Scripting Guide

Version 11.0, Document Number: HERSCHEL-HSC-DOC-0517
10 April 2017

Build 15.0.3262

Scripting Guide

Build 15.0.3262

Table of Contents

PrEFBCE . e et XVii
1. Scripting and JythON DBSICScccuuiiiii e 1
1.1, GELLING SEAEAeeeeeeie ettt 1
1.1.2. Why scripting With HIPE?ooiiiiii e 1
1.1.2. TeSting COMMANGSuuneiieiieieeii ettt ettt e e e e e eeeees 1
1.2.3. Writing YOUr firSt SCIIPE ...eeevvieeeieii e e 1
1.2.4. RUNNiNG YOUF FIrSE SCHPL «....ueiiiei et 2
1.1.5. Where to go from her@? ... 2

1.2, Jython, Python and JAVEAccuuuiiiiiiiieii e 2
1.3. Writing commands iNteraCtiVElYooeiiiiiiiiiii e 3
L4, WIITING @ SCIIPE - ettt ettt e e e e ere s 4
1.5. Variables and variable tyPeSeiiiiiieece e 4
1.5.1. More on comMplex NUMDENSuiiiiiieee et 5
1.5.2. Java variable tYPESiieiii e 5
1.5.3. The range of Jython NUMENC tYPESueveeiineiiiii e 6
1.5.4. Other variable tyPeScooeueieieii e 7

1.6. Getting help on Variables ..o 7
1.7. Defining and mModifying SIHNGScccvuneiiiiieeiii e e e 8
1.7.0. JAVA SIING TYPES ettt ettt ettt e e et e e et e e e at e e e e een 9

1.8, FOrMELtING SINQS .. evveeieiti ettt ettt ettt et e et et e e e eba s 9
1.9. Converting between variable typesccoouiiiiiiii 10
1.9.1. Converting between Java and JythOn tyPesuuvevviiiiiieiiiiineeeiiieeeenenn 11

1.10. Lists, dictionaries and tUPIESuieeniiiiie e 12
1.11. Creating and mMOdifying lISIScc.uuiiiiiiiieii e 12
1.12. Concatenating lists and tUPIEScouuiiiiiiii e 13
1.13. Accessing iStS @nd tUPIEScieeiieee e 13
1.14. Creating and modifying diCtionNariesovevieiiieiiiiiie e 14
1.15. ACCESSING AiCHIONAITES ...ttt 14
1.16. NeStiNG diCtiONAITESuuieiiii ettt e e et e eeeae e eees 15
127, COUE BIOCKS ... 15
1.18. Writing branching code: if/elif/elSe ..o 16
1.19. Writing loops: for and WhIleiiiiiiiiii e 16
1.20. Controlling loops: break and CONtINUEcoouviiiiiiiiiieci e 17
1.21. Writing [00ps in the COoNSOIE VIEWcoevuiiieiiiiie e 18
1.22. Printing t0 the SCreeNuu i 18
1.23. Writing StringS t0 fIlE ..oovuneiii e 19
1.24. Reading Strings from fil ... 19
1.25. Writing numeric valueS to fileooiiiii i 20
1.26. Reading numeric valuesS from file ..o 20
127, FUNCLIONS ...ttt ettt ettt e e et e et e e na e eenan s 20
1.28. Executing HIPE tasks from YOUr SCIPLSueviiriieeieiii e 22
1129, ClBSSES .. iett ettt ettt ettt ettt et e e e aee 23
1.30. Creating and USING ClaSSESciiirii ittt et 23
1.30.1. Printing ODJECEScevuniiiiiiieeieei ettt ettt 24

1.31. Naming conventions for classes and variablescciiieiiiiiiiiiiiii e 25
1.32. Creating aliases for class and function NAMEScoevviiiiiiiiniiii e, 25
1.33. IMPOrting MOQUIESuiiiiiii ettt e e e e e e e e e eeees 25
1.33.1. Importing, reloading and unimporting your own modulescccc..ec... 27

1.34. Understanding pipeling SCrPLSovveueiiiiiiie et 29
1.35. Accessing files and dir€CLONEScvveven e 29
1.36. Adding simple dialogue WiNAOWScoouuiiiiiiiiieecii e 30
1.36.1. Dialogue boX With MESSAgEuiiiiiiiiiiiiii e 30
1.36.2. Dialogue box with text input fieldccooiviiiiii e 31
1.36.3. Dialogue box asking Yes/N0 qQUESEIONcc.uuieiiiiiiieiiiii e 32

1.37. Pausing and debugging SCIPLS .. .ccvevumeeieiiiee ettt e e 33

Scripting Guide Build 15.0.3262

1.38. Interoperating with external SOftwarecocouieiiiiiiiii i 33
1.39. Developing VErSION-aWare SISvuuueiiiieiieeei e et e e e e e e et e et e e e e e e e eeaanns 34
O S o 1 o TS] o] = 35
1.41. IDL to HIPE command MaPPiNg ... ccuueerriereieeiieeeiiieeieeetnieesieeeneesinsesaneeennns 36
1.42.1. Idl to JythON MEPPINGueeeeeiii e e e e e e e een 36

