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1 Introduction

Despite the success which was achieved during the mission in improving the
accuracy of the star tracker attitude measurements, first on-board [7, 23, 24]
and later on-ground [8], it has been shown that the on-board attitude fil-
ter (upon which the ground-based pointing reconstruction was also based)
is rather poor at following the high-frequency changes in the spacecraft at-
titude (i.e. the spacecraft jitter) [2, 3].1 A new method, the ‘gyro-based
attitude reconstruction’ method, was therefore proposed for combining the
star tracker attitude measurements with the output from the Inertial Refer-
ence Unit (GYR) [9]. As the name implies, this method places much greater
weight on the measurements made by the gyros, using attitude measurements
constructed from star tracker data to provide an absolute reference and to
account for gyro drifts.

Having demonstrated itself to be capable of successfully reducing the
high-frequency components of the Absolute Measurement Error (AME), the
gyro-based method has become the default attitude reconstruction method in
the pipeline software—its predecessor (the application of a simple correction
to the attitude estimated on-board) being now only used under exceptional
circumstances. Nevertheless, the method is not perfect and has its own
limitations, which might have been avoided by the implementation of a more
conventional attitude estimator.2 However, there is no evidence that these
limitations are of any real importance or have compromised the resulting
attitude estimates.3

The gyro-based attitude reconstruction method was first prototyped in
September 2012 by Helmut Feuchtgruber [9] and subsequently implemented

1The consequence of improved star tracker attitude measurements is a reduction in the
bias and low-frequency components of the Absolute Measurement Error (AME). When
the AME is reduced on-board it has the additional effect of simultaneously reducing the
Absolute Pointing Error (APE).

2In August 2013, a more general-purpose estimator (in which low-pass filtered attitude
measurements from the star tracker are combined with high-pass filtered gyro measure-
ments) was prototyped and shown to produce equally-accurate results for the case of
staring observations [24]. Mark Tuttlebee further showed that, by simply retuning the
gains, the on-board filter may be used to produce similar results.

3One limitation is that, when ‘calibrating’ the gyro measurements, only those attitude
measurements close to the reference attitude may be used. Another is that a deterministic
model of the variation of the gyro drift rates must be assumed (the gyro drift rates are
assumed to remain constant over intervals of a fixed length).
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in Jython, as part of the pointing toolbox, by Bart Vandenbussche (March 2013).
My own involvement began in April 2013 during the preparation of the soft-
ware for its first release in HIPE 12.0 (June 2014) and I have since continued
to make further refinements to both the method and its implementation.4

These refinements—many of which were quite substantial—were incorpo-
rated into HIPE 13.0 (March 2015) and HIPE 14.0 (December 2015). To-
wards the end of 2014, Jonathan Cook rewrote the software in Java so that
it could be incorporated into the HCSS auxiliary processors. All changes
which were since made to the Jython version of the software—apart from
those related to the generation of diagnostic output—were also implemented
in the Java version. As of HIPE 15.0, the pointing toolbox invokes the same
software used within the auxiliary processors, the original Jython code being
now no longer used.5

This document serves two main purposes: to provide a detailed descrip-
tion of the gyro-based method (Section 2); and to describe how to use the
standalone version of the software (Section 3). A list of the outstanding is-
sues known to be affecting the latest build of the software is also included
(Section 4).

4Shortly prior to the release of HIPE 12.0, a version of the software which I had
until then been using for testing became the official version. Since that date any errors
introduced into the software can be blamed on the author of this document!

5A consequence of this is that the generation of diagnostic output (and the selection of
the redundant gyro) is no longer available in HIPE 15.
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2 Method

2.1 Improvement of star tracker attitude measurements

Although not truly part of the gyro-based attitude reconstruction method,
the first function of the software is to use data contained in the STR-
specific diagnostics telemetry dataset (AcmsDtmStr), whenever these data
are present, to create a set of improved (often referred to as ‘corrected’) star
tracker attitude measurements.6 For each timestep (typically every 1 s, but
every 0.25 s is also possible) and for each of the stars tracked by the star
tracker, the following information is used:

• yb- and zb-coordinates, strnnPosY and strnnPosZ, of the aberration-
corrected, measured star vector in the Boresight Reference Frame (BRF).
In what follows we will refer to these coordinates as u′yb and u′zb .

• Catalogue ID, strnncatId, of the matched star;

• right ascension and declination, strnnRa and strnnDec, of the matched
star (corrected for proper motion);

• the parameter αc, alpha c nn. This is used to correct the star tracker
focal length according to the colour of the star; see (4).

Typically, the above information is present for up to 9 stars, i.e.
nn ∈ {01, 02, . . . , 09}, but for observations for which interlacing mode was ac-
tive there may be as many as 18 star vector measurements, i.e.
nn ∈ {01, 02, . . . , 18}.7 In the latter case, any measurements for which
nn ∈ {10, 11, . . . , 18} came from the previous ACMS cycle and need to be
handled slightly differently (see Section 2.1.2).

Using these data and the residual distortion maps [see 8], the software
constructs improved measurements of the star directions and these in turn

6In this document the term ‘star tracker attitude measurement’ refers to an estimate
of the spacecraft attitude, i.e. of the Attitude Control Axes (ACA) reference frame, that
is made using data downlinked from the star tracker. It does not refer to a measurement
of the star tracker attitude, i.e. of the Boresight Reference Frame (BRF).

7Unfortunately, due to an error in the definition of version MOC-12 of the Mission
Information Base (MIB), although star tracker interlacing mode was used on-board from
very early in the mission (from at least OD 200), the data associated with this mode did
not become available in telemetry until OD 866 (see HCSS-20596).

http://herschel.esac.esa.int/jira/browse/HCSS-20596
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are used to create improved attitude measurements (replacing those that
were originally produced on-board by the star tracker).

Before explaining in detail how the improved attitude measurements
are created, it is helpful to review the procedure employed on-board the
spacecraft to convert the measured CCD coordinates of each star into an
aberration-corrected, measured star vector, u′.

2.1.1 On-board construction of measured star vectors

The process which was used on-board by the star tracker to convert the
measured CCD coordinates of each star into a geometric (i.e. free from the
effects of stellar aberration), measured star vector can be broken down into
three steps:

1. Correction for star tracker CCD distortion

Let the position of the star on the CCD, as determined by the centroid-
ing algorithm, be (y, z).8 The distortion-corrected coordinates, (y′, z′),
were calculated on-board according to:9

y′ = F (y, z; k0, . . . , k7),

z′ = F (z, y;h0, . . . , h7),
(1)

where

F (u, v; a0, . . . , a7) = a0 + a1u+ a2v + a3u(u2 + v2) + a4u(u2 + v2)2

+ a5u
2 + a6uv + a7v

2,

(2)

and the ai (i = 0, . . . , 7) are real constants. The coefficients k0, k1,
. . . , k7 and h0, h1, . . . , h7 are referred to as the ‘distortion correction
coefficients’ for the y- and the z-axis respectively.10

8The variables y and z correspond respectively to the variables yfcd and zfcd in [4,
p. 83].

9Eqs. (1) and (2) correspond precisely to eqs. (9.2-3) in [4, p. 83], with y′ and z′

replacing y and z, and y and z replacing yfcd and zfcd.
10Three sets of values for the parameters ki and hi were used on-board during the

mission, depending on the Operational Day (OD): (i) OD ∈ {1, 2, . . . , 865} \ {858}: pre-
launch values; (ii) OD ∈ {858} ∪ {866, 867, . . . , 1010} \ {1005}: modified values of k1 and
h1; (iii) OD ∈ {1005} ∪ {1011, 1012, . . . , 1446}: all values modified.
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2. Calculation of the focal length and apparent star direction

The apparent direction of the star with respect to the BRF is given by
the unit vector:11

u =

 f
−y′
−z′

 (f 2 + y′
2

+ z′
2
)−

1
2 , (3)

where the focal length, f , of the star tracker is determined from:12

f ≡ f(f0, αc) = f0[1 + αT(T − T0) + αc]. (4)

f0 represents the nominal focal length of the star tracker at the refer-
ence temperature, T0 = 22 C, and the parameter αc (as obtained from
the entry of the matched star in the on-board star catalogue) is used to
correct the nominal focal length according to the colour of the star.13

For the entire duration of the mission, the coefficient of thermal ex-
pansion of the objective, αT, was set equal to 5.91 × 10−6 C−1 and
the temperature, T , of the star tracker optics (which may found in the
housekeeping telemetry) was found to remain constant at 13.73 C.14

3. Removal of the stellar aberration

Stellar aberration is removed using the classical model [6]. That is, the
(unit) vector in the true (geometric) direction of the star is given by:

u′ = u + u× (u× vs/c)/c, (5)

where vs/c is the spacecraft velocity vector and c is the speed of light.15

Whenever interlacing mode is active there will be star vector measurements
associated with both the current ACMS cycle and the previous ACMS cycle.
Before using the measurements to determine the attitude of the star tracker,
the estimated spacecraft rates are used to propagate (i.e. rotate) those mea-
surements which were made at the previous cycle to the time associated with
the current frame [see 1, pp. 190–191].

11Eq. (3) corresponds precisely to eqs. (9.2-5) in [4, p. 83], with y′ and z′ replacing y
and z.

