. For every relation in an n-model Combo, you 'lose' (n-1)
parameters. Hence the 4 parameters in the example: n = 2, and (3xn)-2x(n-1) = 4. Note, that even if
you give the full nx3 parameters, the plots take the relations into account.

7.24. Models available to the fitter
SpectrumFitter is used in conjunction with SpectrumModel, which allows you to select and
change models and fitting parameters. The three models you are most likely to use are Gaussian,
Lorentzian and Polynomial, described in the following table. Note that the s0 parameter of the Gaussian
model is the sigma of the Gaussian, not the FWHM.

Table 7.1. Most common model fits and their parameters

Model Mathematical fit Parameters Usage

Gaussian a0 = amplitude of line

x0 = location of line
peak

s0 = width of line (sig-
ma, not FWHM)

sf.addMod-
el ('gauss',
[a0,x0,s0])

359

Spectral Fitting Build 15.0.3244

Model Mathematical fit Parameters Usage

Lorentzian p0 = amplitude of line

p1 = location of line
peak

p2 = half width at half
maximum of line

sf.addModel
('lorentz',
[p0,p1,p2])

Polynomial f(x) = c0 + c1x + ... +
cnxn

n = order of polynomial

c0 .. cn = polynomial
coefficients

sf.addMod-
el ('polyno-
mial', [n],
[c0,c1, ...,
cn])

Other available models are listed in the following table:

Table 7.2. Spectrum fit model types and their use.

Name Example use – names in brackets should
be replaced by numerical values represent-

ing the initial guess for the parameter(s)

atan mod=sf.addModel('atan',[am-
plitude, slope, offset])

exp mod=sf.addModel('exp',[amplitude, exponent])

harmonic mod=sf.addModel('harmon-
ic',[order, period],[params]).

Number of parameters provided = 2*order + 1

pade mod=sf.addModel('pade',[num,
denom],[params]).

Number of parameters pro-
vided = Num + Denom + 1

power mod=sf.addModel('power',[degree], [param]).

Number of parameters provided = 1

powerlaw mod=sf.addModel('power-
law',[amplitude, x-shift, power])

sinc mod=sf.addModel('sinc',[am-
plitude, position, width])

sine mod=sf.addModel('sine',[fre-
quency, cosine amp, sine amp])

sineamp mod=sf.addModel('sineam-
p',[frequency], [two params])

voigt mod=sf.addModel('voigt',[am-
plitude, centre, gwidth, lwidth])

For more information about the SpectrumFitter and SpectrumModel classes, see the corresponding
Javadoc entries in the HCSS Developer's Reference Manual.

7.25. How to add your own model
It is possible to create your own models to use with the command-line version of the spectrum fitting
tool.

360

../../hcss_drm/api/herschel/ia/toolbox/spectrum/fit/SpectrumFitter.html
../../hcss_drm/api/herschel/ia/toolbox/spectrum/fit/modelcontainer/SpectrumModel.html

Spectral Fitting Build 15.0.3244

To do so, you need to create a Jython script containing a class that implements a NonLinearPyModel.
The following example defines a class that implements this non-linear function with two parameters
(a and b): y = a cos(bx) + b sin(ax).

import java
from herschel.ia.numeric.toolbox.fit import NonLinearPyModel
from herschel.ia.numeric import Double1d
from java.lang import Math

ModelName = 'MyModel'

class MyModel(NonLinearPyModel):
 npar = 2 # Define number of fit parameters

 def __init__(self):
 NonLinearPyModel.__init__(self, self.npar)

 def pyResult(self, x, p):
 # implement the model function

 y = p[0]*Math.cos(p[1]*x)+p[1]*Math.sin(p[0]*x)

 return y

Example 7.52. Creating a non-linear model for use with the Spectrum Fitter.

In the SpectrumFitter, this class can be loaded and its contents added to the ModelLibrary
using one of two following methods:

• If you have defined the custom model class by running the script above and then created an object ex-
ecuting customModel = MyModel(), use this method: SpectrumFitter.addJython-
Model(org.python.core.PyObject pModel, double[] fParms) : Spectrum-
Model

This will add the object in customModel already in memory to the SpectrumFitter instance,
with the initial fitting parameters as an array of double values. Example: sf.addJythonMod-
el(customModel, [50,50])

• If you have placed the above Jython script in a file, you should use this other method: Spec-
trumFitter.addJythonModel(String fName, String modelName, double[]
fParms) : SpectrumModel

This allows to add the model with name modelName from the file located at fName. Note that
this allows the file to have multiple models and reference them by name. You should also pass the
initial fitting parameters as an array of double values.

In both cases the initial fitting parameters can be changed afterwards with SpectrumModel.set-
Parameters(...):

Warning

There are two sets of parameters: the initial fitting parameters (fParms) and the con-
structor parameters (cParms). If the defined custom model requires parameters for its
constructor, you should use these alternative methods:

• SpectrumFitter.addJythonModel(org.python.core.PyObject
pModel, double[] cParms, double[] fParms) : SpectrumModel
providing the appropriate values for cParms.

• SpectrumFitter.addJythonModel(String fName, String model-
Name, double[] cParms, double[] fParms) : SpectrumModel pro-
viding the appropriate values for cParms.

sf = SpectrumFitter(...)

361

Spectral Fitting Build 15.0.3244

(see Section 7.1.2) to know how to
properly do the above command

jm = sf.addJythonModel(filename, modelname, parameters)
jm.setParameters(...) # If required
sf.doFit()

Example 7.53. Adding a custom model, previously exported as a Jython file.

7.26. Selecting the best fitter engine
In the Engine tab, you can select the fitting engine to be used. This can be done at any stage before a
model is finalised. There are five fitter engines available:

• 'levenbergmarquardt' or 'lbm': The Levenberg-Marquardt algorithm is the default model. A robust
method commonly used in fitting software and in many cases will find a solution for a non-linear
fit even if the initial guess is far away from the solution

• 'amoeba': The Amoeba fitter can be faster than the Levenberg-Marquardt algorithm and is the best
at finding the absolute minimum in the Chi-squared.

• 'linear': The Linear algorithm can be faster than the Levenberg-Marquardt algorithm.

• 'mp': The MP fitter.

• 'conjgrad': The ConjugateGradientFitter (CGF) does not use matrix inversions to iterate to the solu-
tion (as LevenbergMarquardt). It calculates the gradient to the (local) ChiSq function and proceeds
along that direction until it encounters a minimum. From that new position it iterates further. This
behaviour makes it fit for solving problems with many (>10 or so) parameters.

In the command line the fitter engine is chosen using the name given in italics in the list above:

Levenberg-Marquardt algorithim
sf.useFitter('lbm')

Example 7.54. Selecting the fitting algorithm to use.

7.27. NaNs and the Spectrum Fitter
The Spectrum Fitter handles NaNs (Not a Number)s in data by ignoring them. You do not need to
replace NaNs in your data.

7.28. Making images from fitting results to
cubes: the ParameterCube

When fitting the spectra in a cube using the MultiFitter via the command line or via the SFG, one can
make images from the fit parameters—most commonly this will be integrated flux or velocity maps
made from spectral line fits. A worked example (Section 7.5) shows you how to use the Parame-
terCube to do this, and we explain more about this product here. This "cube" is not a cube in the
sense of having axes of Ra, Dec, and wavelength/frequency, but rather is a products that stores fitting
results from cubes.

7.28.1. After fitting with the MultiFitter tab of the Spec-
trum Fitter GUI

The MultiFitter of the SFG produces a new product called "MultiFit_ParameterCube"—you should
see it in the Variables pane once you have run the fitting on the cube.

362

Spectral Fitting Build 15.0.3244

It is from this parameter cube that you can extract fitting results to make images. The order that these
images are held in is set by the order that the models were defined within the Spectrum Fitter GUI. For
example, if your first model was a 1st order polynomial and your second a Gaussian, then the param-
eters (and images) are in the following order: poly_param_0, poly_param_1, Gaussian peak, Gaussian
centre, and Gaussian sigma (width). To take any one of these images out of MultiFit_ParameterCube
the following syntax can be used:

map1 = MultiFit_ParameterCube.getSimpleImage(1) # for the second parameter
error1= MultiFit_ParameterCube.getSimpleImage(1).getError() # the associated error
 image

Example 7.55. Extracting images from the ParameterCube after MultiFitting a cube

Where the number is the position in the order mentioned above (beginning with 0).

The images will not have units, which you will have to add yourself: see the next section.

It is possible to view these images directly: from the Variables pane, double click on MultiFit_Param-
eterCube (or right-click and select to Open With the Standard Cube Viewer) and you will get a display
containing a series of images, which you can click through using the scroll bar at the bottom of the
viewer. To extract the currently viewed image out of the parameter cube, right-click on the Standard
Cube Viewer and choose the menu item "Extract current layer".

It is also possible to extract the total model cube from the ParameterCube. If "cube" is the name
of the cube you fit, then:

totalModelCube = MultiFit_ParameterCube.getFittedCube(cube.wave)

There are several other useful functionalities of the ParameterCube (e.g. getting the ChiSq map,
getting the parameters): more information can be taken from the entry for "ParameterCube" in the
DRM (Developer's Reference Manual).

Note that this cube will not have descriptions for the units, and that can make it difficult to compare
the "totalModelCube" to the original cube in the Spectrum Explorer. You can add the necessary in-
formation yourself

totalModelCube.setFluxDescription(cube.getFluxDescription())
totalModelCube.setWaveDescription(cube.getWaveDescription())

7.28.2. After fitting with the MultiFitter on the com-
mand line

When multi-fitting on the command line, a ParameterCube can be extracted from the fitting (called
"mf" in this chapter) contains a ParameterCube.

To get the parameter cube from "mf", type:

parCube = mf.getParameterCube

Example 7.56. Retrieving the ParameterCube from the MultiFitter results.

It is now straightforward to use this product to make images from any of the models that you fit to
your data. The parameters are stored in parCube in the same order that you defined the models and
the order that the models require the parameters to be in: so, for example, if you fit the original cube
with a 2nd order polynomial and a Gaussian, you will have 6 parameters in the following order: p0,
p1, p2 for the polynomial, then peak, wavelength and sigma from the Gaussian. For each of these you
can get the associated image using:

Get Gaussian peak flux image

363

../../hcss_drm/api/index.html?overview-summary.html

Spectral Fitting Build 15.0.3244

peakMap = parCube.getSimpleImage(3)

Example 7.57. Getting the peak flux image from the ParameterCube.

The images will not have units, which you will have to add yourself: see the next section

You can also open the "parCube" with the Standard Cube Viewer: from the Variables pane, double
click on it (or right-click and select to Open With the Standard Cube Viewer) and you will get a display
containing a series of images, which you can click through using the scroll bar at the bottom of the
viewer. These images are held in the order discussed above. To extract the currently viewed image out
of the parameter cube, right-click on the Standard Cube Viewer and choose the menu item "Extract
current layer".

It is also possible to extract the total model cube from the ParameterCube. If "cube" is the name
of the cube you fit, then:

totalModelCube = parCube.getFittedCube(cube.wave)

There are several other useful functionalities of the ParameterCube (e.g. getting the ChiSq map,
getting the parameters): more information can be taken from the entry for "ParameterCube" in the
DRM (Developer's Reference Manual).

Note that this cube will not have descriptions for the units, and that can make it difficult to compare
the "totalModelCube" to the original cube in the Spectrum Explorer. You can add the necessary in-
formation yourself

totalModelCube.setFluxDescription(cube.getFluxDescription())
totalModelCube.setWaveDescription(cube.getWaveDescription())

7.28.3. Manipulating the images taken from the Param-
eterCube.

The parameter cube contains images of the fitting results, but they may not be directly what you want
an image of. In addition, they do not contain units. For example, the integrated flux under a Gaussian
is usually more interesting than the peak flux, or a wavelength/frequency map is less useful than a
velocity map. Fortunately, once the images have been extracted from the parameter cube it is possible
to manipulate them mathematically. We show this here using the example from fitting on the command
line (but exactly the same process will work on products created by the MultiFitter of the SFG).

To turn the peak flux into an image of the integrated flux, you will need to apply the equation of the
area under the Gaussian. Using the example of a fitting of a 2nd order polynomial (first model, three
parameters) and a Gaussian (second model, three parameters), on data in Jy and microns:

peak = parCube.getSimpleImage(3).getImage()
width = parCube.getSimpleImage(5).getImage()
peakErr = parCube.getSimpleImage(3).getError()
widthErr = parCube.getSimpleImage(5).getError()
intensity = pk * width * SQRT(2*java.lang.Math.PI)
intensityErr = SQRT((peakErr/peak)**2 * (widthErr/width)**2)*intensity
Quick and (a bit) dirty: grab any image from ParameterCube and
replace the values with "intensity"
intensityMap = parCube.getSimpleImage(5)
intensityMap = setImage(intensity)
unit = FluxDensity.JANSKYS.multiply(Length.MICROMETERS)
intensityMap.setUnit(unit)
intensityMap.setError(intensityErr)

Example 7.58. Converting the peak flux image of the ParameterCube into an image of the integrated flux,
for a PACS cube.

And you can do similar to create a velocity map from the wavelength/frequency map (see also the
example in Section 7.5).

364

../../hcss_drm/api/index.html?overview-summary.html

Spectral Fitting Build 15.0.3244

Converting units. If you want more physical units, such as W/m2, for the integrated flux maps, you
can convert the units in the following way. These examples are of the most common PACS, SPIRE,
and HIFI units that you will encounter.