2. Arrays, datasets and ProdUCEScouuiiiiieii e e e e e e e e 40
2.1. HIPE-SPECIfiC data SITUCIUIEScvuiiiie e e e e e e e e e e e 40
A N[0 40 o T - Y= P 40
2.2.1. Crealing @N @TAY ..cceueeeieeeie e e e eie e e e e e e e e e et e e et e e e e et e e et eeaneeaes 41
2.2.2. INSPECHING QN @ITAY ..vuevvnieeiieeei e et e e e e e e e e e e e et e e et eaan e eanns 41
2.2.3. INSPECLING @ COMPIEX @ITAY ...evvneeiieeiieeeiiie e e e e e e e e e e e e e e e eaanas 42
2.2.4. MOGIfYING @N @ITAY ...evvneiiiieeie e e e e e r e e e eeans 42
2.2.5. Ordering of array &lementscooooiiiiii e 43
2.2.6. Numeric array arthmeticcccoooiii i 44
2.2.7. Selecting and filtering array ValUESccvviiiiiiiiii e, 44
2.2.8. Using logical operators With arrayscocccvveeiiiiiiiieiin e 46
2.2.9. Removing infinite and NaN values from arraysccooeeviieiiiieiinnennnnn, 47
2.2.10. Advanced tips for improved performanceccoooeviiieiiieciiin e, 47
P25 N T Y/ o Tl o0 01V = o T 48

G AN (- VA0 - = < T 49
2.3.1. Creating an array dafaSetccuvieiiinieiiieeeie e e e e e 49
2.3.2. Modifying an array dataSetccouiiiiiiiiiiii e 50
2.3.3. Inspecting an array dataSelcoeevnieiiieiiii e 50

R - o (N0 o = = £ PPN 50
2.4.1. Creating atable datasetocvvviiiiiiiei e 50
2.4.2. Modifying atable datasetcccooviiiiiiiiiii 51
2.4.3. Copying atable dataset into anotherc.oveviiiiiii i 52
2.4.4. Inspecting atable datasetcccviviiiieiiii e 52

A O00] 11100 1S L (=0 - 6= = . b T 52
2.5.1. Creating a COMPOSITE ataSetccvvuiiiiieiiiieiie e 52
2.5.2. Modifying a composite dafasetccuveiiiiiiiiciie e 53
2.5.3. Inspecting a compOSIte AataSELcccvuieiinieiiiieeii e e e e e 53

2.6. MEBSUrEMENE UNITS ..oevvtieiiiii et it eeeeii e e et e e et e e e s e e e et s e e e et s e e e aaanneaennenas 53
2.6.1. Creating and asSigniNg UNISccuuieiiiieiiii e ee e e e e e e e 54
2.6.2. Obtaining derived UNISoiiiiiiii e e e e e 55
2.6.3. Converting units to and from StriNGSccovieiiiieeii e 55
2.6.4. Converting unitsto other UnitS..........coocoiiiiiiiiin e, 56
2.6.5. Comparing units for compatibilityccoooiviiiiiiiii e, 56
2.6.6. Comparing units for eqUIVaIENCEcccuiiiiiiiiiiec e 56
2.6.7. Obtaining physical and mathematical constantscc.ccceeevviveiiieeennnnnn. 57

W Lo - - L 57
2.7.1. Modifying MELAdatalcvvveeii e 57
2.7.2. INSPECtiNG MELAHAIAcvvueiii e e e e 58

P2 S R = o [FTox £ PP 58
2.8.1. Creating @ ProOUCEccvuueiie e e e e e e e e e e e e e e et e eeaneeeees 58
2.8.2. MOdifying @ produCtveiiiiiiie i e 59
2.8.3. Setting date and time in product metadataccooeviviiiieii i, 59
2.8.4. INSPECING @ PrOUUCE .. .ccvvieiii e e e e e e e e e aens 60
2.8.5. PrOGUCE COMEEXES ..vvvvneiiiiiiet ittt s e e e e e e e eai e e et eeeeeanns 60
2.8.6. ODSErVALiON CONTEXESuiiiiiiiieeieiie e et e e et e e et e e et e e e eeae e e eereaeaees 60
2.8.7. PrOAUCE NISLOMY ...uiieieii e e e e aens 60

3. Spectra and SPECLral CUDESciiiiii e 62
3.1. Spectrum containers and SEGMENESu.ivinieiiieeiieeeiie e e e e e e e e e eanaas 62
TS o= o1 €U o 1o 62
3.2.1. Creating a SPeCtrumLdccovuiiiiii i 63
3.2.2. Accessing data from a Spectrumldcoooeviiiiiiiiiiin e, 64