12See eq. (9.2-1) of [4, p. 82].
13Two values for the nominal focal length, f0, were used on-board during the mission:

f0 = 29.96330 mm (OD < 762), f0 = 29.97178 mm (otherwise).
14See [8, p. 6].
15Since u′ is required with respect to the BRF, the spacecraft velocity vector, vs/c, is

transformed from inertial coordinates to BRF before using eq. (5).
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2.1.2 On-ground processing

The process by which the attitude reconstruction software constructs, at each
timestep (i.e. every 1 s), an improved attitude measurement is the following:

Removal of the on-board distortion correction

The first part of the process is to take each of the (aberration-free) measured
star vectors

u′ =


√

1− (u′yb)2 − (u′zb)2

u′yb
u′zb

 , (6)

(expressed here in the BRF) and to remove the distortion correction that
was applied on-board, thereby recovering the measured position of the star
on the CCD. The detailed steps required are:

1. If interlacing mode is active and the measurement belongs to the set
associated with the previous ACMS cycle, then rotate u′ back to its
(BRF) direction one ACMS cycle earlier.16 That is, if u′t represents the
vector at time t, then:

u′t−∆t = qr(∆t) u′t q
∗
r (∆t), (7)

where

qr(∆t) ≈ qalign

[
ω̂aca ∆t

2

]
q∗align, (8)

qalign is the star tracker alignment quaternion,17 ω̂aca is the estimated

16Interlacing mode is considered to be active whenever the flag strmInterlacStatus

in the main 4Hz ACMS dataset AcmsScmTM is non-zero. It is by default assumed that it is
those star measurements in positions 10–18 which are associated with the previous ACMS
cycle:

In interlaced mode, the star information . . . of stars measured in the last cycle
are presented before the star information measured in the previous cycle and
updated to the current one. [4, p. 38] and [5, p. 36]

17For most of the mission—other than immediately following a star tracker reset—
the operational star tracker was STR-A. The alignment quaternion for this star tracker

is: qalign =
[
0.1953842× 10−3 −0.2993422× 10−1 −0.9995519 0.2061553× 10−4

]T
,

which amounts to a rotation of approximately 180◦ through an axis close to zstr-a [1,
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spacecraft angular velocity vector in the ACA-frame and ∆t = 0.25 s.18

(In (7) and (8) all vectors are expressed, in the usual way, as quater-
nions.)

2. Include the stellar aberration to obtain the apparent star direction:

u = u′ − u′ × (u′ × vs/c)/c. (9)

3. Calculate the distortion-corrected CCD coordinates of the star:19

y′r = f
uy
ux
,

z′r = f
uz
ux
,

(10)

where ux, uy and uz are the three components of u expressed in the
BRF, and the focal length, f , is calculated from (4) using the value of
f0 that was on-board during the OD in question (see footnote 13) and
the value of αc contained in AcmsDtmStr.20

4. Solve

y′r = F1(yr, zr; k0, . . . , k7),

z′r = F1(zr, yr;h0, . . . , h7),
(11)

where

F1(u, v; a0, . . . , a7) =− F (−u,−v; a0, . . . , a7)

=− a0 + a1u+ a2v + a3u(u2 + v2) + a4u(u2 + v2)2

− a5u
2 − a6uv − a7v

2,

(12)

and the coefficients ki and hi are those that were on-board during
the OD in question (see footnote 10), to obtain the measured position
(yr, zr) of the star on the CCD.

p. 77 and p. 602]. Throughout this document, the quaternion q1i + q2j + q3k + q4 will be

represented by the 4-vector
[
q1 q2 q3 q4

]T
.

18The estimated ACA-frame body rates are obtained from estAngVelX, estAngVelY
and estAngVelZ of the AcmsScmTM dataset.

19The subscript ‘r’ has been used to distinguish the variables used in the attitude
reconstruction software from those used on-board.

20Note that eqs. (9.3-2) of [4, p. 84] are incorrect; in each a factor −f is required for
consistency with eqs. (9.2-5).
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The software computes an approximate solution of (11) by means of

yr = F1(y′r, z
′
r; k
′
0, . . . , k

′
7),

zr = F1(z′r, y
′
r;h
′
0, . . . , h

′
7),

(13)

where the coefficients k′i and h′i of these ‘inverse polynomials’ have been
computed so as to remove the distortion corrections applied by (11) [see
8, p. 7 and p. 25]. Despite the seeming lack of theoretical justification
for using polynomials of this form, it has been demonstrated (and in-
depedently verified) that, within the region of the CCD used to track
guide stars (a disc of radius 4.07 mm), the errors introduced by this
method are all less than 0.05′′ [8, p. 7]. An alternative approach is
described in Appendix A.

Setting y′r = −y′ and z′r = −z′ in (10) we obtain equations which are con-
sistent with (3) and then setting yr = −y, zr = −z in (11) we recover (1),
showing that the CCD coordinates used by the attitude improvement soft-
ware are of opposite sign to those used in eq. (9.2-3) of [4, p. 83].21 Although
it is unclear precisely why it was decided to use coordinates of opposite sign,22

this is of no consequence, provided that consistent transformations are used
when re-applying the distortion correction (14) and converting back to a unit
vector (15).

Application of the new distortion correction

Having removed the on-board distortion correction and recovered the mea-
sured position of the star on the CCD, the new distortion correction may be
applied. The new correction consists of replacing (11) by:

y′r = F1(yr − ∆̃yr, zr − ∆̃zr; k0, . . . , k7),

z′r = F1(zr − ∆̃zr, yr − ∆̃yr;h0, . . . , h7),
(14)

21Alternatively, from (3) and (10) we obtain y′r = −y′, z′r = −z′ and then using (11)
and (12):

y′ = F (−yr,−zr; k0, . . . , k7),

z′ = F (−zr,−yr;h0, . . . , h7),

from which, upon comparison with (1), gives yr = −y, zr = −z.
22Perhaps some confusion arose from a failure to notice the sign error in (9.3-2) of [4,

p. 84] (see footnote 20), followed by an attempt to compensate for this error by changing
the sign of all the terms of even degree in the expression for F , i.e. in (2).
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where the values of the distortion correction coefficients, k0, . . . , k7, h0, . . . ,
h7 are those that were on-board between ODs 320–762 (a period which is
referred to as the ‘reference period’ [8, p. 7]).23

The ‘residual distortions’, ∆yr and ∆zr, are obtained from a pair of maps
(one for each axis).24 Each map consists of a 5120× 5120 array, where each
element of the array is identified with a sub-pixel of the CCD (each pixel
having been divided uniformly into 10× 10 = 100 sub-pixels).

The residual distortions have been shown to comprise both local (due to
the location of the sub-pixel within the pixel) and global phenomena. To
reduce the errors present in the local corrections, without unduly affecting
the global corrections, the following averaging is employed. Suppose the star
is found to lie in a particular sub-pixel of pixel (m,n), where 0 ≤ m,n ≤ 511.

Then ∆̃y and ∆̃z are taken to be the median values of the residual distortions
at the corresponding sub-pixel of the 121 pixels centred on pixel (m,n), i.e.
from pixels {(i, j) : m− 5 ≤ i ≤ m+ 5, n− 5 ≤ j ≤ n+ 5}.25

Having applied the new distortion correction, it remains simply to con-
struct the star (unit) vector,

u =

 f
y′r
z′r

 (f 2 + y′r
2

+ z′r
2
)−

1
2 , (15)

where the focal length f is calculated using (4), making sure to use the value
of f0 that was on-board during the reference period,26 and remove the stellar
aberration using (5).

If the resulting measurement u′ belongs to the set associated with the
previous ACMS cycle, then before it can be used in the attitude determi-
nation it needs to be rotated to its (BRF) direction one ACMS cycle later.

23Although a justification for the decision to use this period as the reference period is
given in [8, p. 7], the choice was, in fact, quite arbitrary. The only point of importance is
that values of the distortion correction coefficients and of f0 should be the same as those
that were used when producing the residual distortion maps.

24There are two such pairs of maps: one for the period prior to OD 320 (when the
set-point for the temperature of the star tracker CCD was reduced to -10 C), and one for
the remaining ODs. It is assumed that during each of these periods the distortion of the
CCD remained constant.

25Note that this is not the method described in [8, p. 12]. Note also that the software
includes checks to ensure that the centroid of the star and all the pixels used for this
averaging lie within the operational portion (disc) of the CCD plane.

26The decision to use this value was once again quite arbitrary.
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That is, using the notation introduced earlier,

u′t = q∗r (∆t) u′t−∆t qr(∆t). (16)

Estimation of the star tracker attitude

From the previous two steps we have obtained a set of up to 18 measured
star vectors {u′1,u′2, . . . ,u′n}, n ≤ 18, each in the BRF and each with the
new distortion correction applied.27 (In fact, only stars whose centroid lies
inside the operational region of the field-of-view are used for the attitude
determination. This is a disc, centred on the image of the boresight, of
radius 4.07 mm. That is, all star vectors must be within 7.7◦ of the boresight
direction.) The corresponding (expected) inertial directions {v1,v2, . . . ,vn}
are then easily derived from information which may be extracted from the
star catalogue using the IDs of the matched stars.

The improved estimate of the spacecraft attitude is taken to be the ro-
tation matrix A ∈ SO(3), i.e. the three-dimensional orthogonal matrix with
determinant 1, which minimizes the loss (cost) function

L(A) ≡ 1

2

n∑
i=1

ai|u′i − Avi|2, n ≥ 2, (17)

where the ai are a set of non-negative weights.28 If one adopts the QUEST
measurement model [21], that is, if one assumes that each measured star
vector, u′i, is related to its true direction, u′i,true, by

u′i = u′i,true + ∆u′i,

where the measurement errors, ∆u′i, are mutually independent and normally
distributed random variables

∆u′i ∼ N(0, Ri),

with covariance matrices

Ri = σ2
i (I3×3 − u′i,trueu

′T
i,true), (18)

27It has been found that, for those periods when interlacing mode was active, the rows
of the STR-specific diagnostics telemetry dataset AcmsDtmStr often contain repeated mea-
surements of the same stars. When this is the case, only the first occurrence (i.e. that
corresponding to the current ACMS cycle) is used.