• To convert from Jy·micron to W/m2: Jy and micron are the units of PACS data. While you are
building your flux image, the changes to the script above are:

...
intensity = pk * width * SQRT(2*java.lang.Math.PI)
intensity = intensity * 2.99e-12/wave[row,col]**2
...
int_ima.setUnit(herschel.share.unit.Power.WATTS.divide\
 (herschel.share.unit.Area.SQUARE_METERS))

Example 7.59. Manual conversion of map units from Jy·u to W/m

• To convert from W/(m2Hz Sr)·GHz to W/(m2Sr): this is the unit of SPIRE cubes (which are
mostly of extended sources). You only need to get rid of the "GHz", and so change the script that
is given above to:

...
intensity = pk * width * SQRT(2*java.lang.Math.PI)
intensity = intensity * 1e9
...
int_ima.setUnit(cube.getFluxUnit().multiply(herschel.share.unit.Frequency.HERTZ))

Example 7.60. Manual conversion of map units from W/(m2 Hz Sr) to W/m

If you want to get rid of the "Sr" in the unit, it is recommended you convert the cube units before
you do any fitting. A task to do this should be provided as part of the SPIRE extended pipeline.

• For HIFI, to get units of T times frequency [K km/s] it is recommended that you first convert the
cube to have velocity on the X-axis using the task convertWavescale. Other conversions, such as
to Jy, should also be done on the cube prior to fitting, using the HIFI-provided tasks (check the
HIFI documentation).

To learn more about the various methods of the ParameterCube (setting and getting models, pa-
rameters, noise, units, writing results out, etc) see the DRM (Developer's Reference Manual) and look
for "ParameterCube". For example:

Get the cube of the total fitted model
wave=cube.getWave() # get the wavelength (Double1d) array from the cube you fit
fittedCube=parCube.getFittedCube(wave)
Get the fitted parameters and errors (for all spaxels fit) as 3d datasets:
parameters = parCube.getFitParameters()
errors = parCube.getStandardDeviations()

Example 7.61. Getting the cube of the total fitted model, and parameters and errors datasets.

7.29. Calculating uncertainty and error after
fitting

7.29.1. Introduction to errors or fitting and confidence
To better explain the concept of fitting errors, let us assume that we have some sample data, D, and
a model, F. In the most simple case the model has only one parameter, F(p). (We will later expand
it to more than one.) Let us also assume that we know the optimal setting for the parameter i.e. we
have fitted the model prefectly to the data. Let us call the optimal parameter values P. For this optimal
model we can calculate chi^2 as the SUM(D - F(P))^2. The goodness-of-fit, chi^2, is related to
the likelihood, L, as L~exp(-0.5chi^2). The optimal model is where chi^2 is minimum (least
squares solution) or equivalently maximum likelihood (solution).

365

../../hcss_drm/api/index.html?overview-summary.html

Spectral Fitting Build 15.0.3244

Concerning the errors of a fit there are two things you need to keep in mind.

• The "noise scale". This is the standard deviation of the data minus the model, or sqrt(chi^2/
dof), where dof is the degrees of freedom: number of data points minu number of parameters.
The noise scale is also known as "standard deviation of the fit" and several other names. Noise
scale is exactly that: the scale of the noise remaining after subtraction of the model. If the model
is the right one, then the noise scale is equivalent to the the noise in the data (the true RMS of the
spectrum). If you happen to have twice as many data points, the noise scale stays the same: twice
as many residuals divided by 2*N.

The noise scale is not the same as error in the fitted parameter values.

• A more interesting error/standard deviation—for the person fitting in HIPE—is the one related to the
fitted parameters. To find the error/standard deviation of a parameter you need to multiply the noise
scale by the square root of the diagonal elements of the covariance matrix = inverse of the hessian
(see note) matrix. In our simple case of one parameter, the hessian is one number, which generally
increases with the number of data points. So our standard deviation on this single parameter goes
down with the square root of the number of data points. More observations make your estimate
better. If you have more than one parameter the off-diagonal elements of the covariance matrix tell
you how much the parameters are correlated. See MonteCarloError, which uses the standard
deviation plus covariance matrix to calculate a confidence region in where the fit can wiggle.

Note

The Hessian is the matrix formed by the second derivatives of F to the parameters p.

What does it all mean? In Bayesian terms it means that the thing that p was supposed to measure,
has most probably the value P. Actually there is a Gaussian distribution centred at P with a sig-
ma equal to the standard deviation of the parameter, telling you how probable each value for p
is. With more parameters there is a multidimensional Gaussian distribution, rotated according to
the covariance matrix, telling you how probable each combination of parameters is. Note that by
assuming a Gaussian distribution for the errors in the data (by doing least squares, chi^2 etc.), you
get a Gaussian in the results.

This standard deviation is a value returned by the fitters in HIPE, called either "standard deviation"
or "error".

How does this change when you introduce weights to the fitting, i.e. data-point weights? Essentially,
you need to make more assumptions. It is assumed in the HIPE fitter classes that one observation of
data D_i with weight M is equivalent to M observations (all with the same value for the data: D_i) of
weight 1. A weight equal to 0 entails that the point does not participate in the fitting. Where the weights
originate from is entirely up to the user. Now you can play the game again: chi^2 = SUM(w) *
(D - F)^2 = SUM((D - F)/sigma)^2. You can find a weighted solution for the parameters
and the standard deviation in them. When all your models are OK, i.e. they are the "true" models that
explain the data completely, then all residuals (D - F)/sigma are on average 1.0. In this case
chi^2 equals N, and the noise scale equals 1.0. Unfortunately, this last point is not true in HIPE:
some unknown systematic effect is playing its part. If you are very concerned about working out the
best fitting errors (the best standard deviation values for the parameters) you could calculate the noise
scale, and with that the standard deviation values, from your spectral data directly. Having said that,
we have carried out tests of the reliability of the fitting errors using the fitter classes in HIPE. We have
fit a Gaussian+polynomial to a set of spectral lines of varying flux each 100 times over, and find that
the RMS of the fitting results for the parameters (FWHM, central wavelength, and peak flux) for each
line fit, is similar to the fitting errors returned for those parameters for that line, for a wide range of
SNRs. This suggests that the errors returned by the fitter are a good estimate of the uncertainty of the
model fit to the data, at least for this simple case.

Error and noise in compound models are treated just as for basic models. Think e.g. to fitting a line.
It consists of a constant part plus a linear part. One can use a PolynomialModel(1). Exactly the
same can be achieved with PolynomialModel(0) + PowerModel(1). All parameters are

366

Spectral Fitting Build 15.0.3244

fitted simultaneously by finding the minimum in chi^2. If you construct a model of a Gauss plus a
constant: F = GaussModel() + PolynomialModel(0), you can construct chi^2 as before
and do all the things described above.

7.29.2. Practical information for getting the fitting er-
rors in HIPE

The errors for the fitted parameters are extracted as the "standard deviation" using methods appropriate
for the different output results/products:

• When fitting multi-spectra products such as a cubes, the output products—the model, total model,
and residual cubes—will each have an error dataset, but these will contain only zeros. The errors
of the returned parameters (e.g. peak, width, wavelength for a Gaussian) are output along with the
parameter values and can be found in the MultiFit_parms product created by the MultiFitter of the
SFG (and the equivalent product if multi-fitting on the command-line, see Section 7.13), as "stddev".

• When fitting single spectra (with the SFG or on the command line), the output model and total
model spectrum and residual may include a weight array but it will also contain only zero values.
The error in the parameters are given as "stddev" in the output of the fitting, either in the FitResults
tab, from the exported fitting results, or in the table of fitted results (see Section 7.13).

• When fitting a cube, one of the outputs is a ParameterCube. The "stddev" values therein are
the parameter errors. In the worked example of Section 7.5.3 and in Section 7.28 we show how to
extract these errors, so you can e.g. add the error layer to flux maps created from fitting results.
The ParameterCube is an automatic product created when you work in the MultiFit tab of the
SFG. If multifitting on the command line the ParameterCube can be extracted from "mf": see
e.g. Section 7.28.

• When fitting via the SFG or on the command line, either for single or multiple spectra, one of the
returned values is the Chi-squared. This is a goodness-of-fit parameter, with one value no matter
how many models were fit to the spectrum/a. If fitting using the SFG on single spectra, the Chisq
value is unfortunately inaccessible. If fitting single spectra on the command line you can use the
following:

print sf.getChiSquared()

Example 7.62. Getting the Chi-squared on the command line

If fitting cubes via the command-line or the GUI, the Chisq value is added as a dataset to the output
ParameterCube, and from there can be dealt with as you would the image or error datasets (see
links given above).

7.29.3. Advanced practical information
As discussed previously, a fitting is only good as long as we can calculate with a certain confidence
an estimation of the error of the fitting. To do that, there are several methods available in HIPE.

Using the MonteCarloError class for linear models (a fit that involves only instances of sub-
classes of the LinearModel interface). There is an example using the class in a common fitting
scenario in the User's Reference Manual in HCSS User's Reference Manual. These are the models
whose error can be estimated with this method:

• BinomialModel in HCSS User's Reference Manual

• ChebyshevPolynomialModel in HCSS User's Reference Manual

• FreeShapeModel in HCSS User's Reference Manual

• FunnyModel

• HarmonicModel in HCSS User's Reference Manual

367

Spectral Fitting Build 15.0.3244

• LinearPyModel

• PolynomialModel in HCSS User's Reference Manual

Purpose: Simple fitting example

Demonstration: 1. Linear Model
2. Parameter fit
3. Autoscaling, Chisq, Standard deviations
4. Confidence region for the fit

Author: Do Kester

This demo exercises some classes from main/herschel/ia/numeric/toolbox/fit
the jython scripts are in fit/demo

from herschel.ia.numeric.all import *
from herschel.ia.gui.plot import *
import java
from java.awt import Color

define plot colors
color = [Color.yellow,Color.green,Color.blue,Color.red,\
 Color.cyan,Color.magenta,Color.orange,Color.gray]

Make a 3-degree polynomial
x = Double1d.range(21) / 2 - 5
ym = 1.2 + 0.5 * x + 0.13 * x * x + 0.01 * x * x * x
y = Double1d(21)

Add gaussian noise to form data point.
noise = 0.4
seed = 12345
rng = java.util.Random(seed) # random number generator with a seed
for i in range(21): y[i] = ym[i] + noise * rng.nextGaussian()

F = DataFormatter()
plot the data and the thruth
style=Style(line=Style.NONE, symbolShape=SymbolShape.FSQUARE, symbolSize=3)
p = PlotXY(titleText="Simple Fit")
p.addLayer(LayerXY(x, y, style=style, name="data"))
style.setColor(java.awt.Color.green)
p.addLayer(LayerXY(x, ym, style=style, name="model"))
style.setColor(java.awt.Color.black)

define a 3rd order polynomial
deg = 3
poly = PolynomialModel(deg)
np = poly.getNumberOfParameters()
print "Polynomial degree ", np-1

define a fitter. in this case a linear one as the model is linear
fitter = Fitter(x, poly)
param = fitter.fit(y) # actually fit the data
print "Fit params ", F.p(param) # compare with ym.

plot the fitted function on a 10 times finer grid.
xi = Double1d.range(201) / 20 - 5
yi = poly(xi) # == poly.result(xi)
p.addLayer(LayerXY(xi, yi, style=style, name="fit"))
style.setLine(Style.SOLID)
style.setColor(java.awt.Color.red)

show chisq and the scale of the noise: compare with noise = 0.14
chisq = fitter.getChiSquared()
print " chisq ", F.p(chisq)
print " scale ", F.p(fitter.autoScale())

print the standard deviations of the parameters.
stdev = fitter.getStandardDeviation()
print " stdev ", F.p(stdev)

368

Spectral Fitting Build 15.0.3244

Calculate a confidence region. it should encompass most of the true model.
ye = fitter.monteCarloError(xi)
p.addLayer(LayerXY(xi, yi + ye, style=style, name="deviation"))
style.setColor(java.awt.Color.blue)
p.addLayer(LayerXY(xi, yi - ye, style=style, name="deviation"))

Show the legend
p.legend.visible = 1

Example 7.63. Simple polynomial fitting with error calculation using MonteCarloError.

Figure 7.30. Fitting using a linear model with error calculation.

• PolySurfaceModel in HCSS User's Reference Manual

• PowerModel in HCSS User's Reference Manual

• SineAmpModel in HCSS User's Reference Manual

• SplinesModel in HCSS User's Reference Manual

• SurfaceSplinesModel in HCSS User's Reference Manual

A generic way of describing uncertainty for every model is using the next partial differentiate of the
model with the current parameters. Many of the models which are subclasses of NonLinearModel
can be described with an equation and some of them are analytically differentiable. These classes
contain a method called partial(double input, Double1d params) to calculate the
partial derivative for the data (input) for the variable.

369

Spectral Fitting Build 15.0.3244

Another method to estimate the confidence on the fit involves the use of a Bayesian prior and evi-
dence which is retrieved along with the chisq distribution and the standard deviation to form a set of
confidence indicators.

Also note that non-linear models can be converted to mixed models (linear plus non-linear parameters)
which then allow the use of the MonteCarloError technique described for linear models (see
below for an example using a sine mixed model).