TGS o= 1 (U 0 172o 66
3.3.1. Creating a SPECIrUM2dcevuiiiii e 67

Scripting Guide Build 15.0.3262

3.3.2. Accessing data from a Spectrum2dcooeviiieiiii i, 68

S g0 =S o= U o P 69
3.5. SPECLral SIMPIECUDEceee i e e 70
3.5.1. Creating a SpectralSImpleCUubeccviiiiiiiiii e, 70
3.5.2. Accessing data from a Spectral SImpleCubecoovviiviiieeiiiccieee e, 70

3.6. Instrument-specific spectral ProduCtScooeeviiiiiiiiiii e 72
4. The World Coordinate SYSIEMccuuiiiiieee e e e e e e e e e e e et eeanaaees 74
4.1. Assigning a World Coordinate System to imagesand Cubescccoeevevneeennnnnnn, 74
4.2. Correcting the astrometry of YOUr dafal...........ceceuiiiiiieiiiieciiie e 77
5. The NUMEIC lIBrary ..o 79
5.1. Numeric functions and lambda eXpressionsovevvieeiiiiiiiiecie e 79
5.2. BASIC FUNCIIONS ..ottt e et e e e e e e e eaa e eeees 80
5.3, Integral tranSfOrMS ... ciii i e 8l
ST I PSPPI 82
B.3.2. FFT _PACK ittt 82
5.3.3. Sdlecting the right Fourier transformccoovviiiiiiineie e, 84
5.3.4. Inverse Fourier transformsoooviuiiiiiii e 84
5.3.5. NOMMEIZALONeiiiiiieeeees et eaanns 85

5.4, POWEE SPECITUIM L.eit it e e e e e e e e e e e e aeen 86
ST o 01V o] U 11 o) [PPRTPRI 87
5.6. Boxcar and Gaussian filltersooouuiiiiiii i 88
LI A8 14111 oo = 1 o 88
N T 1T 0o o = - SN 89
5.8.1. General approaCheiiiiiii i 89
5.8.2. Available [inear MOEISuuiiiiiiiiiii e 91
5.8.3. Available non-linear MOCEISccovviiiiiiiiiii e 92
5.8.4. Compound and mixed MOElSoevvuiiiiiiiiiie e 93
5.8.5. Avalable fitlers .. .coiuuiiiiii e 93
5.8.6. Setting the fitter toleranCeoovvviiiiii e, 94
5.8.7. 1D fit €XAMPIE .. evncii e 95
5.8.8. 2D fit €XAMPIE .. cveicii i 96
5.8.9. Additional doCUMENLEtiONcevvvviieiiiiiee e 97

1V - = T PP 97
oI LY = 1 =SOSR 97
5.11. RANAOM NUMBETS ...t 100
I N[0 100T= ol 01 (=10 = 1 o 101
5.12.1. Integrating fUNCLIONSoeiiuiiiiii e 101
5.12.2. Integrating diSCrete VAlUESccoviiiiiieiiii e 102

5.13. Interpolating diSCrete datauevevniiiiii e 103
TN S [1 o= PPN 104
5.15. WaVEl et tranSfOMMS ... cveeeiiee e e e e e eaenns 104
5.15.1. Continuous wavelet transformcooooiiiiiiiiiiiii e 105
5.15.2. EXAMPIE c.niiii e 105
5.15.3. MOdUIO MaxXima Lineoovviuiieiiiiiiee e 106
5.15.4. The wavelet [IDrarycooeuiiiiiiii e 106
5.15.5. Discrete wavelet transformoveeiiiiiiieiiiiiee e 107
5.15.6. Stationary wavelet transformccocoeiiiiiiiiiii i e 109

TN T I o = PP 110
5.15.8. Wavelet t00IDOX OVEIVIEWoevvviiieeiiiiieeeii e 111

LS {1 0 T o R = 2P 113
20 g T o = T = L 113
O - S Q0 - 11 (= £ 114
6.2.1. OULPUL PAIAIMELEIS . .uiiuitiiie it e e e ens 114

7. Storing and accessing data PrOAUCESuevein i e eeaes 116
7.1. POOIS @NA SLOrBOES ... cvvveeeieee e e et e e e e e e e e e e et e e et e e e e ens 116
7.1.1. Creating a storage and registering PoolSovevvieiiiieiiiieeiineceeeeieeeen, 116
7.1.2. Saving and 10ading ProduUCSccuuieiiieiiii e 117
7.1.3. DEEtiNg ProdUCEScvieciii e e e e e e e e e e e e 117

Scripting Guide Build 15.0.3262

25 =T (o 1 0 I o0 L1 o PPN 117

7.2, LOCE POOIS ...vuiiieiii e 118
7.2.1. Thelocal pool dir€CtONYcvevneiiiieiie e 118
7.2.2. Repairing alocal PO0lccouuiiiiiiiiie e 119
7.2.3. Importing a directory of FITSfilesinto alocal poolccccccovveiiiieinnnnns 119
7.2.4. TroublESNOOLINGivviieii e e 119