28This problem was first posed, in an unweighted form, by Wahba [25].
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and if, furthermore, one chooses the weights such that

ai =
c

σ2
i

, (19)

where c is some arbitrary constant, then it has been shown [see 18] that
the attitude matrix, A∗, which minimizes the loss function L(A) is also the
maximum likelihood attitude estimate. Equation (18) is equivalent to as-
suming that the error ∆u′i is perpendicular to u′i,true and that it has an
axially-symmetric distribution with variance σ2

i .
To minimize the loss function, Davenport’s q-method is employed. First,

L(A) is rewritten [e.g. 14, p. 360] in terms of the gain function g as:

L(A) = λ0 − g(A), (20)

where λ0 =
∑n

i=1 ai,
g(A) = tr(ABT),

and

B =
n∑
i=1

aiu
′
iv

T
i .

So, to minimize L(A) we must maximize g(A). In Davenport’s method, the
loss function is re-written in terms of the attitude quaternion q, i.e.

L̃(q) = λ0 − g̃(q), (21)

where L̃(q) = L(A(q)) and g̃(q) = g(A(q)), and it is shown that

g̃(q) = qTKq, (22)

where

K =

[
S − I tr(B) z

zT tr(B)

]
,

S = B +BT and z =

B23 −B32

B31 −B13

B12 −B21

.

Applying Lagrange’s “method of the undetermined multiplier” to the
problem of maximizing (22) subject to the constraint qT q = 1, it is easy to
see that our optimal attitude estimate, q̂, is an eigenvector of K and from
(22) it is also clear that it corresponds to the maximum eigenvalue, λmax.
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Having solved the eigenvalue problem and obtained q̂, it remains simply
to multiply q̂ by the appropriate star tracker alignment quaternion, qalign, in
order to obtain an estimate, q̂str, of the ACA-frame attitude based on star
tracker data. That is,

q̂str = q̂ qalign. (23)

Calculation of goodness-of-fit and removal of ‘bad measurements’

Now the value of c in (19) is arbitrary and in the pointing reconstruction
software we have set c = (

∑n
i=1 1/σ2

i )
−1 so as to make λ0 = 1. Furthermore,

we have chosen to weight all the measurements equally, i.e. σ2
i = σ2, so that

ai = 1/n (i = 1, . . . , n).29

In [20] Shuster defines the variable TASTE (for the case where c = 1,
ai = 1/σ2

i ) and shows it to be distributed randomly according to a
χ2-distribution with 2n− 3 degrees of freedom.30 In [19] he provides a more
general definition:

TASTE =
2L(A∗)

λ0 σ2
tot

=
2(λ0 − λmax)

λ0 σ2
tot

, (24)

where σ2
tot = (

∑n
i=1 1/σ2

i )
−1, which makes the result independent of the choice

for c (or equivalently λ0).
For the value of c chosen above, we find that

TASTE =
2n L̃(q̂)

σ2
=

2n (1− λmax)

σ2
. (25)

The variable TASTE provides an indication of the goodness-of-fit: the larger
the value of TASTE, the worse the fit. Assuming our measurement model is
realistic, we expect:

ptaste ≡ Pr{TASTE > val} = 1− P
(

2n− 3

2
,
val

2

)
, (26)

where P is the lower (regularized) incomplete gamma function. If the value
of ptaste is less than the value of prob thresh (see p. 29, Table 2), then an

29The estimation of σ is described in the next section.
30This result, which seems very familiar, is normally only true for least-squares problems

in which the model is linear with respect to the fitted parameters [16, p. 654]. Wahba’s
problem also differs from a standard least-squares problem in that the parameters are
constrained by the attitude belonging to SO(3).



HSC
Doc. no.: HERSCHEL-HSC-TN-2069
Issue: 2.1
Date: 20 October 2016
Page: 15

attempt is made to improve the fit by discarding ‘bad’ star measurements.
The process consists of removing one bad measurement (the worst) at a time
until either ptaste exceeds prob thresh or a total of five measurements have
been excluded. A measurement is considered bad if (and only if) excluding
it from the fit increases the value of ptaste by a factor greater than prob frac

(see p. 29, Table 2 and footnote 47).

Estimation of the measurement uncertainty

Although when estimating the attitude using a given set of star measure-
ments at time ti we assume that all measurements have the same uncertainty
σi, the value of σi is allowed to vary over the course of the observation (i.e.
with i). The basic idea is as follows:

The current best-estimate of the measurement uncertainty σref, i−1 is used
in (25) to estimate the value of TASTE at time ti:

TASTEi =
2ni (1− λmax, i)

σ2
ref, i−1

. (27)

Having eliminated any bad quality measurements, the fit may be assumed to
be good and the resulting value of TASTEi may be used to estimate σi:

σ̂i = σref, i−1

√
TASTEi

2ni − 3
. (28)

This estimate is unbiased but, as the number of measurements is small, the
variance of its error will be large [see 20, pp. 5–7]. To improve the accuracy of
the value used in (27), whilst at the same time permitting the measurement
uncertainty to vary over an observation (as new stars enter and leave the
field-of-view), exponential smoothing is used to effectively implement a very
simple low-pass filter, i.e.

σref, i = α σ̂i + (1− α)σref, i−1, i > 10, (29)

where α is the smoothing factor.31 To initialize the smoother, whilst avoiding
giving too much weight to the first few estimates, a moving average is used:

σref, i =
σ̂i + i σref, i−1

i+ 1
, i = 1, . . . , 10, (30)

31The smoothing factor is nominally set to the value 0.1, but may be modified by means
of the parameter alpha (see p. 29, Table 2).
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where σref,0 is nominally set to 3′′, but may be modified by means of the
parameter measerr init (see p. 29, Table 2).

Calculation of the error covariance matrix

Following Shuster and Oh [21, p. 71], we define the Cartesian attitude
covariance matrix as

Pθθ = E(δθ δθT),

where δθ =
(
δθ1 δθ2 δθ3

)T
and the δθi are the small-angle rotations about

the body (ACA-frame) axes which take the true spacecraft attitude to its
estimated attitude. Transforming the expression obtained in [21] from the
BRF-frame to the ACA-frame we obtain:

Pθθ = σ2Aalign

[
n∑
i=1

(I − u′i u
′T
i )

]−1

AT
align, (31)

where Aalign = A(qalign).32 (As in the section describing the estimation of
the measurement uncertainty, it is assumed that any bad star measurements
have already been eliminated.)

32The expression for the covariance matrix in the BRF follows from eqs. (87) and (99)

of [21, p. 75], where it is also noted that a singular matrix
∑n
i=1(I − u′i u

′T
i ) would signal

a non-unique solution for the optimal quaternion q̂.
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2.2 Gyro-based attitude reconstruction

2.2.1 Derivation of the model

Suppose we wish to estimate the (ACA-frame) attitude of the spacecraft,
qaca(t), at the time, tk, of the k’th gyro measurement. We start by choosing
a reference attitude q0,k such that, for t sufficiently close to tk, the rota-
tion between q0,k and qaca(t), i.e. the angular rotation represented by the
quaternion

q(k)
r (t) ≡ q∗0,k qaca(t), (32)

is small (∗ denotes the conjugate operation).33

Suppose q
(k)
r (t) corresponds to the rotation θ(k)(t) about the unit vector

e(k)(t). Dropping the explicit references to t and k, we may write

qr =

[
ex sin

θ

2
ey sin

θ

2
ez sin

θ

2
cos

θ

2

]T

, (33)

where ex, ey and ez are the components of e with respect to the q0,k reference

frame. For small θ, we may approximate sin
θ

2
by

θ

2
and cos

θ

2
by 1, so that

qr =

[
θx
2

θy
2

θz
2

1

]T

+ O (θ2), (34)

where θx = θ ex, θy = θ ey and θz = θ ez, and the kinematic equations of
motion [e.g. 26, p. 512]

dqr

dt
=

1

2
Ω qr, Ω =


0 ωw −ωv ωu
−ωw 0 ωu ωv
ωv −ωu 0 ωw
−ωu −ωv −ωw 0

 ,
33To achieve this, calcGyroAttitude sets q0,k = q̂

(m)
str , where q̂

(m)
str is the estimate of

the ACA-attitude based on the star tracker data at time t
(m)
s and m = max{i : t

(i)
s ≤ tk},

whenever it is found that the rotation represented by q∗0,k q̂
(m)
str exceeds a certain threshold,

which the User may specify by means of the input parameter ref thresh. In addition, it
is ensured that only good quality attitude measurements are used as the reference attitude
(if the initial attitude measurement is of bad quality—which may indicate that it could
not be estimated—then the on-board attitude estimate is used).
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become:

θ̇x = ωu +
1

2
[ωw θy − ωv θz] + O (θ2),

θ̇y = ωv +
1

2
[ωu θz − ωw θx] + O (θ2),

θ̇z = ωw +
1

2
[ωv θx − ωu θy] + O (θ2),

(35)

where ωu, ωv and ωw are the components of the angular velocity vector in
the body-fixed (i.e. ACA) reference frame and clearly θ =

√
θ2
x + θ2

y + θ2
z .