Below there is a list of the models that can use one of these two methods:

• ArctanModel in HCSS User's Reference Manual

Purpose: Non-linear fit

Demonstration: 1. Arctan Model
2. LevenbergMarquardtFitter
3. Keeping parameters fixed

Author: Do Kester

from herschel.ia.numeric import *
from herschel.ia.numeric.toolbox.fit import ArctanModel
from java.awt import Color
import java.util
from math import *

color = [Color.red,Color.green,Color.blue,Color.yellow,Color.cyan,Color.magenta]

define some constants
N = 101
x0 = 95 # x position of arctanian

seed = 3456
rng = java.util.Random(seed) # random number generator with a seed

make data as a set of +1 or -1 values.
x = (Double1d.range(N) - 45) / 15
y = Double1d(N) - 1

for i in range(N):
 x[i] = SINH(x[i]) - 1.3
 if (x[i] + 5 * rng.nextGaussian() > 0): y[i] = 1
 x[i] += 80

F = DataFormatter()

plot the data and the model
style=Style(line=Style.NONE, symbolShape=SymbolShape.FSQUARE, symbolSize=3)
p = PlotXY(titleText="")
p.setXtitle("Money")
p.setYtitle("Probability")
p.addLayer(LayerXY(x, (y + 1) / 2, style=style, name="data"))
style.setColor(java.awt.Color.black)

xax = p.getXaxis()
xax.setTitleText("Money")
yax = p.getYaxis()
yax.setTitleText("Probability")

define the Gaussian Model
arctan = ArctanModel()
arctan += PolynomialModel(0)
print arctan
initial = Double1d([0.5,1,80,-0.5])
arctan.setParameters(initial)

#arctan.keepFixed(Int1d(1))
define the fitter: LevenbergMarquart
fitter = LevenbergMarquardtFitter(x, arctan)

370

Spectral Fitting Build 15.0.3244

find the parameters
param = fitter.fit(y)
print "Parameters %s" % F.p(param)

plot the fitted function
xi = x
yi = arctan(xi)
p.addLayer(LayerXY(xi, (yi+1)/2, name="arctan", style=style))
style.setColor(color[0])
style.setLine(Style.SOLID)

show the legend
p.legend.visible = 1

standard deviation of the parameters
print "St Dev %s" % F.p(fitter.getStandardDeviation())
amount of remaining (unexplained) noise scale = SQRT(chisq / N)
print "ChiSq %s" % F.p(fitter.getChiSquared())
print "Scale %s" % F.p(fitter.autoScale())
prior = Double1d(arctan.getNumberOfParameters() + 1) + 100
evid = fitter.getEvidence(prior)
print "Evidence %s" % F.p(evid)

done.

Example 7.64. Arctan fit with evidence estimation using a prior.

Figure 7.31. Fitting using a non-linear arctan model.

• ExpModel in HCSS User's Reference Manual

• LorentzModel in HCSS User's Reference Manual

• PadeModel in HCSS User's Reference Manual

Purpose: Fitting a non-linear model

371

Spectral Fitting Build 15.0.3244

Demonstration: 1. Pade model
2. Limits on some parameter ranges
3. Mixed models
4. MonteCarlo confidence regions

Author: Do Kester

from herschel.ia.numeric.all import *
from herschel.ia.numeric.toolbox.fit import PadeModel
from java.awt import Color
import java
import time

color = [Color.red,Color.green,Color.blue,Color.yellow,Color.cyan,Color.magenta]

F = DataFormatter()

npt = 100
x = Double1d.range(npt)
y = SIN(0.05 * x)
rng = java.util.Random(12345)
for i in range(npt): y[i] += 0.2 * rng.nextGaussian()

pade = PadeModel(2, 1)
npar = pade.getNumberOfParameters()
print npar
define the fitter
fitter = LevenbergMarquardtFitter(x, pade)

print F.p(fitter.fit(y), npar)

print F.p(fitter.getStandardDeviation(), npar)

print fitter.autoScale()
pade.setPriorRange(Double1d(npar + 1) + 10000.0)
print fitter.getChiSquared()
print fitter.getEvidence();

style=Style(line=Style.NONE, symbolShape=SymbolShape.FSQUARE, symbolSize=3)
p = PlotXY(titleText="Pade model")
p.addLayer(LayerXY(x, y, style=style, name="data"))
style.setColor(java.awt.Color.green)
p.addLayer(LayerXY(x, pade(x), style=style, name="fit(2,1)"))
style.setColor(java.awt.Color.black)
style.setLine(Style.SOLID)

pade = PadeModel(3, 1)
npar = pade.getNumberOfParameters()

define the fitter
fitter = LevenbergMarquardtFitter(x, pade)

print fitter.fit(y)

print F.p(fitter.getStandardDeviation())

print fitter.autoScale()
pade.setPriorRange(Double1d(npar + 1) + 10000.0)
print fitter.getChiSquared()
print fitter.getEvidence();

p.addLayer(LayerXY(x, pade(x), style=style, name="fit(3,1)"))
style.setColor(java.awt.Color.red)
style.setLine(Style.SOLID)

p.legend.visible = 1

Example 7.65. Fitting with PadeModel and evidence estimation using a prior range.

372

Spectral Fitting Build 15.0.3244

Figure 7.32. Fitting using a non-linear pade model.

• PowerLawModel in HCSS User's Reference Manual

• SincGaussModel in HCSS User's Reference Manual

• SincModel in HCSS User's Reference Manual

• SineModel in HCSS User's Reference Manual

All non-linear models allow one to convert the model to a mixed model using setMixedModel.
For an example of making the SineModel mixed, which allows the use of MonteCarloError
with it, see below:

Purpose: Fitting a non-linear model

Demonstration: 1. AmoebaFitter with annealing.
2. Limits on some parameter ranges
3. Mixed models
4. MonteCarlo confidence regions

Author: Do Kester

from herschel.ia.numeric.all import *
from java.awt import Color
import java
import time

color = [Color.red,Color.green,Color.blue,Color.yellow,Color.cyan,Color.magenta]

F = DataFormatter()

373

Spectral Fitting Build 15.0.3244

make data with an underlying sinusoidal model.
x = Double1d.range(21) / 2.0 - 5
y = Double1d(21)

ym = 0.6 * COS(6.28 * 0.44 * x) + 0.5 * SIN(6.28 * 0.44 * x)
rng = java.util.Random(12345)
for i in range(21): y[i] = ym[i] + 0.2 * rng.nextGaussian()

plot the data and the model
style=Style(line=Style.NONE, symbolShape=SymbolShape.FSQUARE, symbolSize=3)
p = PlotXY(titleText="Sinusoidal model")
p.addLayer(LayerXY(x, y, style=style, name="data"))
style.setColor(java.awt.Color.green)
p.addLayer(LayerXY(x, ym, style=style, name="model"))
style.setColor(java.awt.Color.black)

define the model and set limits (there is a good chance that the fitter
wont find the parameters when you leave them unrestricted)
sine = SineModel()
sine.setLimits(Double1d([0,0,0]), Double1d([1,10,10]))

define the fitter: amoeba
fitter = AmoebaFitter(x, sine)

Initialize the simplex; avoid awkward points like [0,0,0]
fitter.setSimplex(Double1d([0.1,1,1]), Double1d([0.2,1,1]))

Set the temperature to make it an annealing simplex. this is needed to
get out of local minima, of which there are a lot in these kind of models.
fitter.setTemperatureSteps(100)
fitter.setTemperature(20)

find the parameters
starttime = time.time()
param = fitter.fit(y)
stoptime = time.time()
print "Elapsed time %8.2f sec" % (stoptime - starttime)
print "Parameters %8.2f %8.2f %8.2f" % (sine[0], sine[1], sine[2])

find the standard deviations of the parameters
stdev = fitter.getStandardDeviation();
print "Stand Devs %8.2f %8.2f %8.2f" % (stdev[0], stdev[1], stdev[2])

print F.p(fitter.getHessian())

apply the model on a much finer grid, just for plotting purposes
xx = Double1d.range(201) / 20 - 5
yy = sine(xx)

plot the model in red over the data etc.
p.addLayer(LayerXY(xx, yy, name="fit", style=style))
style.setLine(Style.SOLID)
style.setColor(color[0])

Calculate a confidence region. it should encompass most of the true model.
ye = fitter.monteCarloError(xx)
p.addLayer(LayerXY(xx, yy + ye, name="deviation", style=style))
style.setColor(color[2])
p.addLayer(LayerXY(xx, yy - ye, name="deviation", style=style))

If this was not very satisfying, or it took way too long, the rest assured
that it is not the `best' way to fit a sine to a data set. It is better
to use a so-called mixed model, taking advantage that 2 of the 3 parameters
are in fact linear.

plot the data and the model
style=Style(line=Style.NONE, symbolShape=SymbolShape.FSQUARE, symbolSize=3)
p = PlotXY(titleText="Sinusoidal mixed model")
p.addLayer(LayerXY(x, y, style=style, name="data"))
style.setColor(java.awt.Color.green)
p.addLayer(LayerXY(x, ym, style=style, name="model"))

374

Spectral Fitting Build 15.0.3244

style.setColor(java.awt.Color.black)

#sinem = SineMixedModel() # alternate way
sinem = SineModel()
sinem.setMixedModel(Int1d([1,2]))
sinem.setLimits(Double1d([0,0,0]), Double1d([1,0,0]))

define the fitter: amoeba
mfitter = AmoebaFitter(x, sinem)

mfitter.setSimplex(Double1d([0.1,1,1]), Double1d([0.2,1,1]))
mfitter.setTemperature(20)
#mfitter.setMaxIterations(1)

find the parameters
starttime = time.time()
param = mfitter.fit(y)
stoptime = time.time()
print "Elapsed time %8.2f sec" % (stoptime - starttime)
print "Parameters %8.2f %8.2f %8.2f" % (sinem[0], sinem[1], sinem[2])

find the standard deviations of the parameters
stdev = mfitter.getStandardDeviation();
print "Stand Devs %8.2f %8.2f %8.2f" % (stdev[0], stdev[1], stdev[2])

print F.p(mfitter.getHessian())

apply the model on a much finer grid, just for plotting purposes
xx = Double1d.range(201) / 20 - 5
yy = sinem(xx)

plot the model in red over the data etc.
p.addLayer(LayerXY(xx, yy, name="mixed-fit", style=style))
style.setColor(color[5])
style.setLine(Style.SOLID)

Calculate a confidence region. it should encompass most of the true model.
ye = mfitter.monteCarloError(xx)
p.addLayer(LayerXY(xx, yy + ye, name="deviation", style=style))
style.setColor(color[4])
p.addLayer(LayerXY(xx, yy - ye, name="deviation", style=style))

Show the legend
p.legend.visible = 1

Example 7.66. Fitting data with a non-linear SineModel, using a Hessian matrix as confidence; then
fitting with a mixed SineModel and estimating error with MonteCarloError.

375

Spectral Fitting Build 15.0.3244

Figure 7.33. Fitting using a non-linear sine model.

376

Spectral Fitting Build 15.0.3244

Figure 7.34. Fitting using a mixed sine model (linear and non-linear).

Note

SkewGaussModel in HCSS User's Reference Manual has an equation but the class
doesn't include the partial method. Since HIPE does not do symbolic differentiation,
the partial derivative must be calculated outside of HIPE and then translated to a Jython
expression in order to calculate the error as part of a script.

Using the Monte Carlo method to estimate (brute-force) the statistical indicators of the error. This
procedure is indicated for models which are non-linear and don't have an equation. This is an
abstraction of the procedure:

1. Generate a sample of about 10.000 values for each parameter, assuming Gaussian distribution.
Parameters can be correlated which complicates the generation of the sample.

2. Fit the data with every set of parameters.

3. An estimation of the uncertainty could be the statistical indicators for the distribution of the results.

Note

As a brute-force method it has its shortcomings and the best approach would be to develop
a Bayesian approach. This would not require Gaussian assumptions for the parameters
and also the cross-correlations could be tackled in some way. However this is out of the
scope of this documentation.

If you are willing to use a Bayesian approach, note that the error of these non-linear models without
equation can be estimated using a prior, as well. See examples for some models below.

377

Spectral Fitting Build 15.0.3244

• ComboModel in HCSS User's Reference Manual: Whenever any or the models are non-linear or
their combination is non-linear.

• Gauss2DModel in HCSS User's Reference Manual

• Gauss2DRotModel in HCSS User's Reference Manual

• GaussModel in HCSS User's Reference Manual

The example below creates a combined model of Gaussian, Polynomial and Sine models for fitting
the data. For estimating the error and confidence, it calculates evidence based on a prior, standard
deviations, Hessian matrix and chisq distribution.