AT @ U = Y/ 1 119
7.3.1. INSPECLING QUETNY TESUIS ..vviei i 120

A = (oo [0 Tot ARV 7= 6= o 11 oo 121
7.4.1. Querying Product VErSIONSccuuuiiiieiiiieeiiiee e e e e e e e e e e e e e eanaas 121

7.5. AQVANCEA QUENYING ..uivvreiii et e e et e e e e e e e e e e et e e et e e e e e et e e et e e eanaeeees 121
7.5.1. Querying for parts of @ StrNgccvveiiiiiiiiiciie e 123
7.5.2. Querying for metadata in ProductsSccocoviiiiiiiiii i, 123

7.6. Tips and PitfallS ...u.cive e 123
7.6.1. Changes to a product in a pool diSappearccccevveviiiieiiiieiiiecieeeeeee, 124
7.6.2. MiNIMISING MEMOIY USBOE ...vuuevrnneiiieeitieeeieeetneestniessteestaeeetneesnnaesnnaes 124
7.6.3. Testing if two products are equalcvevuiieiiiieiiii e 124
7.6.4. Copying a product or context to a different storageccoeevveveviieinnnnns 125
7.6.5. Tags may point to wrong product after renaming apoolcccceeeevneennn. 125
7.6.6. IndexError or Illegal ArgumentException when queryingccceeevvnneeee. 126
7.6.7. A query takes along timeto EXECULEvvivnieiiiiiiie e 126

7.7. POOIS TOr FEMOLE aaAeevveieeeeiii e e eaees 127
7.7.1. The HSA POOI ..coeiiiiii e e e e e 127
7.7.2. TRE HTTP POOI ..ottt e s 128
7.7.3. The cached POOIiiiiiii e 128
7.7.4. Metadata used in the HSA poolooevviiiiiii e, 129

8. Overview of data processing PaCKagESucvvniiiiieiie e e e 134
8.1. Browsing the list Of PaCkages cvvvniiiiiiii e 135
8.2. Browsing the contents of apackagevvvviiiiiiiiiiii e 136
8.3. Viewing the details for aclass or interfaceoooevvvieiiiiiii i, 137
8.4. Displaying alternative views of the Developer's Reference Manual 139
8.5. DP PACKAGES ... ivueiii e 139
8.5.1. herschel.iadataflowcoouviiiiii 139
8.5.2. herschel.iadataseloviiiiiiieii e 139
8.5.3. herschel.iadoCumentooviiiiiii e 140
8.5.4. hersCheliagUicovueiiii e e 140
8.5.5. herSCEl.IAIO .oeevvi e 140
8.5.6. hersChel.iaNUMENICuviiiii e 140
8.5.7. hersChel.iaobSoeii i 141
8.5.8. herscheliapalccoviiii s 141
8.5.9. hersCheEliaPg «.ovv i 142

LRI L0 §T= £ = BN T- o (o o 142
TN R 1= £ = A= T o 142
8.5.12. hersCheliat@sk .. .cccvveiiiiiii e e 142
8.5.13. herschel.iatoolbOXccuvuiiiiiiii 143
8.5.14. NEISCRELIAVO c..vuiiiiii e 143
8.5.15. herschel.sharefltdyn ..o 144

9. Time and astronomical MEASUrEMENESuuieiiiiiieeeiii e et e e e et e e et e e e eab e e e eain e eeenes 145
9.1, TimeE DEfINITIONS .ot e e e e e s 145
9.1.1. System time N HIPEcooiiiii e 145
9.1.2. International Atomic Time (TAD) and Fi neTi Ncoocoviveiiiiiineiiieeenn, 146
9.1.3. Coordinated Universal Time (UTC)covuiiiiiiiiiieciiiecn e eis 146
9.1.4. DecMeC Time [PACS ONIY] covvuiiiiiiiii i 146

9.2. Time in Instrument House-Keeping (HK) Datacocvvvveiiiiiiiiniiiiieeeieceeie e, 147
1 A T 4 SN oo 0 V= = T o [P 147
9.3.1. Time conversion in HIPEoooiiiiiiiii e 147
O.3.2. CUCCONVEITEY .. euneeteeieee ettt ettt e e e et et e e e e e aeenns 148

9.4. Great circle and position angle calCulationsccovveiiiiiiiiicie e, 148

Vi

Scripting Guide Build 15.0.3262

F NN V(g0 g 0] 0 1= - (0 =P 150
[V o T o o) =) P 152
B.1. NaminNg CONVENLIONSccuuuiiiiiii et e e ean e eanas 152
B.1.1. Jython code eXampPleuiiiiiiiii e 154