The determination of the body rates, ωu, ωv and ωw, from the rates, ω1,
ω2, ω3 and ω4, about each of the four gyro axes is an overdetermined problem.
We may either disregard the measurements from one of the gyros, using them
instead as a check on the quality of the measurements from the other three,
or, as is currently performed in the pointing reconstruction software, find the
least-squares solution.34 That is,

ωuωv
ωw

 = G+


ω1

ω2

ω3

ω4

 , (36)

where G+ = (GTG)−1GT is the Moore-Penrose pseudoinverse of the gyro
alignment matrix G.35

Substituting (36) in (35) and neglecting terms of degree one in θ,36 we

34It is argued in HCSS-19121 that it might be preferable to follow the method that was
used on-board and disregard the measurements from one of the four gyros.

35For the nominal (pre-launch) alignments, we have G = 1√
3


−1 −1 1

1 −1 1
1 −1 −1
−1 −1 −1

 and

G+ =
√
3
4

 −1 1 1 −1
−1 −1 −1 −1

1 1 −1 −1

 [1, pp. 599–600].

36Writing θ = θ e and ω =
[
ωu ωv ωw

]T
, (35) become

θ̇ = ω +
1

2
θ × ω + O (θ2).

http://herschel.esac.esa.int/jira/browse/HCSS-19121
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obtain θ̇xθ̇y
θ̇z

 = G+


ω1

ω2

ω3

ω4

 . (37)

Now, the Inertial Reference Unit (GYR) provides measurements of the in-
tegrated angular rotations, φ1, φ2, φ3 and φ4, of the spacecraft about each
of the four gyro axes (from some unknown time). If we assume that their
derivatives are related to the true rates about these axes by

φ̇i = ki ωi + bi, i = 1, . . . , 4,

where ki are the (known) scale factors and bi are the (unknown) drift rates,37

then (37) becomes

θ̇x = ψ̇x + bx,

θ̇y = ψ̇y + by,

θ̇z = ψ̇z + bz,

(38)

where ψxψy
ψz

 ≡ G+


φ1/k1

φ2/k2

φ3/k3

φ4/k4

 and

bxby
bz

 = −G+


b1/k1

b2/k2

b3/k3

b4/k4

 . (39)

Next, we assume that a value T be chosen such that the variation in the
gyro drift rates (and hence in bx, by and bz) is negligible within the interval
Ik ≡ [tk − T/2, tk + T/2].38 For t ∈ Ik, equations (38) can then be integrated

So neglecting the linear term in θ introduces an error in θ̇ of magnitude θ̇err, where

θ̇err

θ̇
≈ |θ × ω|

2 |ω|
≤ θ

2
.

For example, for θ = 1◦, θ̇err/θ̇ < 0.01.
37The function calcGyroAttitude reads the values of ki from the ACMS product meta-

data.
38 The appropriateness of using this ‘constant drift rate’ model remains to be investi-

gated. (Alternative models, such as one in which the gyro drift rates vary linearly with
the time, could be easily implemented.) The window length, T , is specified by the input
parameter wind len, the default value for which is currently 400 s; see [9, p. 7] and [24,
p. 68].



HSC
Doc. no.: HERSCHEL-HSC-TN-2069
Issue: 2.1
Date: 20 October 2016
Page: 20

to give:

θx(t) = ψx(t) + bx (t− tk) + cx,

θy(t) = ψy(t) + by (t− tk) + cy,

θz(t) = ψz(t) + bz (t− tk) + cz,

(40)

where cx, cy, cz are constants of integration.
Equations (40) constitute the model used to relate the small rotations,

θx, θy and θz, from the reference attitude q0,k to three angles, ψx, ψy and ψz,
derived from the gyro output.

2.2.2 Estimation of the model parameters

To find (estimate) the parameters in (40) we make use of the improved at-
titude estimates constructed from the star tracker data (see Section 2.1).
Measurements of ψx, ψy and ψz are combined with measurements of θx, θy
and θz and a least-squares fit is performed.

Let tb and te be the start and end times of the observation and suppose
that within the interval Ik ∩ [tb, te] we have ng measurements of the angles

ψx, ψy and ψz at times t
(1)
g , . . . , t

(ng)
g , i.e.

{(ψ(i)
x , ψ

(i)
y , ψ

(i)
z ) : i = 1, . . . , ng},

and ns good quality measurements of the angles θx, θy and θz at times t
(1)
s ,

. . . , t
(ns)
s ,39 i.e.

{(θ(i)
x , θ

(i)
y , θ

(i)
z ) : i = 1, . . . , ns}.

Since tk ∈ Ik, we may without loss of generality suppose that

tk = t(l)g , (41)

39 To allow the timing of the star tracker measurements to be synchronized with that of

the gyro measurements, an offset set is first added, i.e. t
(i)
s = t̃

(i)
s + toff star, where t̃

(i)
s

is the time of the measurement created by calcStrAttitude and toff star is an input
parameter which may be specified by the User. It is noted that when assigning the time
to each attitude measurement the function calcStrAttitude subtracts 0.805 s from the
record time associated with the particular set of star unit vectors. Therefore, the total

offset is in fact toff star − 0.805 s. The measurements θ
(i)
x , θ

(i)
y and θ

(i)
z are considered

to be of good quality whenever the ptaste associated with the improved attitude estimate

q̂
(i)
str, see (26), is greater than the value of the input parameter prob thresh.
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for some 1 ≤ l ≤ ng.

To obtain the measurements, θ
(i)
x , θ

(i)
y , θ

(i)
z , from the reference attitude

q0,k and the improved attitude estimate q̂
(i)
str we simply use (32) and (34), i.e.[

θ
(i)
x

2

θ
(i)
y

2

θ
(i)
z

2
1

]T

= q∗0,k q̂
(i)
str. (42)

In doing this we are approximating sin
θ(i)

2
by

θ(i)

2
(see p. 17) and so introduc-

ing errors of up to 2

∣∣∣∣sin θ(i)

2
− θ(i)

2

∣∣∣∣ =
(θ(i))3

24
+ O ([θ(i)]5), i.e. approximately

0.006′′ (θ(i) = 0.5◦), 0.05′′ (θ(i) = 1◦) and 0.4′′ (θ(i) = 2◦). To ensure that
these systematic errors do not corrupt the results, any measurement for which
the rotation, θ(i), from the reference attitude is greater than the parameter
rot limit is not used in the fitting.40

Typically there are four times as many measurements of ψx, ψy and ψz
as of θx, θy and θz, i.e. ng ≈ 4ns, and the times {t(i)g : i = 1, . . . , ng} and

{t(i)s : i = 1, . . . , ns} do not ‘coincide’. Moreover, the noise on the star tracker

measurements, and hence on θ
(i)
x , θ

(i)
y and θ

(i)
z , is far greater than that arising

from the gyro measurements. It follows that, to combine the two sets of
measurements, it is appropriate to interpolate the measurements ψ

(i)
x , ψ

(i)
y ,

ψ
(i)
z to the times {t(i)s : i = 1, . . . , ns} of the star tracker measurements. For

this, the software uses linear interpolation, i.e.

ψ̃(i)
x =

ψ
(j+1)
x [t

(i)
s − t(j)g ] + ψ

(j)
x [t

(j+1)
g − t(i)s ]

t
(j+1)
g − t(j)g

, t(j)g ≤ t(i)s < t(j+1)
g ,

and similarly for ψ̃
(i)
y and ψ̃

(i)
z .

Using this set of 3ns measurements with the model (40), we obtain the

40This is achieved by assigning the measurement a zero weight when solving (45) and
incrementing the number, nd, of discarded measurements.
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following linear regression equations:

θ
(1)
x − ψ̃(1)

x

θ
(1)
y − ψ̃(1)

y

θ
(1)
z − ψ̃(1)

z

· · ·
θ

(ns)
x − ψ̃(ns)

x

θ
(ns)
y − ψ̃(ns)

y

θ
(ns)
z − ψ̃(ns)

z


=



t
(1)
s − tk 1 0 0 0 0

0 0 t
(1)
s − tk 1 0 0

0 0 0 0 t
(1)
s − tk 1

· · · · · · · · · · · · · · · · · ·
t
(ns)
s − tk 1 0 0 0 0

0 0 t
(ns)
s − tk 1 0 0

0 0 0 0 t
(ns)
s − tk 1




bx
cx
by
cy
bz
cz

+



ε
(1)
x

ε
(1)
y

ε
(1)
z

. . .