Purpose: Non-linear fit

Demonstration: 1. Gauss Model
2. LevenbergMarquardtFitter
3. Compound Model (Gaussian + polynomial)
4. Compound Model (Gaussian + polynomial + sine)
5. AmoebaFitter with annealing

Author: Do Kester

from herschel.ia.numeric import *
from java.awt import Color
import java.util
from math import *

color = [Color.red,Color.green,Color.blue,Color.yellow,Color.cyan,Color.magenta]

define some constants
N = 201
x0 = 0.7 # x position of gaussian
a0 = 10.0 # amplitude of gaussian
s0 = 0.4 # width
b0 = 1.0 # offset of background
b1 = 0.2 # slope of background
c0 = 0.4
c1 = 8.0
c2 = 0.0

make data od a Gaussian + straight line plus a small sinusoidal ripple.
x = Double1d.range(N) / 25.0 - 2
ym = a0 * EXP(-0.5 * SQUARE((x - x0) / s0)) + b0 + b1 * x + \
c0 * SIN(c1 * x + c2)

y = Double1d(N)
seed = 3456
rng = java.util.Random(seed) # random number generator with a seed
for i in range(N): y[i] = ym[i] + 0.2 * rng.nextGaussian()

F = DataFormatter()

plot the data and the model
style=Style(line=Style.NONE, symbolShape=SymbolShape.FSQUARE, symbolSize=3)
p = PlotXY(titleText="")
p.addLayer(LayerXY(x, y, style=style, name="data"))
style.setColor(java.awt.Color.black)
#p.addLayer(LayerXY(x, ym, style=style, name="model"))
#style.setColor(java.awt.Color.black)
#style.setLine(Style.SOLID)
annotation = Annotation(5.0, 11.0, "Evidence")
p.addAnnotation(annotation)

define the Gaussian Model
gauss = GaussModel()
print gauss

define the fitter: LevenbergMarquart
fitter = LevenbergMarquardtFitter(x, gauss)

378

Spectral Fitting Build 15.0.3244

find the parameters
param = fitter.fit(y)
print "Parameters %s" % F.p(param)

plot the fitted function on a 10 times finer grid.
#xi = Double1d.range(201) / 50 - 2
xi = x
yi = gauss(xi)
p.addLayer(LayerXY(xi, yi, name="Gauss", style=style))
style.setColor(color[0])
style.setLine(Style.SOLID)

print "Scale %s" % F.p(fitter.autoScale())
prior = Double1d(gauss.getNumberOfParameters() + 1) + 100
evid = fitter.getEvidence(prior)
print "Evidence %s" % F.p(evid)
annotation = Annotation(5.0, 10.0, F.p(evid))
annotation.setColor(color[0])
p.addAnnotation(annotation)

add a straight line to the GaussModel (polynomial of order 1)
#gauss += PolynomialModel(1) # alternate method equivalent to next
gauss.addModel(PolynomialModel(1))
print gauss

define the fitter: LevenbergMarquart
fitter = LevenbergMarquardtFitter(x, gauss)

find the parameters
param = fitter.fit(y)
print "Parameters %s" % F.p(param)

plot the fitted function on a 10 times finer grid.
#xi = Double1d.range(201) / 50 - 2
xi = x
yi = gauss(xi)
p.addLayer(LayerXY(xi, yi, name="Gauss + polynome", style=style))
style.setColor(color[1])

print "Scale %s" % F.p(fitter.autoScale())
prior = Double1d(gauss.getNumberOfParameters() + 1) + 100
evid = fitter.getEvidence(prior)
print "Evidence %s" % F.p(evid)
annotation = Annotation(5.0, 9.0, F.p(evid))
annotation.setColor(color[1])
p.addAnnotation(annotation)

gauss += SineModel()
print gauss

#gauss.setMixedModel(Int1d([0,3,4,6,7]))
gauss.setLimits(Double1d([0,0,0,0,0,0,0,0]), Double1d([0,0,0,0,0,20,0,0]))

mixfit = AmoebaFitter(x, gauss)

initpar = param
initpar = initpar.append(0.1)
initpar = initpar.append(1.0)
initpar = initpar.append(1.0)
Initialize the simplex; avoid awkward points like [0,0,0]
mixfit.setSimplex(initpar, Double1d([0.01,0.01,0.01,0.01,0.01,0.2,1,1]))

Set the temperature to make it an annealing simplex. this is needed to
get out of local minima, of which there are a lot in these kind of models.
mixfit.setTemperature(2)

find the parameters
par1 = mixfit.fit(y) # it may take a while ...
print "Parameters %s" % F.p(par1, gauss.getNumberOfParameters())

379

Spectral Fitting Build 15.0.3244

print "Parameters %s" % F.p(mixfit.getParameters(),
 gauss.getNumberOfParameters())

print mixfit.getNumberOfTransforms()

plot the fitted function on a 10 times finer grid.
#xi = Double1d.range(201) / 50 - 2
xi = x
yi = gauss(xi)
labl = "Gauss + poly + sine"
p.addLayer(LayerXY(xi, yi, name=labl, style=style))
style.setColor(color[2])

print "Scale %s" % F.p(mixfit.autoScale())
prior = Double1d(gauss.getNumberOfParameters() + 1) + 100
evid = mixfit.getEvidence(prior)
print "Evidence %s" % F.p(evid)
annotation = Annotation(5.0, 8.0, F.p(evid))
annotation.setColor(color[2])
p.addAnnotation(annotation)

show the legend
p.legend.visible = 1

find the standard deviations of the parameters
std1 = mixfit.getStandardDeviation();
print "Stand Devs %s" % F.p(std1)

print "ChiSq %s" % F.p(mixfit.getChiSquared())
print "Hessian"
print F.p(mixfit.getHessian())

done

Example 7.67. Fitting data with a combined model of Gaussian, Polynomial and Sine models.

380

Spectral Fitting Build 15.0.3244

Figure 7.35. Fitting using combined gauss, polynomial and sine models.

• GaussNoPartial

• Kernel2dModel in HCSS User's Reference Manual

• KernelModel in HCSS User's Reference Manual

• NonLinearPyModel: This depends on the implementation.

• VoigtModel

Using the Monte Carlo method to estimate (brute-force) the statistical indicators of the error. This
procedure is indicated for models which are non-linear and don't have an equation. This is an
abstraction of the procedure:

1. Generate a sample of about 10.000 values for each parameter, assuming Gaussian distribution.
Parameters can be correlated which complicates the generation of the sample.

2. Fit the data with every set of parameters.

3. An estimation of the uncertainty could be the statistical indicators for the distribution of the results.

Note

As a brute-force method it has its shortcomings and the best approach would be to develop
a Bayesian approach. This would not require Gaussian assumptions for the parameters
and also the cross-correlations could be tackled in some way. However this is out of the
scope of this documentation.

If you are willing to use a Bayesian approach, note that the error of these non-linear models without
equation can be estimated using a prior, as well. See examples for some models below.

381

Spectral Fitting Build 15.0.3244

• ComboModel in HCSS User's Reference Manual: Whenever any or the models are non-linear or
their combination is non-linear.

• Gauss2DModel in HCSS User's Reference Manual

• Gauss2DRotModel in HCSS User's Reference Manual

• GaussModel in HCSS User's Reference Manual

The example below creates a combined model of Gaussian, Polynomial and Sine models for fitting
the data. For estimating the error and confidence, it calculates evidence based on a prior, standard
deviations, Hessian matrix and chisq distribution.

Purpose: Non-linear fit

Demonstration: 1. Gauss Model
2. LevenbergMarquardtFitter
3. Compound Model (Gaussian + polynomial)
4. Compound Model (Gaussian + polynomial + sine)
5. AmoebaFitter with annealing

Author: Do Kester

from herschel.ia.numeric import *
from java.awt import Color
import java.util
from math import *

color = [Color.red,Color.green,Color.blue,Color.yellow,Color.cyan,Color.magenta]

define some constants
N = 201
x0 = 0.7 # x position of gaussian
a0 = 10.0 # amplitude of gaussian
s0 = 0.4 # width
b0 = 1.0 # offset of background
b1 = 0.2 # slope of background
c0 = 0.4
c1 = 8.0
c2 = 0.0

make data od a Gaussian + straight line plus a small sinusoidal ripple.
x = Double1d.range(N) / 25.0 - 2
ym = a0 * EXP(-0.5 * SQUARE((x - x0) / s0)) + b0 + b1 * x + \
c0 * SIN(c1 * x + c2)

y = Double1d(N)
seed = 3456
rng = java.util.Random(seed) # random number generator with a seed
for i in range(N): y[i] = ym[i] + 0.2 * rng.nextGaussian()

F = DataFormatter()

plot the data and the model
style=Style(line=Style.NONE, symbolShape=SymbolShape.FSQUARE, symbolSize=3)
p = PlotXY(titleText="")
p.addLayer(LayerXY(x, y, style=style, name="data"))
style.setColor(java.awt.Color.black)
#p.addLayer(LayerXY(x, ym, style=style, name="model"))
#style.setColor(java.awt.Color.black)
#style.setLine(Style.SOLID)
annotation = Annotation(5.0, 11.0, "Evidence")
p.addAnnotation(annotation)

define the Gaussian Model
gauss = GaussModel()
print gauss

define the fitter: LevenbergMarquart
fitter = LevenbergMarquardtFitter(x, gauss)

382

Spectral Fitting Build 15.0.3244

find the parameters
param = fitter.fit(y)
print "Parameters %s" % F.p(param)

plot the fitted function on a 10 times finer grid.
#xi = Double1d.range(201) / 50 - 2
xi = x
yi = gauss(xi)
p.addLayer(LayerXY(xi, yi, name="Gauss", style=style))
style.setColor(color[0])
style.setLine(Style.SOLID)

print "Scale %s" % F.p(fitter.autoScale())
prior = Double1d(gauss.getNumberOfParameters() + 1) + 100
evid = fitter.getEvidence(prior)
print "Evidence %s" % F.p(evid)
annotation = Annotation(5.0, 10.0, F.p(evid))
annotation.setColor(color[0])
p.addAnnotation(annotation)

add a straight line to the GaussModel (polynomial of order 1)
#gauss += PolynomialModel(1) # alternate method equivalent to next
gauss.addModel(PolynomialModel(1))
print gauss

define the fitter: LevenbergMarquart
fitter = LevenbergMarquardtFitter(x, gauss)

find the parameters
param = fitter.fit(y)
print "Parameters %s" % F.p(param)

plot the fitted function on a 10 times finer grid.
#xi = Double1d.range(201) / 50 - 2
xi = x
yi = gauss(xi)
p.addLayer(LayerXY(xi, yi, name="Gauss + polynome", style=style))
style.setColor(color[1])

print "Scale %s" % F.p(fitter.autoScale())
prior = Double1d(gauss.getNumberOfParameters() + 1) + 100
evid = fitter.getEvidence(prior)
print "Evidence %s" % F.p(evid)
annotation = Annotation(5.0, 9.0, F.p(evid))
annotation.setColor(color[1])
p.addAnnotation(annotation)

gauss += SineModel()
print gauss

#gauss.setMixedModel(Int1d([0,3,4,6,7]))
gauss.setLimits(Double1d([0,0,0,0,0,0,0,0]), Double1d([0,0,0,0,0,20,0,0]))

mixfit = AmoebaFitter(x, gauss)

initpar = param
initpar = initpar.append(0.1)
initpar = initpar.append(1.0)
initpar = initpar.append(1.0)
Initialize the simplex; avoid awkward points like [0,0,0]
mixfit.setSimplex(initpar, Double1d([0.01,0.01,0.01,0.01,0.01,0.2,1,1]))

Set the temperature to make it an annealing simplex. this is needed to
get out of local minima, of which there are a lot in these kind of models.
mixfit.setTemperature(2)

find the parameters
par1 = mixfit.fit(y) # it may take a while ...
print "Parameters %s" % F.p(par1, gauss.getNumberOfParameters())

383

Spectral Fitting Build 15.0.3244

print "Parameters %s" % F.p(mixfit.getParameters(),
 gauss.getNumberOfParameters())

print mixfit.getNumberOfTransforms()

plot the fitted function on a 10 times finer grid.
#xi = Double1d.range(201) / 50 - 2
xi = x
yi = gauss(xi)
labl = "Gauss + poly + sine"
p.addLayer(LayerXY(xi, yi, name=labl, style=style))
style.setColor(color[2])

print "Scale %s" % F.p(mixfit.autoScale())
prior = Double1d(gauss.getNumberOfParameters() + 1) + 100
evid = mixfit.getEvidence(prior)
print "Evidence %s" % F.p(evid)
annotation = Annotation(5.0, 8.0, F.p(evid))
annotation.setColor(color[2])
p.addAnnotation(annotation)

show the legend
p.legend.visible = 1

find the standard deviations of the parameters
std1 = mixfit.getStandardDeviation();
print "Stand Devs %s" % F.p(std1)

print "ChiSq %s" % F.p(mixfit.getChiSquared())
print "Hessian"
print F.p(mixfit.getHessian())

done

Example 7.68. Fitting data with a combined model of Gaussian, Polynomial and Sine models.

384

Spectral Fitting Build 15.0.3244

Figure 7.36. Fitting using combined gauss, polynomial and sine models.

• GaussNoPartial

• Kernel2dModel in HCSS User's Reference Manual

• KernelModel in HCSS User's Reference Manual

• NonLinearPyModel: This depends on the implementation.

• VoigtModel

7.30. Troubleshooting and limitations of the
fitter

Although the theory of model fitting is quite straightforward, the implementation can be cumbersome.
This is mostly due to the fact that we have limited precision computers and limited amounts of time.
Even though all the computation is done in 8-byte doubles, limited resources and sometimes the ob-

noxious shape of the χ2-landscape can make life for the fitter difficult. Another common bear on the
road is the (near-)degeneracy in the model with respect to the data. It sometimes looks more like an
art than a craft.

For diagnostic (and debugging) purposes in the iterative fitters (LMFitter and AmoebaFitter)
there is the setVerbose(int n) option, which prints the parameters every n-th iteration. And
also the setPlotter method where an IterationPlotter can be attached to the Fitter, which
makes a plot of the data and the results at each k-th iteration. An example of a IterationPlotter can
be found in ia.toolbox.fit . The reason why it is not incorporated in the Fitter or even present

385

Spectral Fitting Build 15.0.3244

in the package is because it would create a circular dependency between the fit package and the plot
package. Users can make their own IterationPlotter by implementing the interface Itera-
tionPlotable.

Here are some guidelines that might help to get useful results.