B.1.2. Java code eXamPlec.uuiiii e 155

g0 1= PP 156

vii

Build 15.0.3262

List of Figures

1.1. The window that appears calling the Swing showMessageDi al og method. 30
1.2. Customising the icon and the window title.coooiiiiiiiiiii e, 30
1.3. The window that appears calling the Swing \showi nput Di al og method. 31
1.4. A more complex window with @ combo DOX.ccoeuiiiiiiiiiiiieii e 31
1.5. Using the Swing showConf i r nDi al og method. ..., 32
1.6. The DEDUG WINOOWuuiiiiii ettt ettt e ettt e e e et e e e ena e eeens 33

3.1. An example of a Spectrumld product from SPIRE (in the HIPE Dataset Viewer). In this

case, the wave column contains wavenumbers in cm™, there is no segment number column (as

only one segment is contained) and there are additional columns for error and mask. 63
3.2. Example of aHIFI Spectrum2d viewed in the SpectrumExplorer in HIPE. Different spec-
traappear as different rows, and in this case each spectrum has 4 subbands. Each subband is

plotted in the colour shown in the boxes on the lower |eft. The other columns give further in-
formation about €aCh SPECIIUM.iiiiie e e e e e eees 66
3.3. Example of a SPIRE Spectrum2d viewed in the SpectrumExplorer in HIPE. Different

spectra appear as different rows, but in this case each spectrum only has one subband. There

are fewer columns for additional information than in the HIFI examplein Figure 3.2 66
3.4. Example of aHIFI Spectrum2d viewed in the SpectrumExplorer in HIPE, showing the
metadata describing the different subbands (to display the metadata, right click in the plot and

select Dialogs - Metadata). In this dataset, there is one spectrum with 4 subbands. 67
5.1. Execution times for FFT, FFT_PACK and RealDoubleFFT.ccociviiiiiiiieeeen 84
5.2. lllustration of various forms of interpolation funCtions.cccoiiiiiiiiiiiiiine, 89
5.3. Fitting data iteratively with tolerance set too high.cooviiiiiiiiiii e, %!
5.4. lllustration of polynomial fil.iiiiiiiii e 96
5.5. Effects of modulo Maxima liNe.ccoouuiiiiiiiii e 106
5.6. Principles of discrete wavelet transform.oooooiiiiiiii 107
5.7. Signal decomposed: RuUSSian dOIIS VIEW.coouuiiiiiiiiiiciii e 108
5.8. Formula of universal threshold. ... 110
8.1. View of SPIRE packages after opening up and clicking on SPIRE Developer's Reference

Manual (API) inthe HIPE NeElp WINAOW.iiiiiiiiii e 135
8.2. Web browser page of JavaDocs top level frame.ooviviiiiiiiiiiiii e 136
8.3. Navigation bar on the class View Of JAVADOCS.uuieeiiiiiieiiiiiiee e 136
8.4. Package description page in Developer's Reference Manual.occoveiiiiiiiniiinnnennnn. 137
8.5. The class view of TableDataset showing a brief description and a short example of its us-

50 [P 138
8.6. Page showing the constructor mechanism (how to create a TableDataset) and the associat-

ed set of methods (what you can do with the TableDataset you created).ocovvvniverinnnnnn. 138

viii

Build 15.0.3262

List of Tables

1.1. Conversion types for string fOrmMatting.coevuieiiiiiiiieii e 10
2.1. Types of nUMEric array (N = L1...5) .ooieiiiiiiiii e 40
3.1. Spectrumld COIUMNS @NO BCCESS .. .evvvneeiiiii ettt ettt e et e e 64
3.2. Spectrum2d COIUMNS @NO BCCESSeevvneeieiii ettt ettt e e 68
3.3. SpectralSimpleCube coNtent aNd BCCESSciiereeiiii ettt 70
3.4. Instrument-specific SPECIral ProdUCESuuuriiiiiii it 72
5.1. Forward Fourier transforms for input of length N. ..., 81

5.2. Options for the inverse Fourier Transforms. Note that the output of Real Dou-
bl eFFT#bt depends on the value of N with which the Real Doubl eFFT object was creat-

< o TP SPP PPN 85
5.3. For the following normalizations, assume that the signal has N elements. 85
B4, ATQOTITNMS ..o 111
B, TO0IS ettt 111
5.6. SIgNal GIMENSIONSuuiiiiiii ettt ettt e et e et e e e e e eaa s 111
5.7. BOrder MaNAQEIMENTceeeiti i eeeeiti ettt e ettt e e ettt e e ettt e e e eat s e e e erb e e eeat e e eeennnaeaeees 111
5.8. SUPPOIEd SIgNal TYPESvueiiiti ettt 111
5.9, AVailable WaAVEIELS ... e 112
A.L. Jython unary arithmetic OPEIaLOrSueieeie ettt et eeees 150
A.2. Jython binary arithmetiC OPEralorSuviiiiiiieeiii e 150
A.3. Jython ShiftiNg OPEIEIOISccvuei ittt ettt e e 150
A4, Jython binary DitWiSe OPEIEIOISuuueiiiii ettt ettt e s 151
A.5. Jython COMPEAITSON OPEFEEONSeieetieeeeii ettt ettt e et et e e e e e ene s 151
A.6. Jython DOOIEAN OPEIEIONScevti ittt ettt e e 151