ε
(ns)
x

ε
(ns)
y

ε
(ns)
z


,

which we write, more concisely, as

y = X β + ε. (43)

The error term, ε, is assumed to have a (conditional) mean of zero and
(conditional) variance given by the block diagonal matrix:

Ω = diag(P
(1)
θθ , . . . , P

(ns)
θθ ),

where P
(i)
θθ is the Cartesian attitude covariance matrix of measurement i,

computed according to (31).
To find the best linear unbiased estimate of β (i.e. of the parameters bx, cx,

. . . , bz, cz) we minimize, with respect to β, the cost function J(β) = εT Ω−1 ε,
i.e. we use the generalized least-squares method. Since Ω is symmetric and
positive definite, the Cholesky decomposition may be used to write Ω = LLT,
where L is lower triangular. Setting y∗ = L−1 y, X∗ = L−1X and ε∗ = L−1 ε,
it follows that

J(β) = (y −X β)T Ω−1 (y −X β)

= (Ly∗ − LX∗ β)T (LLT)−1 (Ly∗ − LX∗ β)

= (y∗ −X∗ β)T (y∗ −X∗ β)

= (ε∗)T ε∗,

and the problem becomes one of ordinary least-squares. Our estimate of β
may thus be found by solving the normal equations

[(X∗)TX∗] β̂ = (X∗)Ty∗. (44)
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Instead of solving (44), the software assumes that the off-diagonal elements

of P
(i)
θθ are negligible.41 Ω and L then become diagonal and equations (44)

decouple to give:

(XT
x Xx)

[
b̂x
ĉx

]
= XT

x yx,

(XT
y Xy)

[
b̂y
ĉy

]
= XT

y yy,

(XT
z Xz)

[
b̂z
ĉz

]
= XT

z yz,

(45)

where

Xx =


(t

(1)
s − tk)/σ(1)

x 1/σ
(1)
x

(t
(2)
s − tk)/σ(2)

x 1/σ
(2)
x

· · · · · ·
(t

(ns)
s − tk)/σ(ns)

x 1/σ
(ns)
x

 , yx =


(θ

(1)
x − ψ̃(1)

x )/σ
(1)
x

(θ
(2)
x − ψ̃(2)

x )/σ
(2)
x

· · ·
(θ

(ns)
x − ψ̃(ns)

x )/σ
(ns)
x

 ,
σ

(i)
x =

√
P

(i)
θθ [1, 1] and similary for Xy, yy, σy and Xz, yz, σz.

42

2.2.3 Calculation of the goodness-of-fit

Solving (45) is equivalent to minimizing the cost functions:

Jr(br, cr) =

(
yr −Xr

[
br
cr

])T(
yr −Xr

[
br
cr

])
, r ∈ {x, y, z}. (46)

If our model (40) accurately reflects reality and if the measurement errors
are as expected, i.e. if the (normalized) errors contributing to the right-hand
sides of (46) come from the standard normal distribution (see Appendix C),
then it follows that each Jr(b̂r, ĉr) will come from a chi-squared distribution
with ns−nd− 2 degrees of freedom [16, p. 654].43 That is, the probability of
obtaining a value of the minimized cost function which exceeds χ2

r(b̂r, ĉr) is

pr ≡ Pr{min{Jr} > Jr(b̂r, ĉr)} = 1− P

(
ns − nd − 2

2
,
χ2
r(b̂r, ĉr)

2

)
, (47)

41The impact of making this simplification is investigated in Appendix B.
42P

(i)
θθ [j, k] indicates the jkth component of P

(i)
θθ .

43Remember that nd is the number of discarded measurements (see footnote 40).
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where r ∈ {x, y, z} and P once again denotes the lower (regularized) incom-
plete gamma function.

The three p-values, px, py and pz, may be interpreted as the likelihoods,
given the data, associated with the each of the three sets of estimated param-
eters {b̂x, ĉx}, {b̂y, ĉy} and {b̂z, ĉz}. However, what we require is the likelihood
that all three sets of parameters are simultaneously correct. To achieve this
we use Fisher’s method [11, pp. 103–105] and calculate the value of the test
statistic

T = −2 ln(px py pz). (48)

It may be easily shown that T has a chi-squared distribution with 6 degrees-
of-freedom, so that the combined p-value is

pcomb’d = 1− P
(

3,
T

2

)
. (49)

2.2.4 Computation of the new attitude estimate and its uncertainty

Assuming the quality of fitting, as indicated by pcomb’d, is good, (40) and
(41) may be used to obtain estimates of the small-angle rotations at time tk,
i.e.

θ̂r(tk) = ψ(l)
r + ĉr, , r ∈ {x, y, z}. (50)

Then from (34),

q̂(k)
r (tk) =

[
θ̂x(tk)

2

θ̂y(tk)

2

θ̂z(tk)

2
1

]T

, (51)

and, finally, from (32),

q̂aca(tk) = q0,k q̂(k)
r (tk). (52)

Let θ̃x,k, θ̃y,k and θ̃z,k be the errors in the small angle rotations at time tk. In
passing from (44) to (45) we have ignored the coupling between these errors
and so we are now unable to compute E[θ̃x,k θ̃y,k], E[θ̃x,k θ̃z,k] and E[θ̃y,k θ̃z,k].
However, the expected variances of the errors in cx, cy and cz are still available
and may be readily obtained from the diagonal elements of the Cartesian
attitude covariance matrix contain, i.e.

E[θ̃2
r,k] = E(c̃2

r) = (XT
r Xr)

−1[2, 2], r ∈ {x, y, z}. (53)
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These elements may then be used to create confidence regions in which the
true attitude is believed to lie. In Appendix B, an elliptical confidence region
for the direction of the spacecraft x-axis is calculated, both using the full,
coupled system of equations and the decoupled system. For the particular
dataset studied, the difference was found to be very small.
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3 How to use the software

To obtain a pointing product containing the attitudes reconstructed by the
gyro-based method, use calcAttitude. This task may be either selected and
run from the task view or called from the command line:

newpp = calcAttitude (oldpp, acmsProduct, tcHistoryProduct,
[prob thresh = . . . , prob frac = . . . ,
star set = . . . , measerr init = . . . , alpha = . . . ,
ref thresh = . . . , wind len = . . . , rot limit = . . . ,
toff star = . . . , excl gyro = . . . ])

By calling first calcStrAttitude and then calcGyroAttitude, the task
calcAttitude takes the information contained in the ACMS telemetry prod-
uct, acmsProduct, and uses the method described in Section 2 to estimate
the ACA-frame attitude at a sequence of times spanning the period of the
original pointing product, oldpp.44 It then creates a new copy, newpp, of
the pointing product and augments this with the newly estimated attitudes
and the associated quality and accuracy information. To do this, the task
loops through the lines of the pointing product and replaces each of the
attitude quaternions in the column labeled filterQuat with the newly-
estimated attitude, q̂aca(tk), associated with the closest matching time, tk.
The related quality and accuracy information are written to the columns
labelled gyroAttProbX, gyroAttProbY, gyroAttProbZ and gyroAttSigmaX,
gyroAttSigmaY, gyroAttSigmaZ respectively. To indicate that this has been
performed, the flag in the column labelled filterQuatFlag is set equal to
0. If, for some time tk, the gyro-based method was unable to estimate the
attitude, then the quaternion in the column labeled filterQuat and the
flag in the column labelled filterQuatFlag are left unchanged. Irrespec-
tive of whether the values in column filterQuat are overwritten, the old
attitude quaternion—which is that computed by the on-board filter (with or
without the simple focal length correction)—is copied to the column labelled
simpleCorrFilterQuat.

44As explained in Section 2.2, the gyro-based method reconstructs the attitudes at the
times associated with the gyro measurements. Although these times are very similar to
the OBT times in the pointing product, they do not match exactly (see also Section 4,
HCSS-19201). The TC history product, tcHistoryProduct, is also required as it contains
the spacecraft velocity vector which is needed in the aberration correction.



HSC
Doc. no.: HERSCHEL-HSC-TN-2069
Issue: 2.1
Date: 20 October 2016
Page: 27

A summary of the columns in the pointing product associated with the
gyro-based attitude reconstruction is given below in Table 1; for a complete
description of all the columns, see [17]. In addtion, calcStrAttitude accepts
a number of optional input parameters; these are described in Table 2.

Column Field Units Description
1 obt µs On-board time.
3 filterQuat None Reconstructed ACA-frame attitude

quaternion. Iff filterQuatFlag = 0, then
filterQuat contains q̂aca(tk), where tk is
the time of the closest gyro measurement.

19 gyroAttProbX None Quality associated with x-axis fit,

i.e. Pr{min{χ2
x} > χ2

x(b̂x, ĉx)}.45

20 gyroAttProbY None Quality associated with y-axis fit,

i.e. Pr{min{χ2
y} > χ2

y(b̂y, ĉy)}.
21 gyroAttProbZ None Quality associated with z-axis fit,

i.e. Pr{min{χ2
z} > χ2

z(b̂z, ĉz)}.
22 gyroAttSigmaX arcsec. Standard deviation of error in gyro-based

reconstructed attitude about ACA-frame

x-axis, i.e.
√

E[θ̃2
x,k].

46

23 gyroAttSigmaY arcsec. Standard deviation of error in gyro-based
reconstructed attitude about ACA-frame

y-axis, i.e.
√

E[θ̃2
y,k].

24 gyroAttSigmaZ arcsec. Standard deviation of error in gyro-based
reconstructed attitude about ACA-frame

z-axis, i.e.
√

E[θ̃2
z,k].

25 filterQuatFlag None Flag indicating nature of attitude
in filterQuat field.
(0 = gyro-based method,
1 = simple focal length correction,
2 = on-board filter)

Table 1: Relevant columns of pointing product

45See p. 23, eq. (47).
46See p. 24, eq. (53).
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Parameter Class Description
oldpp PointingProduct Original pointing product, i.e.

obs.auxiliary.pointing where obs is an
observation context.

acmsProduct AcmsTelemetryProduct ACMS telemetry product, i.e.
obs.auxiliary.acms where obs is an
observation context.

tcHistoryProduct TeleCommandHistProduct TC history product, i.e.
obs.auxiliary.teleCommHistory where
obs is an observation context.

newpp PointingProduct New pointing product.
prob thresh Double Probability threshold used for deciding when

fit to determine star tracker attitude is bad
(optional, def. value = 1.0× 10−4); see p. 14.

prob frac47 Double Probability factor used in ‘bad star’ test
(optional, default value = 100.0); see p. 15

star set Int Controls which stars are used to determine
attitude: 0 = all, 1 = first nine, 2 = last
nine (optional, default value = 0)

back prop Int Controls which stars are back-propagated
prior to amendment of distortion correction:
0 = all, 1 = first nine, 2 = last nine
(optional, def. val. = 2); see foot. 16, p. 8.

measerr init Double Initial estimate of star vector measurement
error σref,0 (optional, default value = 3.0′′);
see p. 16.

alpha Double Smoothing factor α for low-pass filtering
of estimated measurement error (optional,
default value = 0.1); see footnote 31, p. 15.

ref thresh Double The reference attitude is updated whenever
it is found to differ by more than ref thresh
(arcsecs.) from the ‘current’ star tracker
attitude measurement (optional, default
value = 100.0); see p. 17, footnote 33.