• The independent variable(s) x should be roughly of order 1. Mostly the fitter obtains solutions by
manipulating a matrix consisting of a direct product of the partial derivatives of the model to each
of its parameters. If the elements of this matrix wildly vary in size, loss of precision is quickly
attained. E.g. a polynomial model of order 3 with an independent variable which has values from
1 to 100, will have a matrix with values ranging between 1 and 1012. Mathematically this is all
OK, computationally it is a nightmare. To inspect this (Hessian) matrix use getHessian(). The
Fitter software can not and does not scale its inputs in any way. It takes it all at face value. It is up
to the user to present the Fitters with usable data.

• The dependent variable y has fewer constraints. Still there is a silent assumption in the algorithms
that the amount of noise in the data is of the order 1. This is only of importance in the stopping
criterion of iterative fitters. There is no way to do it right in all imaginable cases. To redress this
condition you can either use weights (inverse of the noise squared) or use the setTolerance()
method to adapt the stopping criterion to your problem or scale the dependent variable such that the

noise level attains a more useful value. Check whether χ2, getChiSquared(), is of the order
of the number of datapoints.

• Sometimes the model is degenerated, meaning that 2 (or more) of its parameters are essentially
measuring the same thing. Trying to fit data using Fitter to such a model results in a singular matrix.
The SingularValueDecompositionFitter has less problems as it evenly distributes the
value over the degenerated parameters. Try hasDegeneracy() to check for this condition. In
general it is better to use models which are not degenerated.

• When a non-linear fitter searches for a minimum, it might happen that for almost all values of the

parameters χ2 does not have a gradient. That is when the parameters move away from the sought

minimum, the χ2 does not or hardly change. Mostly this can be the case with models of periodic
functions or when you are far from the global minimum. Only at a small area in the parameters space
around the minimum there is a gradient to move along. If you can in some other way localise the area
where your parameters should be found, feed them to the system as initial parameters. Otherwise
you have to use the AmoebaFitter in the annealing mode or even do exhaustive search. Both
strategies take a lot more time.

• A similar and sometimes simultaneous condition happens when the landscape is multimodal, i.e. it
has more than one minimum. Of course only one minimum is the lowest, the global minimum. And

that one is the one we want to find. In general fitters don't have a global view on the χ2 landscape.
They fall for the first minimum they encounter. The same advice as on the previous item.

• The model is (almost) degenerate under the data it is presented to. In general this signals that the
model is not the best one for the data at hand. Use a simpler model.

• The size of the Simplex in the AmoebaFitter is by default 1. When your x-data is very much
larger (or smaller) than 1 and you set your startValues accordingly, you might want to adapt
the size of the Simplex too. In extreme cases the 1 vanishes in the precision of the startValues
and the simplex is frozen in some dimension(s). Use setSimplex(startValues, sizeS-
implex).

• χ2 is zero. This can only happen when the data fit the model perfectly, either because the parameters
of the models have been fixes or occasionally it could be due to digitisation of the data: the data
is only perfect after they have been digitised. This digitisation gives each data point a noise of 1/
sqrt(12) , the standard deviation of a uniform distribution. The actual position of each datapoint
can be anywhere between two digitisation levels (presumably at distance 1). This noise can be added

to the internal χ2 with setChiSquared(N/12).

386

Spectral Fitting Build 15.0.3244

• When you think that the standard deviations on the parameters are ridiculously large, please cal-

culate the confidence region on the model fit (use fitter.monteCarloError()). This 1-σ
confidence interval is obtained directly from the standard deviation and its covariance matrix. Due
to strong covariance between the parameters, the standard deviations can be large while the confi-
dence region is still acceptable. The confidence region is actually is better indicator for how well
the model performs than the standard deviations on the parameters.

• The standard deviations of the parameters are calculated as the square root of chisq multiplied by
the diagonal elements of the inverse Hessian matrix at the chisq minimum, divided by the degrees of
freedom. The chisq landscape at that point is a stationary minimum, curving up in all directions. The
shape of the minimum is approximated by the inverse Hessian (also known as Covariance Matrix),
upto the 2nd power in the Taylor expansion of the chisq function. When you have set limits on the
parameters and the unconstraint minimum of chisq would be outside the limits, then the constraint
minimum of chisq is at one of the limits. This constraint minimum is not a stationary point any more
so the assumptions above about a neat valley in the chisq landscape, curving up to all sides are not
met. What the resulting calculations will give is anyone's guess.

387

Build 15.0.3244

Chapter 8. Unit Conversion
8.1. Units in HIPE

In HIPE you can assign units to every product. Doing so, you can perform conversions and calcula-
tions that retain a meaningful unit in their results. The core of this functionality resides in the unit
namespace and the ConvertUnitsTask. Even if you are doing the conversion manually, you need
the classes and constants contained within herschel.share.unit. A simple example of manual
conversion can be found in the fourth step of this worked example Section 7.5.3. Below you can find
the most relevant lines of that example, commented, reordered and extracted for the sake of explana-
tion. The variable Params is obtained from the MultiFitter results. It contains a fitted product:

Params = mf.getProduct()

Example 8.1. Getting the product stored in the results of a MultiFitting.

An empty matrix with the dimensions of the cube is created to contain the frequency values of the
fitted product:

freq=Double2d(cube.dimensions[1],cube.dimensions[2])

Example 8.2. Creating an empty matrix that can hold the frequency values of the fitted products.

Now it is possible to fill the matrix with data from the fit:

for row in range (cube.dimensions[1]):
 for col in range (cube.dimensions[2]):
 freq[row,col]=Params[name]["Parameters"].data[1]

Example 8.3. Filling the matrix with the fitting results data.

Set up the manual conversion:

c = herschel.share.unit.Constant.SPEED_OF_LIGHT.value
c = c/1000. # to get into km/s
f0 value is made up as a frame frequency
f0 = 806.00

Example 8.4. Defining constants required for the conversion.

In the freq matrix we have a default unit of frequency. This will be transformed into velocity below:

vel = c*(f0-freq)/f0

Example 8.5. Converting the whole matrix values taking advantage of the capabilities of HIPE arrays.

The conversion has been applied to the entire matrix (Double2d) but the units are still frequency.
As the purpose of the script is creating a map, the vel matrix is used to create a SimpleImage:

VelIm = SimpleImage(image=vel)

Example 8.6. Creating a new image object to hold the velocity values.

To modify the units of the image, it is possible to use a SimpleImage method, called setUnits:

VelIm.setUnit(herschel.share.unit.Speed.KILOMETERS_PER_SECOND)

Example 8.7. Manually setting the units of the output velocity map.

In this case, the unit is applied to all pixels of an image (created from a 2D array of velocity values
assigned to the variable vel). All pixels of the SimpleImage are assigned km/s as their unit. As you
can see, the process is cumbersome, prone to error and requires prior knowledge of the conversion
conventions in use with HIPE. If the conversion is not the usual, the objective of keeping meaningful
units is not achieved. The convertUnits task is able to convert from and to a set of the most
common units in HIPE, for the product types that are more used.

388

Unit Conversion Build 15.0.3244

8.2. Built-in units and how to define new ones
The unit framework in HIPE has many common units already available. To simplify the handling of
complex units in code, they are usually passed as a String to the Unit constructor. This avoids the
requirement of recalling the defined constants for each unit (which, of course, are totally equivalent)
and enhances the legibility of the code. For example, "m-1" is equivalent to WaveNumber.RE-
CIPROCAL_METERS. Built-in units are grouped conceptually and all the conversions between them
are bidirectional.

Note

Common names of the units are given in American English spelling (e.g.: meter versus
metre) because that is the way they are stored within the software. Both the Constant and
Friendly name columns contain string literals of HIPE classes while the Common name
column is a description that keeps the American spelling for consistency.

Table 8.1. Units supported by the convertUnits task.

Physical quantity Unit common name Constant Friendly name

Acceleration Meters per second
squared

Acceleration.ME-
TERS_PER_SEC-
OND_SQUARED

"m s-2"

Degrees Angle.DEGREES "deg"

Arcminutes Angle.MIN-
UTES_ARC

"arcmin"

Radians Angle.RADIANS "rad"

Angle

Arcseconds Angle.SECOND-
S_ARC

"arcsec"

Angular momentum Joule second AngularMomen-
tum.JOULE_SECOND

"J s"

Degrees per second AngularSpeed.DE-
GREES_PER_SECOND

"deg s-1"Angular speed

Radians per second AngularSpeed.RA-
DIANS_PER_SECOND

"rad s-1"

Square centimeters Area.SQUARE_CEN-
TIMETERS

"cm2"

Square kilometers Area.SQUARE_K-
ILOMETERS

"km2"

Area

Square meters Area.SQUARE_ME-
TERS

"m2"

Days Duration.DAYS "d"

Hours Duration.HOURS "h"

Julian years Duration.JU-
LIAN_YEARS

"a"

Microseconds Duration.MI-
CROSECONDS

"microseconds"

Milliseconds Duration.MIL-
LISECONDS

"ms"

Minutes Duration.MINUTES "min"

Duration

Seconds Duration.SECONDS "s"

Electric capacitance Farads ElectricCapaci-
tance.FARADS

"F"

389

Unit Conversion Build 15.0.3244

Physical quantity Unit common name Constant Friendly name

Microfarads ElectricCapac-
itance.MICRO-
FARADS

"microF"

Millifarads ElectricCapac-
itance.MILLI-
FARADS

"mF"

Nanofarads ElectricCapaci-
tance.NANOFARADS

"nF"

Picofarads ElectricCapaci-
tance.PICOFARADS

"pF"

Electric charge Coulomb ElectricCha-
rge.COULOMB

"C"

Electric conductance Siemens ElectricConduc-
tance.SIEMENS

"S"

Amperes ElectricCurren-
t.AMPERES

"A"Electric current

Milliamperes ElectricCurren-
t.MILLIAMPERES

"mA"

Electric inductance Henries ElectricInduc-
tance.HENRIES

"H"

Millivolts ElectricPoten-
tial.MILLIVOLTS

"mV"Electric potential

Volts ElectricPoten-
tial.VOLTS

"V"

Electric resistance Ohms ElectricResis-
tance.OHMS

"Ohm"

Electronvolts Energy.ELEC-
TRON_VOLTS

"eV"

Ergs Energy.ERGS "erg"

Energy

Joules Energy.JOULES "J"

Entropy Joules per Kelvin En-
tropy.JOULES_PER_KELVIN

"J K-1"

Ergs per second per
square centimeter

Flux.ERGS_PER_SEC-
OND_PER_SQUARE_CEN-
TIMETER

"erg s-1 cm-2"

Watts per square cen-
timeter

Flux.WATTS_PER_SQUARE_CEN-
TIMETER

"W cm-2"

Flux

Watts per square meter Flux.WATTS_PER_SQUARE_ME-
TER

"W m-2"

Ergs per second per
square centimeter per
hertz

FluxDensi-
ty.ERGS_PER_SEC-
OND_PER_SQUARE_CEN-
TIME-
TER_PER_HERTZ

"erg s-1 cm-2
Hz-1"(Fv)

Flux density

Ergs per second per
square centimeter per
micron

FluxDensi-
ty.ERGS_PER_SEC-
OND_PER_SQUARE_CEN-

"erg s-1 cm-2
micrometer-1"(F

λ
)

390

Unit Conversion Build 15.0.3244

Physical quantity Unit common name Constant Friendly name

TIMETER_PER_MI-
CRON

Ergs per second per
square centimeter per
wavenumber

FluxDensi-
ty.ERGS_PER_SEC-
OND_PER_SQUARE_CEN-
TIME-
TER_PER_WAVENUM-
BER

"erg s-1 cm-2
cm"(Fk)

Janskys FluxDensity.JAN-
SKYS

"Jy"(Fv)

Microjanskys FluxDensity.MI-
CROJANSKYS

"microjan-
skys"(Fv)

Millijanskys FluxDensity.MIL-
LIJANSKYS

"mJy"(Fv)

Watts per square cen-
timeter per Hertz

FluxDensi-
ty.WATTS_PER_SQUARE_CEN-
TIME-
TER_PER_HERTZ

"W cm-2 Hz-1"(Fv)

Watts per square cen-
timeter per micron

FluxDensi-
ty.WATTS_PER_SQUARE_CEN-
TIMETER_PER_MI-
CRON

"W cm-2 microme-
ter-1"(F

λ
)

Watts per square cen-
timeter per wavenum-
ber

FluxDensi-
ty.WATTS_PER_SQUARE_CEN-
TIME-
TER_PER_WAVENUM-
BER

"W cm-2 cm"(Fk)

Watts per square meter
per Hertz

FluxDensi-
ty.WATTS_PER_SQUARE_ME-
TER_PER_HERTZ

"W m-2 Hz-1"(Fv)

Watts per square meter
per micron

FluxDensi-
ty.WATTS_PER_SQUARE_ME-
TER_PER_MICRON

"W m-2 microme-
ter-1"(F

λ
)

Watts per square meter
per wavenumber

FluxDensi-
ty.WATTS_PER_SQUARE_ME-
TER_PER_WAVENUM-
BER

"W m-2 cm"(Fk)

Dynes Force.DYNES "dyn"Force

Newtons Force.NEWTONS "N"

Gigahertz Frequency.GIGA-
HERTZ

"GHz"

Hertz Frequency.HERTZ "Hz"

Kilohertz Frequency.KILO-
HERTZ

"KHz"

Megahertz Frequency.MEGA-
HERTZ

"MHz"

Frequency

Terahertz Frequency.TERA-
HERTZ

"THz"

Length Angstroms Length.ANGSTROMS "angstrom"

391

Unit Conversion Build 15.0.3244

Physical quantity Unit common name Constant Friendly name

Astronomical Units Length.ASTRONOM-
ICAL_UNITS

"ua"

Centimeters Length.CENTIME-
TER

"cm"