Build 15.0.3262

List of Examples

1.1. Creating a simple image With fake data.oooeiiiiiiiii e 1
1.2. Assigning multiple values to multiple variablesinone line.cccooeiviviiiiiiiiin e, 4
1.3. Assigning the same value to several variables at ONCe.ccouvviiiiiiiiiiiiii e, 4
1.4, DElEting Variahl S,iiiiiii e 4
1.5. Deleting all Variables.ooiiiiii e 5
1.6. Printing the type (class) of avariable. ... 5
1.7. How to represent complex nUMbErs in Jython.couiiiiiiiiiiiiii e 5
1.8. Printing complex nUmMbers to the CoNSOIE.ccouviiiiiiiii e 5
1.9. Printing numbers (with default formatting) to the console.ocoeiiiiiiiiiiiiieeee, 6
1.10. Comparing variables from Java classes is different to Jython comparisons. 6
1.11. Checking the range limitS Of tYPES.euuuiiiiiii e 6
1.12. Demonstrating the ranges for built-in typesin Jython.cccooveiiiiiiiiiiin e, 7
1.13. Printing the methods available for avariable in the console.ccoooeiiiiiiiiiinnnn, 8
1.14. Concatenating strings with + in Jython does not have the performance impact it hasin

N 2 T T PPN 8
1.15. Converting numbers to string using the builtin “backquote’ method. ... 9
1.16. Creating a Java string from a Jython StiNg.oveiiiiiiiii e 9
1.17. Creating Java Character variables.oooiiiiiiiiiii e 9
1.18. Jython and Java string incompatibilities.ooiiiiiiiii 9
1.19. Printing text to the console with variable substitution.coooiiiiiiii, 9
1.20. How to change the floating-point precision when printing numbers.o.ocoeiieee. 10
1.21. Converting between JythOn TYPES. ... eieiei e 10
1.22. Complex to float conversion iSimpoSSIbIe.c..uiiiiiiiiiiii e, 10
1.23. String t0 flOBE CONVEISION. . ..eeuuiiieiii ettt ettt e et et e e 11
1.24. Decimal to integer conversion isimpossible. ..o 11
1.25. Implicit Java to Jython NUMENIC CONVEISION.ueiiiiiieiiiti et e et e et e e 11
1.26. Printing the title of avariable. ..o 11
1.27. Printing the class of aJavavariable. ..o 11
1.28. Another example of Java and Jython numeric type incompatibilities.ccccoeeees 12
1.29. Converting the Java numeric variable to a Jython value.cccooooeiiiiiiii, 12
1.30. the Jython type to Java Will NOt WOIK.ccoouiiiiiiii e 12
1.31. DEfiNiNG iCHIONAMTES.nieiiiiiie ettt ettt 12
1.32. Nesting lists does not require that all lists are of the sametype.cccooveveviiiiiiiiiniennnn. 13
1.33. Appending values to the end of alist, using different methods.ccooeiiiiiiiins 13
1.34. Appending several values with the help of afor [00p.ccooviiiiiiiiii e, 13
1.35. Concatenating two liStS OF TUPIES.ccvuiiiiiiii e e e 13
1.36. Concatenating a list and a tuple Will NOt WOFK.c.uiiiiiiiiiiiie e 13
1.37. Accessing elements or ranges using list Slice NOLation.ocovvviieeiiiiinieiiiineeeiin, 13
1.38. Accessing elements of nested listS Or tUPIES.uuiiiiiiiiiei e 14
1.39. DEfiNING @ ICHIONGIY. ..cevuuieeiiiie ettt et e e e e 14
1.40. Accessing a dictionary value uUsing @ key.oooiiiiiiiiiiiii e 14
1.41. Accessing and printing a dictionary value using akey.ccooiiiiiiiiiiii 14
1.42. Printing all the keys of a diCtionary.oviiiiiiiiiiii e 15
1.43. Using a dictionary as a value of another dictionary.ccoeuiiieiiiiiiieiiiiiieeceeeees 15
1.44. Accessing a dictionary value is the same as any other value.cccoooviiiiiii. 15
1.45. Accessing nested dictionaries is the same as with multidimensional arrayd/lists. 15
1.46. Checking if a number belongs to several ranges using comparison Operators. 16
1.47. Basic loop printing the indeX VEIUES.oooiiiiiiiiiiii e 16
1.48. Constructing loops with the help of the range function.ccooooiiiiiiii s 16
1.49. Adding an else code block to afor loop that is executed when the loop finishes. 17
1.50. Exiting the loop with break will not execute the else block.ccoviiiiiiiiiiis 17
1.51. Branching and looping Structures in Jython.ccoeuuiiiiiiiiiie e 17
1.52. Writing a while 100p BIOCK.uiiiii e 17
1.53. How to break out from awWhil@ 100p.uiiiiiiiiiiii e 18
1.54. Exiting an infinite loop with the use of the continue keyword.cccceeiveiiiiiineeennnn, 18