47The calcStrAttitude header gives this parameter’s name as prob fac, which would
have been a more appropriate name!
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wind len Double The nominal length (in seconds) of the
interval used to estimate the parameters in
the least-squares fits (optional, default value
= 400.0); see p. 19, footnote 38.

rot limit Double Attitude measurements which differ by more
than rot limit (deg.) from the reference
attitude are excluded from the fitting
(optional, default value = 0.5); see p. 21.

toff star Double Time offset (in seconds) used to synchronize
the star tracker attitude measurements with
the gyro measurements (optional, default
value = 0.189); see p. 20, footnote 39.48

excl gyro49 Int Number of the gyro from which
measurements are to be excluded. If set
equal to zero, or any integer other than
{1,2,3,4}, then measurements from all four
gyros are used (optional, def. value = 0).

debug50 Int Set equal to 1 for additional output
(optional, default value = 0).

strAttitude TableDataset Contains corrected attitude measurements
(from star tracker); see Table 3.

status Int Return status from calcStrAttitude
(0 = success, otherwise error). See function
header for further details.

gyroAttitude TableDataset Contains reconstructed attitude; see Table 4.
Table 2: Input and output parameters

48The default value for toff star is based upon the value which was estimated in [13]
for being optimal for the now-defunct parameter toff gyro; see HCSS-19454 for further
details.

49The excl gyro option is no longer available in HIPE 15.
50The debug option is no longer available in HIPE 15.

http://herschel.esac.esa.int/jira/browse/HCSS-19454
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Before using the attitudes computed by the gyro-based method, it is ad-
vised that the User first checks the quality of the results. For example, a plot
for observation 1342197884 of the probabilities found in columns 19–21 (Fig-
ure 1) indicates that the method was successful and that the reconstructed
attitudes, as shown by the blue curves in Figures 2–4, are likely to be of good
quality.51 (The combined probability, pcomb’d, when plotted is indistinguish-
able from the value 1.) The 1-σ uncertainties about the spacecraft axes are
shown in Figure 5.

Figure 1: Quality plot (each axis) – 1342197884

51For this particular observation—in fact for much of OD 389—the attitudes from the
gyro-based method are in closer agreement with those from the on-board filter than with
the ‘simple-corrected’ attitudes. It is known that the ‘simple-corrected’ attitudes are likely
to be inaccurate whenever interlacing mode was active; see HCSS-19870.

http://herschel.esac.esa.int/jira/browse/HCSS-19870
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Figure 2: Right ascension – 1342197884
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Figure 3: Declination – 1342197884
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Figure 4: Roll – 1342197884
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Figure 5: 1-σ uncertainties – 1342197884
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Prior to the resolution of HCSS-19267 in August 2015, there appeared
to be a problem with the pointing reconstruction for certain observations
such as 1342227764 (see HCSS-19398). Figure 6 shows that, apart from
during a short ∼1000 s interval when interlacing mode was inactive, the
quality appears to be very poor. For this observation (as, unfortunately, for

Figure 6: Quality plot (prior to build 2689) – 1342227764

all observations prior to OD 866)52 a maximum of nine stars are available
in the AcmsDtmStr dataset and it appears that when interlacing mode was
active the stars that are present are not the best nine. The problem was
therefore that we were assuming the (mean) star vector measurement error
to be 2.9′′ whereas, for much of this observation, the error was actually far
worse (see Figure 7). Now that the software has been modified to estimate
(and then use) the measurement error/uncertainty, the quality indicator no
longer indicates there to be a problem (Figure 8). The presence of the lower

52See p. 5, footnote 7.

http://herschel.esac.esa.int/jira/browse/HCSS-19267
http://herschel.esac.esa.int/jira/browse/HCSS-19398
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Figure 7: Estimated star vector measurement error – 1342227764

accuracy measurements is instead seen in the uncertainties associated with
the reconstructed attitude (Figure 9).
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Figure 8: Quality plot (from build 2689 onwards) – 1342227764
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Figure 9: Quality plot (from build 2689 onwards) – 1342227764
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To investigate cases such as this, additional output from the attitude
reconstruction may sometimes be useful. This may be obtained by calling
the functions calcStrAttitude and calcGyroAttitude directly and setting
the debug flags,53 i.e.

(strAttitude, status) = calcStrAttitude (oldpp, acmsProduct,
tcHistoryProduct,
[prob thresh = . . . , prob frac = . . . ,
star set = . . . , back prop = . . . ,
measerr init = . . . , alpha = . . . ,
debug = 1])

if (status == 0):

gyroAttitude = calcGyroAttitude (oldpp, acmsProduct, strAttitude,
[ref thresh = . . . , wind len = . . . ,
rot limit = . . . , toff star = . . . ,
prob thresh = . . . , excl gyro = . . . ,
debug = 1])

The first call produces a table, strAttitude, containing the corrected at-
titude measurements made by the (operational) star tracker. These are
then passed to the function calcGyroAttitude, which produces a table
gyroAttitude containing the reconstructed attitude. Again, a full descrip-
tion of the various input and output parameters for these two calls is given
in Table 2.54

As an example, the quality of the attitude measurements produced by
calcStrAttitude may be examined by means of the probabilities found in
column 11 (prob taste) and column 38 (prob taste old) of strAttitude

(see Table 3). The first corresponds to the measurements produced after ap-
plying the new distortion correction and the second to measurements created
using the uncorrected star vectors. Comparing plots of these quantities for
observation 1342197884 the improvement achieved is clear (Figures 10 and
11).

53As of HIPE 15.0, this is no longer possible (see p. 4 of the Introduction).
54Unlike calcAttitude, this does not produce a new pointing product, but it has the

advantage that the time stamps of the quaternions are slightly more accurate (see Section 4,
HCSS-19201).
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Figure 10: Quality of attitude measurements – 1342197884
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Figure 11: Quality of uncorrected attitude measurements – 1342197884
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Column Name Type Units Description
1 obt Double1d(*) µs On-board time.
2 newmeas q Double2d(*, 4) None New (corrected) measurement of

ACA-frame attitude quaternion.
3 newmeas ra Double1d(*) deg. New (corrected) measurement of

right ascension of ACA-frame x-axis.
4 newmeas dec Double1d(*) deg. New (corrected) measurement of

declination of ACA-frame x-axis.
5 newmeas roll Double1d(*) deg. New (corrected) measurement of

roll about ACA-frame x-axis.
6 newstr q Double2d(*, 4) None New (corrected) measurement of

STR-frame attitude quaternion.
7 newstr ra Double1d(*) deg. New (corrected) measurement of

right ascension of STR-frame x-axis.
8 newstr dec Double1d(*) deg. New (corrected) measurement of

declination of STR-frame x-axis.
9 newstr roll Double1d(*) deg. New (corrected) measurement of

roll about STR-frame x-axis.
10 TASTE Double1d(*) None Value of TASTE variable from

attitude determination.
11 prob taste Double1d(*) None Probability, ptaste, of such a large

value of TASTE occurring at
random; see p. 14, eq. (26).

12 num bad Int1d(*) None Number of stars excluded from
attitude determination.

13 badStars Int2d(*, 2) None IDs of excluded stars (if any).
14 nStarsUsed Int1d(*) None Number of stars used in attitude

determination.
15 sigma x Double1d(*) arcsec. Standard deviation of error about

ACA-frame x-axis.
16 sigma y Double1d(*) arcsec. Standard deviation of error about

ACA-frame y-axis.
17 sigma z Double1d(*) arcsec. Standard deviation of error about

ACA-frame z-axis.
18 rho yz Double1d(*) None Correlation coefficient between errors

about ACA-frame y- and z-axes.
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19 rho xz Double1d(*) None Correlation coefficient between errors
about ACA-frame x- and z-axes.

20 rho xy Double1d(*) None Correlation coefficient between errors
about ACA-frame x- and y-axes.

21 obmeas q Double2d(*, 4) None On-board measurement of
(debug) ACA-frame attitude quaternion.

22 obmeas ra Double1d(*) deg. On-board measurement of right
(debug) ascension of ACA-frame x-axis.

23 obmeas dec Double1d(*) deg. On-board measurement of
(debug) declination of ACA-frame x-axis.

24 obmeas roll Double1d(*) deg. On-board measurement of roll
(debug) about ACA-frame x-axis.

25 oldmeas q Double2d(*, 4) None Uncorrected measurement of
(debug) ACA-frame attitude quaternion.55

26 oldmeas ra Double1d(*) deg. Uncorrected measurement of right
(debug) ascension of ACA-frame x-axis.

27 oldmeas dec Double1d(*) deg. Uncorrected measurement of
(debug) declination of ACA-frame x-axis.

28 oldmeas roll Double1d(*) deg. Uncorrected measurement of roll
(debug) about ACA-frame x-axis.