Kilometers Length.KILOMETER "km"

Meters Length.METERS "m"

Micrometers Length.MICROME-
TERS

"micrometer"

Millimeters Length.MILLIME-
TERS

"mm"

Grams Mass.GRAMS "g"Mass

Kilograms Mass.KILOGRAMS "kg"

Noise Equivalent
Power (NEP)

Watts per square root
Hertz

NEP.WATTS_PER_SQRT_HERTZ"W Hz-1:2"

Kilowatts Power.KILOWATTS "kW"

Megawatts Power.MEGAWATTS "MW"

Power

Watts Power.WATTS "W"

Bars Pressure.BARS "bar"

Millibars Pressure.MIL-
LIBARS

"mbar"

Pressure

Pascals Pressure.PASCALS "Pa"

Beam Scalar.BEAM "beam"

Decibels Scalar.DECIBELS "dB"

One Scalar.ONE "1"

Percent Scalar.PERCENT "%"

Scalar

Pixel Scalar.PIXEL "pixel"

Square degress SolidAn-
gle.SQUARE_DE-
GREES

"deg2"

Square arcminutes SolidAn-
gle.SQUARE_MIN-
UTES_ARC

"arcmin2"

Square arcseconds SolidAn-
gle.SQUARE_SEC-
ONDS_ARC

"arcsec2"

Solid Angle

Steradians SolidAn-
gle.STERADIANS

"sr"

Kilometers per hour Speed.KILOMETER-
S_PER_HOUR

"km h-1"

Kilometers per second Speed.KILOMETER-
S_PER_SECOND

"km s-1"

Speed

Meters per second Speed.METER-
S_PER_SECOND

"m s-1"

Surface brightness Janskys per beam SurfaceBright-
ness.JAN-
SKYS_PER_BEAM

"Jy/beam"

392

Unit Conversion Build 15.0.3244

Physical quantity Unit common name Constant Friendly name

Janskys per pixel SurfaceBright-
ness.JAN-
SKYS_PER_PIXEL

"Jy/pixel"

Janskys per square arc-
sec

SurfaceBright-
ness.JAN-
SKYS_PER_SQUARE_ARC-
SEC

"Jy/arcsec2"

Megajanskys per stera-
dian

SurfaceBright-
ness.MEGAJAN-
SKYS_PER_STERA-
DIAN

"MJy/sr"

Celsius Temperature.CEL-
SIUS

"degC"Temperature

Kelvin Tempera-
ture.KELVIN

"K"

Thermal conductivity Watts per meter per
Kelvin

Thermal-
Conductivi-
ty.WATTS_PER_ME-
TER_PER_KELVIN

"W m-1 K-1"

Reciprocal centimeters WaveNumber.RE-
CIPROCAL_CEN-
TIMETERS

"cm-1"Wave number

Reciprocal meters WaveNumber.RE-
CIPROCAL_METERS

"m-1"

8.2.1. Defining new units
A section on how to define derived units and a general explanation on the usage of the package is
available in the Scripting Guide in Scripting Guide. To define a completely new unit, you should sub-
class the abstract class Unit, providing the dialog name, the unit name, equivalencies and providing
a compareTo method suitable for implementing the Comparable interface. For more information
on how to create new classes in Jython, see this walkthrough in the Scripting Guide in Scripting Guide.
Since that section does not cover the intrinsics of subclassing Java abstract classes from Jython, you
can also consult the last example in the Using Java Within Jython Applications section of the Jython-
Book, the official reference book for Jython (take care, it only covers the first version of the language
and syntax could differ slightly).

8.3. How to convert data products units
At the beginning of this chapter, you could read an example on how to manually convert data in a two-
step approach. The first step was to apply the conversion factor between the units to the data and the
second step was to explicitly set the unit for the new values. This is correct if you have strange units
in your data and don't want to go through all the hassle of creating a Java class and adding it to HIPE
as a plug-in or subclassing the Unit class directly in Jython. There are additional ways to convert
between different units in HIPE through the use of specific converters:

• Convert dates using either DateConverter or CucConverter.

• Convert flux density values using the FluxDensityConverter which is aware of the three dif-
ferent units commonly used as reference for this quantity (frequency, wavelength and wavenumber).

• Convert frequency values using FrequencyConverter that handles conversion between Hz,
m and cm-1.

393

http://www.jython.org/jythonbook/en/1.0/JythonAndJavaIntegration.html#using-java-within-jython-applications

Unit Conversion Build 15.0.3244

• Convert between different formats of the same units with the UnitFormatConverter, for ex-
ample the sexagesimal and decimal formats for angular degrees (deg).

• Convert from a double (which is the default numeric type in HIPE) to another unit using De-
faultUnitConverter.

In case your data does not require a specific converter, the safest option is to use the convertUnits
task. It will convert any unit to another, if they belong to the set of predefined units listed above.
The documentation for the task already covers trivial cases like converting arrays of double values
(Double1d) from GHz to MHz. Since the task does not directly convert products, the purpose of
the rest of this chapter is providing the information and worked examples to convert the units of
more complex products like the subclasses of SimpleCube, Spectrum1d, Spectrum2d and
SimpleImage.

8.3.1. Worked Example: Converting the units of an in-
stance of a subclass of Spectrum1d

In order to convert the units of a SPIRE spectrum of type SpireSpectrum1d, you should first
extract the Double1d array that stores the spectrum data. For this example, GHz will be converted
to MHz. This is a very simple product but still requires the conversion to be made in two steps, since
there are two places where the units must be converted.

• The first place is the Double1d array, where the values must be converted from GHz to MHz in
the example. All data points will be multiplied by 1000.

• The second place is the metadata property that stores the units for SpireSpectrum1d. This
property is waveunit and must be manually set after converting the values.

Imports
from herschel.share.unit import *

SPIRE obs
obsid_v1342187084 = getObservation(obsid = 1342187084, useHsa = True)

SpireSpectrum1d (it is a subclass of Spectrum1d, so valid for the purpose)
spireSpec =
 obsid_v1342187084.refs["level2"].product.refs["HR_spectrum_ext_apod"].product["0000"]
["SLWB2"]

Check the wave units
print spireSpec.meta['waveunit']

Convert the wave column
waveMHz = convertUnits(data = spireSpec.wave, sourceUnit="GHz", targetUnit="MHz")

Make a deep copy of the original spectrum and assign the new data to it
spireSpecMHz = spireSpec.copy()
spireSpecMHz.wave = waveMHz

Set the new units in the metadata of the copy
spireSpecMHz.setWaveUnit(Unit.parse("MHz"))

Example 8.8. How to convert an instance of SpireSpectrum1d.

8.3.2. Worked Example: Converting the units of an in-
stance of a subclass of Spectrum2d

This is very similar to converting an instance of Spectrum1d. The main difference is that you must
take extra precautions with the subband layout when converting each subband. To emphasise the fact
that subbands are independent columns with independent units, an in-place conversion of each wave
dataset will be done in the example using a for loop.

394

Unit Conversion Build 15.0.3244

Note

This is something very important to remember. If you change the values (and the internal
units) of, for example, the wave datasets of subbands 2 and 3 through the execution of
convertUnits you will end up with inconsistent units in the product. The metadata
property waveunit of HrsSpectrumDataset will still hold the original unit while
the converted subband datasets will hold the converted units. Depending on the purpose
of the conversion, this could be desired.

Imports
from herschel.share.unit import *

HIFI observation from the HIFI UM
obsid_v1342190841 = getObservation(obsid = 1342190841, useHsa = True)

This product is an instance of HrsSpectrumDataset
hrsSpec2d = obsid_v1342190841.refs["level2"].product.refs["HRS-H-
USB"].product.refs["box_001"].product["0001"]

In place conversion
hrsSpec2d.set("usbfrequency_1", convertUnits(data=hrsSpec2d.getWave(1),
 sourceUnit="GHz", targetUnit="MHz"))

Note that the waveunit property will be inconsistent if you only convert one
 subband
for index in range(2,5):
 hrsSpec2d.set("usbfrequency_"+`index`,
 convertUnits(data=hrsSpec2d.getWave(index), sourceUnit="GHz", targetUnit="MHz"))

Now you can update the waveunit property
hrsSpec2d.setWaveUnit(Unit.parse("MHz"))

Example 8.9. How to convert an instance of HrsSpectrumDataset.

8.3.3. Worked Example: Converting the units of an in-
stance of a subclass of SimpleCube

To convert an instance of SpectralSimpleCube, the procedure is very similar to other products.
First, you must extract the data values to be converted from the product, then execute the conver-
tUnits task to actually convert the values. To finish, create a copy of the original product with the
converted values and the appropiate units stored in its metadata.

• The Double3d dataset containing the values of the cube is stored in the image property of the
product. In this case, the unit for this dataset is K and the conversion will modify the values to
degrees Celsius, subtracting 273.15 to each data point.

• The second step (as is the case with the other examples in this chapter) is to manually update the
metadata property holding the old unit. Be it in the original object or in a copy, the unit property
must be updated if consistency is required.

Imports
from herschel.share.unit import *

HIFI obs
obsid_v1342180474 = getObservation(obsid = 1342180474, useHsa = True)
SpectralSimpleCube
hifiCube =
 obsid_v1342180474.refs["level2_5"].product.refs["cubesContext"].product.refs["cubesContext_HRS-
H-LSB"].product.refs["cube_HRS_H_LSB_1"].product

Extract the antenna temperature information and convert the units of the dataset
cubeTemp = hifiCube['image']
convertedTemp = convertUnits(data = cubeTemp, sourceUnit="K", targetUnit="degC")

Assemble a converted copy of the cube
convertedCube = hifiCube.copy()

395

Unit Conversion Build 15.0.3244

convertedCube['image'] = convertedTemp

Set the units of the product
convertedCube.setFluxUnit(Unit.parse("degC"))

Example 8.10. How to convert an instance of SpectralSimpleCube.

8.3.4. Worked Example: Converting the units of an in-
stance of SimpleImage

The conversion of instances of SimpleImage is very similar to the conversion of a cube perfomed
above. The image data can be converted in one go and the unit is updated afterwards. Usually, the
units of a SimpleImage are composite units of the quantity Surface Brightness (see Table 8.1).

Note

Please note that converting between different Surface Brightness units is not possible be-
cause the relationships between pixels, steradians and beams are instrument-specific. Con-
verting between multiples and sub-multiples of the same unit like Jy/pixel to MJy/
pixel is perfectly possible.

Imports
from herschel.share.unit import *

PACS Photo observation from the PACS photo manual
obsid_v1342182962 = getObservation(obsid = 1342182962, useHsa = True)

SimpleImage present in the observation
simpImg = obsid_v1342182962.refs["level2"].product.refs["HPPPMAPB"].product

Image data
imgData = simpImg.image

In-place conversion from Jy/pixel to MJy/pixel
simpImg.setImage(convertUnits(data = imgData, sourceUnit = "Jy/pixel", targetUnit =
 "MJy/pixel"))

simpImg.setUnit(Unit.parse("MJy/pixel"))

Example 8.11. How to convert an instance of SimpleImage.

396

Build 15.0.3244

Index
A
Adding images, 184
Aladin, 52, 52, 54
Annotation toolbox, 178

generating Jython code , 181
Annotations

on images , 178
on plots, 110, 112

annularSkyAperturePhotometry , 212
Aperture correction, 221
Aperture photometry, 211

annular, 212
centroiding, 211
fixed, 220
on point sources , 212
rectangular, 218
units, 212

ASCII files, 56
adding a header, 85
adding metadata, 85
and FITS files, 56, 56
and source list products, 60
and spectra, 56, 58
and Spitzer spectra, 62
choosing how to separate data values, 86
configuration files for reading, 84
configuration files for writing, 86
defining lines to ignore, 80
formatters, 87

creating and configuring, 90
ignoring white space, 82
parsers, 87

creating and configuring, 89
prefix for commented lines, 86
reading a generic file, 71
reading column names, 80
reading from comma-separated-value files, 67
reading from space-separated-value files, 68
specifying data types, 82
specifying how data are separated, 83
templates, 87

creating and configuring, 88
writing to comma-separated-value file, 72
writing to generic file, 79
writing to space-separated-value file, 73

autoAdjustWindowSize, 95
automaticContour, 194
Auxiliary context, 1
Axis (of a plot), 104, 109
AxisTick, 107
AxisTickLabel, 108
AxisTitle, 106

B
boxCarSmoothing, 187

C
Calibration context, 1
circleHistogram, 196, 200
Clamping images, 182
CLASS

opening Herschel spectra in, 49
Clipping images, 182
Colour map, 177
Combo-fitting, 309
ComboModel, 358
Comma-separated-value file

reading into HIPE, 67
writing a table dataset to, 71

Compass (on images), 179
Configuration file (ASCII files), 58
Contour plots, 194

deleting, 195
Convolving images, 188
Cropping images, 182, 182
CSAT (see Cube Toolbox)
CSV file (see Comma-separated-value file)
CsvFormatter, 90
CsvParser, 89
Cube Spectrum Analysis Toolbox (see Cube Toolbox)
Cube Toolbox, 270

accessing tasks, 286
Cubes, 269

baseline issues, 306
combining PACS and SPIRE full SED, 307
continuum, removing the, 305
coordinates, 271
cropping, 292
displaying, 274

changing axes, 280
changing properties, 280
flags, 283
grid layout, 278
metadata, 284
multiple, 279
overplotting, 277
plot-mouse interactions, 282
real-time spectral display, 277
showing and hiding, 276
zooming and panning, 277

errors, 272
fitting

polynomial to, 323
polynomial+gaussians to, 333
with multi fit, 323

flags, 272
flux maps, 302
flux maps without spectrum fitting, creating, 301
position-velocity maps, 305
printing, 283