Scripting Guide Build 15.0.3262

1.55. Using the range utility function to generate index values.ccoocvviveiiiiiiiiiciiieecins 19
1.56. Printing content from diCtioNaries.ccuuiiiiiiiiiii e e e 19
157, Printing teXt t0 fll@. .ouniire i 19
1.58. Reading text from filES.oiiiiii e 19
1.59. How to use the well-known pickle lHbrary.cooooeiiiiiiiiiiii e 20
1.60. Load data from file serialised using the pickle library.ccc.ccooiiiiiiiiiiicin e 20
1.61. Defining fUNCHONS iN JYthON. ... ciuiii e e e e e 20
1.62. Declaring fUNCLIONS fOr FBUSE.uuiiiieiii e e e e e e e e e e e e e e et e e eaneaees 21
1.63. Global variables in JYthON.oiiiiiii e 21
1.64. Declaring aglobal variable can be dangerous in an interpreted language like Jython. 21
1.65. Passing global variables as function arguments.cccoiieiiiiiiiii i 21
1.66. Setting default values for function arguMENtS.cooviiiiiiii e 22
1.67. Passing functions as arguments is allowed in Jython.cccocoiiiiiiiiiicin e 22
1.68. Declaring a function without argUMENES.uviiiiiiiiii e e 22
1.69. HOw to create @ JythON ClaSS.cvvuiiiiiiii e e e e e 23
1.70. Instantiating and using methods from aclass.cocccoiiiiiii i, 24
1.71. Passing parameters to the class CONSITUCTOr.ocovviiiiiiiiiii e 24
1.72. Overriding the default behaviour of the _str - method.c.cooeviiiiiiii i, 24
1.73. Naming conventions fOr ODJECES.cuuiiiiniiiiii e e e e e 25
R o=] g To = L S S P 25
1.75. Instantiating/aliasing an imported task.oveiiieiiiiiiiiiicie e 26
1.76. Executing methods from non-imported MOdUIES.cc.veviiiiiiiiieiin e 26
177, IMPOIT SEa ML, ettt 26
1.78. Using names after importing awhole module.ccoiiiiiiiiiii e 26
£ T PP 26
1.80. Importing several names from amodule.couuviiiiiiiiii i 26
1.81. Aliasing imports to avoid Name Clashes.ocvuiiiiieiie e 27
1.82. Self-contained module with dOCUMENLEEION.coevvviiieiiiiiiee e 27
1.83. Demonstrating that modules imported at start-up are available in HIPE. 28
1.84. Creating a file with just imports for HIPE start-up.cccooiviiiiiiiiieie e 28
1.85. How to modify the Jython classpath af runtime.ccoooviiiiiiiiin e 28
1.86. Reloading updates the module loaded in memory with the latest changes from the source

L] =3P 28
1.87. Removing a module from memory USiNg del.ccooouiiiiiiiiiiie e 28
1.88. How to list the contents of the current direCtory.ccovviiiiiiiiiieiie e 29
1.89. Using the glob module to recursively list files with wildcard matching. 29
1.90. Using pure Java to display dialogues to the USEN.cccuiviiiiieiiii i 30
1.91. Configuring the style of Java dialogUES.ccouiiiiiiiiiii e 30
1.92. Using input dialogues to retrieve data from the user.ccoccoveiiiiiin i, 31
1.93. Customising the style of input dialOQUES.c.uveiiiieiiiiiiii e e 31
1.94. Providing a default value for input dialogUES.cc.veiiiiiiii i 31
1.95. Using lists to restrict the values to use in an input dialogue.ccovvviiieiiiiieiiineeinees 31
1.96. Displaying a confirmation dialogUE.cccuiiiiiiiiiiiieiiii e 32
1.97. Using constants instead of the automatic indexes to improve readability. 32
1.98. Adding title and button type to the confirmation dialogue.cc.coviiiiiiiiiiiiciiineennnn, 32
1.99. Pausing a script to alow debugging or printing text to Console.c.covevvieiiiiieiineennnn. 33
1.100. Outline on how to create a pipeline executing tasks sequentially.c.ccceveviiiieinnnns 33
1.101. Executing platform binaries from within HIPE.ccoooiiiiiiic e, 34
1.102. Importing the Jython module that allows communication with the operating system. 34
1.103. Listing the contents Of @ dir€CtONY.uuiiiuniiiii i e 34
1.104. Mixed processing with external commands and HIPE tasks.ccc.ccevevviieiiiieeiinenn, 34
1.105. Getting the version number of auser release (Method 1).coovvvvviiiiiiiieiin e, 35
1.106. Getting the version number of auser release (Method 2).ccvvevvviiiiiiiiiinciec e, 35
1.107. Getting the build number of a developer build.ccoooiiiiiiii i 35
2.1. Declaring an array of dOUDIES.ooiuniiii i 41
2.2. Declaring a two-dimensional array of doubles.ccocoiiiiiiiiiii 41
2.3. Creating Jython Jagged @TaysS.cuu.eviinieii e e e e e e e e e e e 41
2.4. It isimpossible to create NUMENiC Jagged arraysS.ovvvnieiriieiiiieeeiiee e e e e e e e e aanees 41