29 rot ob q Double2d(*, 4) None Quaternion giving rotation of new
(debug) attitude measurement with respect

to on-board attitude measurement.
30 rot ob x Double1d(*) arcsec. ACA-frame x-axis component of new

(debug) attitude measurement with respect
to on-board attitude measurement.

31 rot ob y Double1d(*) arcsec. ACA-frame y-axis component of new
(debug) attitude measurement with respect

to on-board attitude measurement.
32 rot ob z Double1d(*) arcsec. ACA-frame z-axis component of new

(debug) attitude measurement with respect
to on-board attitude measurement.

33 rot old q Double2d(*, 4) None Quaternion giving rotation of new
(debug) attitude measurement with respect

to uncorrected attitude measurement.

55‘Uncorrected’ means computed on-ground using the measured star vectors in (6).
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34 rot old x Double1d(*) arcsec. ACA-frame x-axis component of new
(debug) attitude measurement with respect

to uncorrected attitude measurement.
35 rot old y Double1d(*) arcsec. ACA-frame y-axis component of new

(debug) attitude measurement with respect
to uncorrected attitude measurement.

36 rot old z Double1d(*) arcsec. ACA-frame z-axis component of new
(debug) attitude measurement with respect

to uncorrected attitude measurement.
37 TASTE old Double1d(*) None Value of TASTE variable from

(debug) attitude determination giving
oldmeas q.

38 prob taste old Double1d(*) None Probability, ptaste, of such a large
(debug) value of TASTE (that in TASTE old)

occurring at random; see p. 14,
eq. (26).

Table 3: Contents of strAttitude
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Column Name Type Units Description
1 obt Double1d(*) µs On-board time, tk, of gyro

measurement.
2 gyratt q Double2d(*, 4) None Reconstructed ACA-frame

attitude quaternion, q̂aca(tk).
3 gyratt ra Double1d(*) deg. Reconstructed right ascension

of ACA-frame x-axis.
4 gyratt dec Double1d(*) deg. Reconstructed declination of

ACA-frame x-axis.
5 gyratt roll Double1d(*) deg. Reconstructed roll about

ACA-frame x-axis.
6 prob x Double1d(*) None Quality associated with x-axis fit,

i.e. Pr{min{χ2
x} > χ2

x(b̂x, ĉx)},
see eq. (47), p. 23.

7 prob y Double1d(*) None Quality associated with y-axis fit,

i.e. Pr{min{χ2
y} > χ2

y(b̂y, ĉy)},
see eq. (47), p. 23.

8 prob z Double1d(*) None Quality associated with z-axis fit,

i.e. Pr{min{χ2
z} > χ2

z(b̂z, ĉz)},
see eq. (47), p. 23.

9 sigma x Double1d(*) arcsec. Standard deviation of error in
gyro-based reconstructed attitude
about ACA-frame x-axis, i.e.√

E[θ̃2
x,k], see eq. (53), p. 24.

10 sigma y Double1d(*) arcsec. Standard deviation of error in
gyro-based reconstructed attitude
about ACA-frame y-axis, i.e.√

E[θ̃2
y,k], see eq. (53), p. 24.

11 sigma z Double1d(*) arcsec. Standard deviation of error in
gyro-based reconstructed attitude
about ACA-frame z-axis, i.e.√

E[θ̃2
z,k], see eq. (53), p. 24.

12 maxrot ref Double1d(*) deg. Maximum rotation—over the
(debug) interval used for the estimation—

of the star tracker measurements
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from the reference attitude.
13 num meas Int1d(*) None Number of measurements used in

(debug) the fit (for each axis).
14 drift x Double1d(*) arcsec./s Estimated (gyro) drift rate about

(debug) ACA-frame x-axis.
15 drift y Double1d(*) arcsec./s Estimated (gyro) drift rate about

(debug) ACA-frame y-axis.
16 drift z Double1d(*) arcsec./s Estimated (gyro) drift rate about

(debug) ACA-frame z-axis.
17 sig dr x Double1d(*) arcsec./s Standard deviation of error in

(debug) estimated (gyro) drift rate about
ACA-frame x-axis.

18 sig dr y Double1d(*) arcsec./s Standard deviation of error in
(debug) estimated (gyro) drift rate about

ACA-frame y-axis.
19 sig dr z Double1d(*) arcsec./s Standard deviation of error in

(debug) estimated (gyro) drift rate about
ACA-frame z-axis.

Table 4: Contents of gyroAttitude
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4 Summary of known issues

Below is a summary of the issues known to affect the versions of the main
‘pointing toolbox’ functions contained in build 3342 of HIPE 14.0:
CalcAttitudeTask (version 1.10), calcStrAttitude (version 1.37) and
calcGyroAttitude (version 1.31).56 For further details, click on the ‘issue
key’ to follow the link to the JIRA page describing the issue.

Table 5 provides an overview of the issues and attempts to classify them
according to the likelihood of the User encountering the problem and the
severity of the problem if encountered.

Issue key Likelihood of problem Severity
Unlikely (0), Probable (1), No impact (0), Minor (1),

HCSS-... Very likely (2), Always (3) Moderate (2), Major (3)
19121 0–1 2
19122 1 2
19200 3 0
19201 0–1 3
20065 2 1–2

Table 5: Overview of issues

HCSS-19121

The Moore–Penrose pseudoinverse, G+, of the gyro alignment matrix
(see p. 18) is being used in (39) to perform a least-squares fit and con-
vert the four integrated gyro rates into three small-angle rotations. The
function calcGyroAttitude currently does not check to see whether
the output from the four gyros is consistent.

HCSS-19122

The software which is used to compute the star tracker CCD distortion
maps compares the measured coordinates of each detected star with its
expected coordinates. However, instead of using the best estimate of
the spacecraft attitude to transform the catalogue coordinates of each
star from the inertial reference frame to the Boresight Reference Frame
(BRF), the software which produced the maps currently in use by the

56This build was delivered on 22 December 2015, but the last change to the gyro-based
pointing reconstruction software was made on 1 October 2015.

http://herschel.esac.esa.int/jira/browse/HCSS-19121
http://herschel.esac.esa.int/jira/browse/HCSS-19122
http://herschel.esac.esa.int/jira/browse/HCSS-19200
http://herschel.esac.esa.int/jira/browse/HCSS-19201
http://herschel.esac.esa.int/jira/browse/HCSS-20065
http://herschel.esac.esa.int/jira/browse/HCSS-19121
http://herschel.esac.esa.int/jira/browse/HCSS-19122
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pointing reconstruction software used the attitude estimated using the
‘reference period’ parameters (i.e. the parameters which were on-board
between ODs 320–762). The map generation software was modified in
July 2014 to use an iterative approach and new distortion maps were
generated [see 10]. However, these maps are still not being used by the
pointing reconstruction software.

HCSS-19200

The creation date added by calcAttitude to the meta data of the new
pointing product is not the date when the product was created.

HCSS-19201

The function calcAttitude overwrites the fields filterQuat, which
contain the attitude quaternions from the on-board filter, with the atti-
tude quaternions from the ground-based attitude reconstruction. Since
the OBTs in the pointing product are left unmodified and since they
do not correspond exactly with those found in the output table from
calcGyroAttitude, each quaternion is overwritten with the quater-
nion corresponding to the closest matching time. Typically, the times
match to within a few microseconds, but, as no test is performed, the
mismatch may be larger. (Times differing by as much as 1.5 seconds
have been observed.)

HCSS-20065

A suggestion to improve the performance of a particularly slow block
of code in calcStrAttitude.

http://herschel.esac.esa.int/jira/browse/HCSS-19200
http://herschel.esac.esa.int/jira/browse/HCSS-19201
http://herschel.esac.esa.int/jira/browse/HCSS-20065
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A Inversion of distortion correction equations

A.1 Using a modified Newton method

A simple and very effective way of inverting the system of algebraic equations
(11), which avoids completely the necessity of having to estimate new sets of
coefficients for the distortion correction polynomials, is to set y0 = y′, z0 = z′

and to iterate using:57

yi+1 = y′ + yi − F1(yi, zi; k0, . . . , k7),

zi+1 = z′ + zi − F1(zi, yi;h0, . . . , h7).
(54)

Writing (11) as

g1(y, z) ≡ F1(y, z; k0, . . . , k7)− y′ = 0,

g2(y, z) ≡ F1(z, y;h0, . . . , h7)− z′ = 0,
(55)

Newton’s method gives:(
yi+1

zi+1

)
=

(
yi
zi

)
−
[
∂(g1, g2)

∂(y, z)

]−1

(yi,zi)

(
g1(yi, zi)
g2(yi, zi)

)
=

(
yi
zi

)
−
[
J11 J12

J21 J22

]−1

(yi,zi)

(
F1(yi, zi; k0, . . . , k7)− y′
F1(zi, yi;h0, . . . , h7)− z′

)
,

(56)

where

J11 = k1 − 2 k5y − k6z + k3(3y2 + z2) + k4(5y4 + 6 y2z2 + z4),

J12 = k2 − k6y − 2 k7z + 2 k3yz + 4 k4yz(y2 + z2),

J21 = h2 − 2h7y − h6z + 2h3yz + 4h4yz(y2 + z2),

J22 = h1 − h6y − 2h5z + h3(y2 + 3 z2) + h4(y4 + 6y2z2 + 5z4).