397

Index Build 15.0.3244

saving as image, 283
selecting spectra, 286
spectra input, 286
spectra output, 286
spectrum

arithmetics, 293
averaging, 294, 296
flag propagation, 301
flagging, 298
folding, 296
gridding, 296
replacing, 296
resampling, 296
smoothing, 296
statistics, 294
stitching, 296
summing, 296
unit conversion, 300
weight/error propagation, 301

spectrum extraction, 290
over spectral domain, 290
random spaxels, 290

velocity maps, 303
weights, 272

Curve of growth, 213
Cut levels, 177
Cut levels in images, 188

D
Delimiter (ASCII files), 58
dictionary (Jython data structure), 57
Dividing images, 185
DS9, 46, 52, 53

opening Herschel FITS files in, 52

E
ellipseHistogram, 196, 201
Error bars (in plots), 118
Exponential function of an image, computing

base 10, 186
base N, 186
natural, 186

exportSpectrumToAscii, 56, 58, 74

F
FitFringe, 260

running, 260
FITS

header character limit, 46
History extension, 45
importing non-Herschel files into HIPE, 46
keywords, 39
loading Herschel data in external apps, 48
loading products from, 38
multi-extension files in DS9, 46
saving products to, 36
structure of Herschel products, 41

HifiTimelineProduct, 44
PacsRebinnedCube, 43
SimpleImage, 41
SpectralSimpleCube, 42
SpectrometerPointSourceSpectrum, 45

troubleshooting, 46
fitsReader, 38, 46
fitting

making maps
making images, 362

mapping, 362
Fitting spectra, 309
fixedSkyAperturePhotometry, 220
FixedWidthFormatter, 91
FixedWidthParser, 89
flagPixels, 254, 298
flagSaturatedPixels, 188
Formatter (ASCII files), 57, 87

creating and configuring, 90

G
gaussianSmoothing, 187
General Standing Wave Removal Tool, 260
getObservation

browsing an observation online, 15
download a single observation, 13
download multiple observations, 18
loading an observation into HIPE, 20
multiple versions, 16
retrieving observation from disk, 26

H
Herschel Science Archive

browsing an observation online, 14
downloading a single observation, 13
downloading data from, 7
downloading multiple observations, 17
inspecting query results, 11
logging in, 8
querying, 10

hiClass (HIFI task), 49
HifiSpectrumDataset, 243
Histograms

in images , 196
in plots, 119

History, 1
HistoryParameters, 45
HistoryScript, 45
HistoryTasks, 45
HrsSpectrumDataset, 243
HSA (see Herschel Science Archive)

I
IDL

loading Herschel data in, 48
Image analysis, 170

(see also Images)

398

Index Build 15.0.3244

running tasks , 170
imageHistogram, 196
ImageIndex, 271, 272
Images

absolute value , 185
adding, 184
aperture photometry , 211
ceiling, 185
clamping, 182
clipping, 182
colour map , 177
contour plots , 194
converting units , 187
convolving, 188
cropping, 182, 182
cut levels , 177, 188
distances, measuring , 174
dividing, 185
embedding in plots, 121, 122
exponential function

base 10, 186
base N, 186
natural, 186

exporting from HIPE , 172
flagging saturated pixels , 188
flipping Y axis , 174
floor, 185
histograms, 196
importing into HIPE , 171
intensity profiles , 192
logarithm

base 10 , 186
base N , 186
natural, 186

modulo, 185
multiplying, 184
raising to a power , 185
RGB, 189
rotating, 182
rounding, 185
saving, 176
scaling, 183
smoothing, 187
source extraction , 203
source fitting , 210
square root , 186
squaring, 186
stitching, 189
subtracting, 184
translating, 183
transposing, 183
viewing, 173
viewing metadata , 175
zooming, 173

Intensity profiles, 192
IPAC, 70
IRSA, 70

J
java.awt.Color, 104, 108, 113, 126, 126
java.awt.Font, 108, 126

L
Layers (of plots), 94, 97, 98, 99
Level 0, 1
Level 0.5, 1
Level 1, 1
Level 2, 1
Level 2.5, 1
Line styles (for plots), 102
list (Jython data structure), 57
Local pools, 5
Local stores (see Local pools)
Logarithm of an image, computing

base 10, 186
base N, 186
natural, 186

M
manualContour, 194
Masks, 175
medianSmoothing, 187
Metadata

in images , 175
to FITS keywords, 39

multi fit, 323
Multi-fitting, 309
Multiplying images, 184
MyHSA, 4, 21

advanced, 23

N
NaN, 362
Navigator view, 20
Not a Number (see NaN)
Numeric arrays

exporting to ASCII file, 57

O
Observation, 1

browsing online, 14
downloading from the Herschel Science Archive, 7,
13
exporting, 34
loading into HIPE, 19
removing from disk, 35
retrieving from disk, 24
saving to disk, 30
Searching by target name, 28

Observation context, 1
Observation ID

finding, 12
Observation log context, 1
Observing log, 12
obsid (see Observation ID)

399

Index Build 15.0.3244

On-demand reprocessing, 35
Over Plotter, 164

controls and functions, 166
invoking, 164
layout, 164

P
PACS

combining full SED with SPIRE, 307
PACS projected cube, 42
PacsRebinnedCube, 270
Parser (ASCII files), 57, 87

creating and configuring, 89
photApertureCorrectionPointSource , 221
Plots, 94

annotations, 110, 112
auxiliary axes, 116
axes, 104
axis labels, 104
axis methods, 109
axis range, 104
axis thickness, 118
batch mode, 125
classes, 129
colours, 126, 126
creating, 94
drawing lines, 115
embedding images

monochromatic, 121
RGB, 122

error bars, 118
filled areas, 113
fonts, 126
grid lines, 110
histogram mode, 119
invisible, 127
layers, 94, 97, 98, 99
legend, 100
line styles, 102
logarithmic axes, 105
margins, 102
math and special symbols, 124
mouse coordinates, 128
multiple plots, 125
printing, 102
properties, 100

command line, 101
saving, 102
size, 95
styles, 104
subplots, 120
symbol styles, 103
tick marks, 105
ticks, 107

labels, 108
title and subtitle, 95
visibility, 126
worked examples, 129, 138, 155

PlotTitle, 96
polygonHistogram, 196, 202
Pools, 4, 5

Unknown format version, 32
Power Spectrum Generator, 168
Power, raising an image to a , 185
Product Browser, 24, 35

customising results, 27
Products

loading from FITS, 38
removing from disk, 35
retrieving from disk, 35
saving to disk, 31
saving to FITS, 36

Q
Quality context, 1
Quality control report, 11

R
rectangleHistogram, 196, 201
rectangularSkyAperturePhotometry , 218
RegexParser, 89
Regular expression, 58, 90, 92
RGB images, 189

embedding in plots, 122
RgbSimpleImage, 171, 190
Rotating images, 182
Rounding images, 185

S
SAMP, 52

Hub Monitor, 53
SAOImage DS9 (see DS9)
saturated pixels in images, flagging , 188
Save Products tool, 31
saveObservation

and saveProduct, 32
saveProduct, 31
Scale (on images), 179
Scaling images, 183
SED

PACS and SPIRE, combining, 307
SExtractor, 70
Shopping basket, 17
SimpleCube, 270
simpleFitsReader, 38, 46
simpleFitsWriter, 37
Sky intensity plot, 213
SkyMask, 175, 207

SkyMaskCircle, 207
SkyMaskIntersection, 208
SkyMaskRectangle, 207
SkyMaskUnion, 208

SmoothBaseline, 265
running, 265

Smoothing images, 187

400

Index Build 15.0.3244

Source extraction, 203
common problems , 210
customising source circles , 206
filtered map , 205
known sources , 206
point response function , 205

custom, 207
regions of interest , 207
removing sources , 206
source lists in FITS files , 210
source lists in text files , 209

Source fitting, 210
sourceExtractorDaophot, 203
sourceExtractorSussextractor, 203
SourceListProduct, 60, 204

saving as ASCII files, 60
Space-separated-value file

reading into HIPE, 68
writing a table dataset to, 73

Spectra, 243
arithmetics, 255
averaging, 255
baseline smoothing, 265
displaying, 243

changing axes, 247
changing properties, 248
filtering and sorting, 251
flag/mask information, 251
large datasets, 249
multiple, 246
showing and hiding, 244
zooming and panning, 247

exporting to ASCII file, 56, 58, 74
extracting, 253
fitting, 309

cube or multi-spectrum dataset, 313
cube; maps, 339
Gaussians to spectrum, 326
polynomial to baseline/continuum, 316
polynomial to cube, 323
polynomial+gaussians to cube, 333
single spectrum, 311

flag/mask propagation, 259
flagging, 253
folding, 257
gridding, 257
importing from ASCII file, 59
line masking, 265
overplotting, 245
printing, 252
replacing, 257
resampling, 257
saving as image, 252
smoothing, 257
standing wave removal, 260
statistics, 255
stitching, 257
unit conversion, 257

weight/error propagation, 258
Spectral cubes (see Cubes)
SpectralLineList, 243
SpectralSimpleCube, 270, 270
SpectrometerDetectorSpectrum, 243
SpectrometerPointSourceSpectrum, 243
Spectrum Explorer, 243, 270, 274

changing preferences, 283
Spectrum Fitter, 309

adding and initialising models, 341
adding your own model, 360
applying a fit, 346
automatic fit of multiple datasets, 355
automatic fit upon opening, 342
combo model, 358
cubes, 362
deleting and excluding models, 348
fixing parameters, 345
from the command line, 314
inspecting fit results, 346
models, 359
modifying models, 345
NaN handling, 362
obtaining a line integral, 353
resetting and restarting, 348
residuals, 358
saving a script, 349
saving residuals and models, 350
selecting best fitter engine, 362
setting limits to model parameters, 344
setting weights, 342
starting the GUI, 309
using saved models, 354

Spectrum Toolbox, 253, 270
Spectrum1d, 243
SpectrumContainer, 243, 270
SpectrumDataset, 243, 270
SPIRE

combining full SED with PACS, 307
Spitzer

reading spectra into HIPE, 62
Square of an image, computing , 186
Square root of an image, computing , 186
SSV file (see Space-separated-value file)
Stitching images, 189
Storages, 4, 5
Subtracting images, 184
Symbol styles (for plots), 103

T
Table Plotter, 156

controls and functions, 158
invoking, 157
layout, 158

Table template (ASCII files), 58
Tags, 26
Template (ASCII files), 87

creating and configuring, 88

401

Index Build 15.0.3244

Ticks (of a plot axis), 107
labels, 108

Topcat, 52, 54
Translating images, 183
Transposing images, 183
Trend analysis context, 1
tuple (Jython data structure), 57

U
Using IRSA, 12
Using Vizier, 13

V
Virtual Observatory, 52

troubleshooting, 53
VizieR

reading catalogue into HIPE, 64
VO (see Virtual Observatory)
VOSpec, 52, 52

W
WbsSpectrumDataset, 243
WCS (see World Coordinate System)
Workflow, 7
World Coordinate System, 190

402

	Data Analysis Guide
	Table of Contents
	Preface
	1. Conventions used in this manual

	Chapter 1. Data input/output
	1.1. Components of an observation
	1.2. Typical workflow
	1.3. How data are stored on your disk
	1.3.1. Managing storages and pools

	1.4. Getting observations from the Herschel Science Archive
	1.4.1. Logging into the HSA
	1.4.2. Finding observations in the HSA
	1.4.3. Inspecting the query results of an observation
	1.4.4. Finding observation IDs outside the HUI
	1.4.5. Downloading one entire observation
	1.4.6. Browsing an observation in the HSA with known OBSID
	1.4.6.1. Multiple versions of the same observation

	1.4.7. Downloading multiple observations

	1.5. Loading observations downloaded from the HSA into HIPE
	1.6. Managing your HSA downloads
	1.6.1. Advanced configuration

	1.7. Retrieving an observation from disk
	1.8. Customising the Product Browser results
	1.9. How to use the Quick Analysis perspective
	1.10. Saving data (products and observations) to disk
	1.11. Migrating pools across incompatible versions of HIPE
	1.12. Exporting an observation to a colleague
	1.13. Retrieving products from disk
	1.14. Removing data from disk
	1.15. On-demand reprocessing of observations
	1.16. Exchanging data with FITS files
	1.16.1. Saving a product to a FITS file
	1.16.2. Retrieving a Herschel product from a FITS file
	1.16.3. Translation of Herschel metadata to FITS keywords
	1.16.4. Structure of Herschel products when saved as FITS
	1.16.4.1. General information
	1.16.4.2. SimpleImage
	1.16.4.3. SpectralSimpleCube for PACS
	1.16.4.4. SpectralSimpleCube for SPIRE
	1.16.4.5. SpectralSimpleCube for HIFI
	1.16.4.6. PacsRebinnedCube
	1.16.4.7. HifiTimelineProduct
	1.16.4.8. SpectrometerPointSourceSpectrum
	1.16.4.9. The History extension

	1.16.5. Troubleshooting FITS import/export
	1.16.6. Importing a non-Herschel FITS file into HIPE
	1.16.6.1. Using data from other missions and observatories

	1.16.7. Importing a Herschel FITS file into external applications
	1.16.7.1. IDL
	1.16.7.2. CLASS
	1.16.7.3. SAOImage DS9