(57)

We see therefore that the intuitive scheme (54) corresponds to the approxi-
mation J11 = J22 = 1, J12 = J21 = 0. In general, the quadratic convergence
exhibited by Newton’s method is lost when one approximates the (inverse)
Jacobian by a constant matrix and only linear convergence can be expected
[12, pp. 109–110]. However, it appears that in the problem under consider-
ation the approximation is sufficiently accurate that little of the quadratic

57For the sake of clarity the subscript ‘r’ on yr, zr, y
′
r and z′r has been dropped here.
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convergence is lost. That is, it has been found that two iterations of (54)
are sufficient to match the accuracy of the current method and that a third
iteration reduces the errors to below 0.0001′′.

A.2 Using power series

Berrighi claims that the solution of (1), or equivalently for our purposes (11),
will exist in the form of Taylor series and that the “same level of accuracy”
can be obtained by truncating these series at degree five [4, p. 84].58

In an attempt to justify this, rewrite (11) as:

gi(y, z; y
′, z′) = 0, i = 1, 2.

The implicit functions g1 and g2 are polynomials and hence analytic in y, z,
y′ and z′. Equations (57) show the value of the Jacobian determinant at the
origin to be ∣∣∣∣∂(g1, g2)

∂(y, z)

∣∣∣∣
y=z=0

= |k1h1 − k2h2| ≈ |k1h1|.

Since this determinant is non-zero, as may be easily verified from the values
found for the distortion correction coefficients, and the solution satisfies the
conditions

gi(0, 0; k0, h0) = 0, i = 1, 2,

it follows from the theory of analytic implicit functions [e.g. 15, ch. 6] that y
and z may be solved as power series of the form

y =
∞∑

i,j=0

cij(y
′ − k0)i(z′ − h0)j,

z =
∞∑

i,j=0

dij(y
′ − k0)i(z′ − h0)j,

(58)

where the cij and dij are real constants and c00 = d00 = 0.
A formal solution may be obtained by the method of undetermined coef-

ficients and Cauchy’s method of majorants may then be used to show that

58The second statement is understood to mean that the errors incurred in truncating the
power series solution at the terms of degree five is negligible compared with the accuracy
of the distortion correction model (a system of polynomials of degree five).
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these series converge for sufficiently small y′−k0 and z′−h0. However, with-
out further analysis, there is no guarantee that these series converge over the
entire range of values corresponding to the star tracker’s CCD and Berrighi’s
claim regarding the level of accuracy that may be achieved by truncating the
series at the terms of degree five would seem to be entirely unjustified.
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B Ignoring the inter-axis correlation of the

measurement errors

The attitude measurement errors about the spacecraft x-axis are known to
be highly correlated with those about the y- and z-axes. The effect of ig-
noring this correlation and using the decoupled equations (45) has been in-
vestigated using the data set for observation 1342197884 at on-board time
1654553791.038719 s. This is a data set for which the fits were found to be
of good quality; see Figures 12–14.
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Figure 12: Least-squares fit of x-axis measurements
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Figure 13: Least-squares fit of y-axis measurements
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Figure 14: Least-squares fit of z-axis measurements
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(a) Attitude estimate

Table 6 compares the estimates of the three parameters cx, cy and cz.
59 It can

Full equations Decoupled equations
ĉx -39.304118 -39.304121
ĉy 28.700927 28.700929
ĉz -58.697253 -58.697259

Table 6: Estimates of cx, cy and cz (arcseconds).

be seen that the use of the decoupled equations has a negligible effect on the
estimated attitude. For each of the three spacecraft axes the simplification
introduces an error of less than 0.00001′′.

(b) Confidence regions

As noted in Section 2.2.4, for the decoupled problem, the expected vari-
ances of the errors in cx, cy and cz are provided by (XT

x Xx)
−1[2, 2], . . . ,

(XT
z Xz)

−1[2, 2]. For the full, coupled problem we may obtain the full co-
variance matrix for these errors by extracting the even rows and columns
of:

E[(β − β̂)(β − β̂)T] = [(X∗)T X∗]−1 = [XT Ω−1X]−1.

For the dataset in question, the values so obtained are shown in Table 7.

Full equations Decoupled equations
E[c̃2

x] 0.331572324300 0.331572325830
E[c̃2

y] 0.002357191189 0.002357191195

E[c̃2
z] 0.002749527116 0.002749527124

E[c̃y c̃z] -0.000054237934 –
E[c̃x c̃z] 0.011613113893 –
E[c̃x c̃y] -0.001651280255 –

Table 7: Elements of formal covariance matrix (arcseconds2).

To obtain confidence regions for the attitude errors (about the y and z
spacecraft axes) we project the regions in β-space defined by J(β) = constant

59The estimates of bx, by and bz are of little interest as they are not used to reconstruct
the attitude.
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on to the cycz-plane.60 If the measurement errors are normally distributed
(see Appendix C), then the resulting elliptical boundaries for the attitude
errors θ̃y and θ̃z are related to the formal covariance matrix by:61

(
θ̃y θ̃z

)( E[c̃2
y] E[c̃y c̃z]

E[c̃y c̃z] E[c̃2
z]

)−1(
θ̃y
θ̃z

)
= ∆, (59)

where the value of ∆ depends on the confidence level (e.g. ∆ = 2.30 for a
68.3% level and ∆ = 11.8 for a 99.7% level). Writing(

E[c̃2
y] E[c̃y c̃z]

E[c̃y c̃z] E[c̃2
z]

)−1

= P−1DP,

where P =

(
cosα sinα
− sinα cosα

)
and D =

(
d1 0
0 d2

)
, we find (using the values in

Table 7) that α = 7.73◦, d1 = 425.6 arcsec.−2 and d2 = 362.7 arcsec.−2 for the
full equations and that α = 0, d1 = 424.2 arcsec.−2 and d2 = 363.7 arcsec.−2

for the decoupled equations. That is, the error ellipse is approximately circu-
lar (it has an eccentricity of just 0.04) and the result of using the decoupled
equations, as opposed to the full equations, introduces errors in the direc-
tions and magnitudes of its principal axes of approximately 7.7◦ and 0.15%
respectively.62 (At the 99.7% confidence level, the error ellipse has principal
axes of lengths 0.33′′ and 0.36′′.)

(c) Goodness-of-fit

For the full problem, there are 3(ns − nd) equations and 6 estimated pa-
rameters. Therefore the p-value associated with the goodness-of-fit is given

60Since the instrument boresights are aligned closely with the spacecraft x-axis, the
attitude error about the x-axis will have little effect on the pointing error. To include this
error we would instead project on to the cxcycz subspace.

61See [16, pp. 690–693].

62Setting

(
θ̃′y
θ̃′z

)
= P

(
θ̃y
θ̃z

)
, (59) may be rewritten as

d1
∆
θ̃′2y +

d2
∆
θ̃′2z = 1, showing that the

ellipse has principal axes of lengths 2

√
∆

d1
and 2

√
∆

d2
. Assuming without loss of generality

that d1 > d2, the ellipse has eccentricity

√
d1/d2 − 1√
d1/d2 + 1

.
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by:

pfull ≡ Pr{min{J} > J(β̂)} = 1− P

(
3(ns − nd)− 6

2
,
J(β̂)

2

)
, (60)

where P is the lower (regularized) incomplete gamma function. For the
decoupled equations, the p-values, px, py and pz, associated with the three
least-squares fits are obtained from (47) and then combined according to (48)
and (49). For our test dataset, the computed p-values are shown in Table 8.
Taking into account that the least-squares problems being solved are slightly
different, the agreement between the combined p-value and that for the full
problem is acceptable.

x-axis y-axis z-axis Combined (Fisher) Full
p-value 0.557 0.965 1.000 0.975 1.000

Table 8: Goodness-of-fit p-values.
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C Normality of the measurement errors

To investigate the assumption that the measurement errors are normally dis-
tributed we look instead at the distribution of the normalized residuals for
the dataset used in Appendix B .63 Figures 15–17 compare the empirical (cu-
mulative) distribution functions, Sx, Sy and Sz, of the normalized residuals
from each of the three single-axis fits, with the distribution function, F , for
the standard normal distribution.
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Figure 15: CDF of normalized x-axis residuals

To test the assumption (our null hypothesis) that the normalized residuals
were drawn from a standard normal distribution, we calculate the
Kolmogorov-Smirnov statistic

D = max
−∞<u<∞

|Sr(u)− F (u)|, r ∈ {x, y, z},

where F (u) = [1 + erf(u/
√

2)]/2. Assuming the null hypothesis to be true,
the probability of obtaining a value of the test statistic which exceeds the

63Each residual is normalized by dividing it by the standard deviation of the expected
error in the corresponding measurement.
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Normalized y-axis residual
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Figure 16: CDF of normalized y-axis residuals

observed value, Dobs, may be approximated by:

Pr{D > Dobs} = 2
∞∑
j=1

(−1)j−1e−2j2(D∗)2 ,

where D∗ = (
√
N + 0.12 + 0.11/

√
N)D and N = 400 is the number of

residuals.64 The results, shown in Table 9, lead us to accept, at the 5%
significance level, the hypothesis that the residuals are normally distributed.
However, as it is known that the Kolmogorov-Smirnov test is fairly insensitive

Axis K-S statistic Dobs Pr{D > Dobs}
x 0.035 0.71
y 0.039 0.57
z 0.064 0.07

Table 9: Results from Kolmogorov-Smirnov test.

to deviations from F (u) which occur away from the median value of u, it

64See [16, pp. 617–620]. The modified test statistic D∗ was first introduced in [22].
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Normalized z-axis residual
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Figure 17: CDF of normalized z-axis residuals

might be advisable to repeat the test using an alternative statistic, such as
Kuiper’s.
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