	1.17. Working with the VO (External Tools)
	1.17.1. Sending products from HIPE to external tools
	1.17.2. Sending products from external tools to HIPE
	1.17.3. Opening VO Tables from HIPE
	1.17.4. Writing tables to files in VO-table XML format

	Chapter 2. Saving data as text files
	2.1. Considerations and concepts for working with text files
	2.2. Worked example: Saving a Spectrum product as a text file
	2.3. Worked example: Saving a SourceListProduct as a text file
	2.4. Worked example: Reading a Spitzer spectrum into a table dataset
	2.5. Worked example: Reading a VizieR catalogue into a table dataset
	2.6. Reading a comma-separated-value (CSV) file into a table dataset
	2.7. Reading a space-separated file into a table dataset
	2.8. Reading an IPAC, SExtractor or Topcat file into a table dataset
	2.9. Reading a generic ASCII table file into a table dataset
	2.10. Writing a table dataset to a comma-separated-values (CSV) file
	2.11. Writing a table dataset into a space-separated-value file
	2.12. Writing a spectrum to an ASCII table file
	2.13. Writing a table dataset to a generic ASCII table file
	2.14. Reading column names from a file
	2.15. Defining which lines to ignore when reading a file
	2.16. Specifying the data types when reading a file
	2.17. Specifying how data values are separated when reading a file
	2.18. Saving and loading a configuration for reading from file
	2.19. Adding a header to an ASCII table file
	2.20. Adding table dataset metadata to an ASCII table file
	2.21. Defining a custom prefix for commented lines
	2.22. Choosing how to separate data values
	2.23. Saving and loading options for writing to file
	2.24. Parsers, formatters and templates
	2.25. Creating and configuring table templates
	2.26. Creating and configuring parsers for reading in data
	2.27. Creating and configuring formatters for writing data
	2.28. Regular expressions

	Chapter 3. Plotting
	3.1. Getting started
	3.2. Creating a plot
	3.3. Customising title and subtitle
	3.4. Managing layers
	3.5. Showing and customising a legend
	3.6. Customising plot properties
	3.6.1. Command line equivalents

	3.7. Setting margins
	3.8. Saving and printing
	3.9. Setting line and symbol styles
	3.10. Customising axes
	3.11. Drawing grid lines
	3.12. Managing annotations
	3.13. Drawing filled areas
	3.13.1. Drawing filled areas between curves

	3.14. Drawing a straight line
	3.14.1. Drawing an arbitrarily-positioned straight line

	3.15. Customising auxiliary axes
	3.16. Changing the thickness of axes
	3.17. Adding error bars
	3.18. Switching to histogram mode
	3.19. Adding subplots
	3.20. Embedding monochromatic images in plots
	3.21. Embedding RGB images in plots
	3.22. Inserting math and special symbols
	3.23. Creating a plot in batch mode
	3.24. Drawing multiple plots per window
	3.25. Colours in plots
	3.26. Methods for colours, fonts and visibility
	3.27. Invisible plots
	3.28. Getting mouse coordinates on plots
	3.29. More on plot methods
	3.30. Worked example: Plot with an image
	3.31. Worked example: Initial plot of this chapter
	3.32. Worked example: Multi-panel plot
	3.33. Worked example: Error bars
	3.34. Worked example: Auxiliary axes
	3.35. Worked example: Histograms
	3.36. Worked example: Styles
	3.37. Worked example: Two plots in one
	3.38. Worked example: Coloured band
	3.39. Worked example: Plot with PACS and SPIRE spectra
	3.40. The TablePlotter
	3.40.1. Invoking TablePlotter
	3.40.2. Layout of the TablePlotter
	3.40.3. Controls and functions

	3.41. The Over Plotter
	3.41.1. Invoke Over Plotter
	3.41.2. Layout of Over Plotter
	3.41.3. Controls and Functions

	3.42. The Power Spectrum Generator

	Chapter 4. Working with images
	4.1. Summary
	4.2. Running image manipulation and analysis tasks
	4.3. Importing and exporting images
	4.3.1. Importing
	4.3.2. Exporting

	4.4. Viewing an image
	4.5. Measuring angular distances
	4.6. Creating masks
	4.7. Viewing metadata and array data associated to an image
	4.8. Saving an image
	4.9. SimpleImage editing
	4.10. Manipulating the axes (cropping, rotating, scaling...)
	4.11. Manipulating fluxes
	4.11.1. Image arithmetics
	4.11.2. Smoothing images
	4.11.3. Converting image units
	4.11.4. Convolving images

	4.12. Flagging saturated pixels
	4.13. Getting cut levels
	4.14. Combining images (stitching, RGB)
	4.14.1. Stitching
	4.14.2. Creating RGB images

	4.15. Defining and using the World Coordinates System (WCS)
	4.16. Creating intensity profiles
	4.17. Creating contour plots
	4.18. Creating histograms
	4.18.1. Histograms via the command line

	4.19. Finding and extracting sources
	4.20. Fitting sources
	4.21. Aperture photometry
	4.21.1. Centroiding
	4.21.2. Units and aperture photometry
	4.21.3. Point sources
	4.21.3.1. Annular sky aperture photometry (annularSkyAperturePhotometry)
	4.21.3.2. Rectangular sky aperture photometry (rectangularSkyAperturePhotometry)
	4.21.3.3. Fixed sky aperture photometry (fixedSkyAperturePhotometry)
	4.21.3.4. Aperture correction

	4.22. Comparing PSFs to point source profiles
	4.22.1. Setting up and getting the data
	4.22.2. Rotate the PSF and match it to the astronomical source
	4.22.3. EEF Curves
	4.22.4. Measuring the sky background scatter on PACS and SPIRE maps
	4.22.5. Fitting the PACS PSF (for SPIRE it will be similar)

	Chapter 5. Spectral analysis
	5.1. Summary
	5.2. Spectra in HIPE
	5.3. How to display spectra
	5.3.1. Showing and Hiding spectra
	5.3.2. Overplotting spectra
	5.3.3. Viewing multiple plots
	5.3.4. Zooming and Panning
	5.3.5. Changing Display Axes
	5.3.6. Changing Plot Properties
	5.3.7. Viewing large datasets
	5.3.8. Filtering and sorting what is viewed
	5.3.9. Viewing Flags/masks and plot information
	5.3.10. Viewing SpectralLineLists
	5.3.11. Printing and saving
	5.3.12. Plotting from the command line

	5.4. Working on Spectra
	5.4.1. Using the Spectrum Toolbox
	5.4.2. Spectral Selection: extraction, and flagging
	5.4.3. Spectrum Arithmetics
	5.4.4. Spectral Averaging and Statistics
	5.4.5. Spectral Manipulation: resampling, smoothing, replacing, gridding, stitching, and folding
	5.4.6. Spectral Unit Conversion
	5.4.7. Finding the integral under a line
	5.4.8. Weight/error and flag/mask propagation

	5.5. Dealing with baseline issues
	5.5.1. General Standing Wave Removal Tool
	5.5.1.1. Introduction to FitFringe
	5.5.1.2. Running FitFringe

	5.5.2. Baseline Smoothing and Line Masking Tool
	5.5.2.1. Introduction to SmoothBaseline
	5.5.2.2. Running SmoothBaseline

	Chapter 6. Spectral analysis for cubes
	6.1. Summary
	6.2. Cubes and the Spectrum Explorer
	6.3. A message about cube coordinates and the WCS
	6.4. A message about errors, weights, flags
	6.5. A quick cube viewer: the Standard Cube Viewer
	6.6. Using the Spectrum Explorer to look at cubes
	6.6.1. Opening the Spectrum Explorer on a cube
	6.6.2. Showing and hiding cube spectra; clearing stubborn spectra
	6.6.3. Zooming and panning
	6.6.4. Real-time spectrum display: preview panel
	6.6.5. (Over)plotting spectra from multiple cubes
	6.6.6. Linking the display of spectra from multiple cubes
	6.6.7. A grid layout of the spectra in a cube
	6.6.8. Viewing in subplots (multiple spectrum plots)
	6.6.9. Standalone plot panel
	6.6.10. Changing display axes
	6.6.11. Changing plot properties and behaviour
	6.6.11.1. Appearance of the plot
	6.6.11.2. Editing the Spectrum panel properties
	6.6.11.3. Editing the axis properties
	6.6.11.4. Editing the plot properties
	6.6.11.5. Editing the layer properties

	6.6.12. A table of the plot—mouse interactions
	6.6.13. Changing your Spectrum Explorer preferences
	6.6.14. Viewing plot information
	6.6.15. Viewing datapoint flags
	6.6.16. Printing and saving
	6.6.17. Creating a new variable from a plotted spectrum
	6.6.18. A meta data list: and how to relate spaxel coordinates to index coordinates
	6.6.19. Filtering what is viewed: not useful for cubes
	6.6.20. Plotting from the command line

	6.7. Working on cubes: the Spectrum and Cube Toolboxes
	6.7.1. How to open the Toolboxes; getting extra help
	6.7.2. Defining the input, looking at the output
	6.7.2.1. Input
	6.7.2.2. Output

	6.7.3. Spectrum extraction and cube cropping
	6.7.3.1. select and extract: spatially and spectrally extract from a cube
	6.7.3.2. Extracting out a single spectrum with the Cube Toolbox and changing the units
	6.7.3.3. Cropping a cube spectrally and spatially with the Cube Toolbox

	6.7.4. Spectrum arithmetics
	6.7.5. Spectrum averaging/summing and statistics
	6.7.5.1. Averaging and statistics via the Spectrum Toolbox tasks
	6.7.5.2. Averaging and summing via the Cube Toolbox and changing the units

	6.7.6. Spectrum manipulation: resampling, smoothing, replacing, gridding, stitching, and folding
	6.7.7. Spectrum flagging
	6.7.7.1. Pre-requisites
	6.7.7.2. Running the task

	6.7.8. Spectrum wave unit conversion
	6.7.9. Weight/error and flag propagation
	6.7.10. Making 2d flux maps from cubes
	6.7.10.1. Integrated flux maps
	6.7.10.2. Gaussian line fit, and moments flux maps

	6.7.11. Velocity maps
	6.7.12. Position-velocity maps
	6.7.13. Removing the continuum from cubes
	6.7.14. Dealing with baseline issues
	6.7.15. Exporting to ASCII or FITS
	6.7.16. Converting units for Cube Toolbox flux maps

	6.8. Combining the PACS and SPIRE full SED for point sources

	Chapter 7. Spectral Fitting
	7.1. Spectrum fitting
	7.1.1. Using the Spectrum Fitter GUI: an overview
	7.1.1.1. Starting the GUI
	7.1.1.2. What you see when the SFG is opened
	7.1.1.3. Procedure to fit to a single spectrum
	7.1.1.4. Procedure to fit a cube or multi-spectrum dataset

	7.1.2. Using the Spectrum Fitter (command-line fitting): an overview
	7.1.3. Fitting tips

	7.2. Worked Example: Fitting a polynomial to the baseline/continuum
	7.2.1. Worked Example: Fitting a polynomial to the baseline/continuum in the command line

	7.3. Worked Example: Fitting a polynomial to a spectral cube (or any multi-spectrum dataset)
	7.3.1. Worked Example: Fitting a polynomial to a spectral cube (or any multi-spectrum dataset) in the command line

	7.4. Worked Example: Fitting Gaussians and a polynomial to a spectrum
	7.4.1. Worked Example: Fitting Gaussians and a polynomial to a spectrum in the command line

	7.5. Worked Example: Fitting multiple lines (Gaussians) and a Polynomial baseline to a cube and making maps of the results
	7.5.1. With the GUI
	7.5.2. On the command line
	7.5.3. Making 2d maps from the fit results

	7.6. Adding and Initialising Models
	7.7. Configuring the Spectrum Fitter GUI to automatically apply a fit upon opening
	7.8. Setting weights
	7.9. Setting limits to model parameters
	7.10. Fixing model parameters
	7.11. Modifying Models
	7.12. Applying a fit
	7.13. Inspecting fit parameter results
	7.14. Deleting models and excluding models from a fit
	7.15. Resetting and restarting fitting
	7.16. Saving a script
	7.17. Saving the residual and models
	7.18. Saving a SpectralLineList
	7.19. Obtaining a line integral
	7.20. Using Saved models
	7.21. Automatic fitting of multiple datasets
	7.22. Continuing work on the residual outside of the Spectrum Fitter GUI
	7.23. Using the Combo Model
	7.24. Models available to the fitter
	7.25. How to add your own model
	7.26. Selecting the best fitter engine
	7.27. NaNs and the Spectrum Fitter
	7.28. Making images from fitting results to cubes: the ParameterCube
	7.28.1. After fitting with the MultiFitter tab of the Spectrum Fitter GUI
	7.28.2. After fitting with the MultiFitter on the command line
	7.28.3. Manipulating the images taken from the ParameterCube.

	7.29. Calculating uncertainty and error after fitting
	7.29.1. Introduction to errors or fitting and confidence
	7.29.2. Practical information for getting the fitting errors in HIPE
	7.29.3. Advanced practical information

	7.30. Troubleshooting and limitations of the fitter

	Chapter 8. Unit Conversion
	8.1. Units in HIPE
	8.2. Built-in units and how to define new ones
	8.2.1. Defining new units

	8.3. How to convert data products units
	8.3.1. Worked Example: Converting the units of an instance of a subclass of Spectrum1d
	8.3.2. Worked Example: Converting the units of an instance of a subclass of Spectrum2d
	8.3.3. Worked Example: Converting the units of an instance of a subclass of SimpleCube
	8.3.4. Worked Example: Converting the units of an instance of SimpleImage

	Index