Xi

Scripting Guide Build 15.0.3262

2.5. Accessing array elements using the iNdICES.couviiiii i 41
2.6. Using array dlices to access ranges from Jython lists.ccccoviiiiiiiiiii i 42
2.7. Accessing ranges of iNdiCeS USING SICES. ...ucvvuiiiiiiiiiiee e 42
2.8. Checking the differences between Jython arrays and numeric arrays.c..ccoevevvneennns 42
2.9. Inspecting and manipulating a Complex NUMEXIC array.ccoeeuuieeiiieeereeeiieeeiieeeaneens 42
2.10. Appending ValUES t0 @N @TAY.cevueeiiiiii e e e e e e e e e e et e e s e e et e e eees 43
2.11. Assigning values with the use of indices and slice Notation.cccoeeviveviiieiiiieennnenn, 43
2.12. Assign arrays to arrays using Slice NOtAtioN.eevviiiiiiieiiie e 43
2.13. Declaring multidimensional NUMENIC @ITa.cc.ueiiieiiiieeiieeeiie e e e e et e e e eannens 43
2.14. Accessing elements in multidimensional arrays.cccceuvveiiieeiiiieiiin e 43
2.15. Applying multiplication and addition to all elements of an array.cccoeevvveviineennnnn. 44
2.16. Concatenating NUMENIC @ITAYS. «..uuevruerrnereneerttieeeteesteestaessnaeeaneestnaeetaesrnaeesnneeanns 44
2.17. Applying relational operators to a NUMENIC aIraly.ccuuvevuuieeinieiiiieeeiieeeieeeiieeeaneenens 44
2.18. Filtering array elements with the where method.ooooiiiii i 44
2.19. More complex filtering using the where method.ccociiiiiiii e, 44
2.20. Accessing the array values with afilter.coooiiiiii e 45
2.21. Adding two arrays with the same set of filtered array indices.ccooeeiiiiiiiniiinennnn, 45
2.22. Assigning values with the results of the where method.ccoocoiiiiiiiii i, 45
2.23. The output list of where is not accessible by index.ccoceeiiiiiiiiiiiin 45
2.24. Converting the output of where to anormal array that you can manipulate. 45
2.25. Converting the output of where makes the resulting object iterable.c...cooeeeen. 45
2.26. Differences between Jython and NUMENIC arrays.oovvvieiiieiiieeciiieeei e e e eaens 47
2.27. Removing infinite and NaN values from an array.cccoovvevieiiiiiiiin e, 47
2.28. Creating a filter (mask) with afunction ro remove NaNs.cccooeiiiiiiiineiiniec e, 47
2.29. Avoiding unnecessary array allocation for the addition operation.cccocoevevnnnnnn. 48
2.30. Using Java array utility methods to avoid wasteful array allocation.cccoeeeevneeenn. 48
2.31. Grouping scalar multiplication avoids costly array multiplication.cccoveviiieinnnnns 48
2.32. Using arithmetic operations on arrays to avoid l00PS.cocevuieiiiiiiiiieiieec e, 48
2.33. Converting types explicitly requires the creation of a numeric array of a specific type. 48
2.34. Converting types implicitly in Jython. ..o 49
2.35. Dividing by zero will generate NaN or Infinity as appropriate.ccooeevviveiiiieeinnennnnn. 49
2.36. Declaring an array data@SaL.uiiiiieiiiieeie e e e e 49
2.37. How to modify an array dataset.oeevuiiiiiieiie e 50
2.38. Accessing relevant data of an array datasel.ccvoveviiiiiiii e 50
2.39. Creating atable dafaset.uviiiniiiii e 50
2.40. Creating isolated COIUMNS.oouuiiiii e e e e e e e eees 50
2.41. Adding data columns to table datasets.veviiiiiiii e 51
2.42. Avoiding references to the same data from two different columns.ccooeeeeennnnn. 51
2.43. How to correctly create independent columns in atable dataset.ccoooeiviiiieninns 51
2.44. Adding columns directly to atable dataset.cccoveiiiiiiii i, 51
2.45. Exercising some of the most useful methods of atable dataset.ccoccoeviiiiieen, 51
2.46. Copying table AataSetsS.iiiiniiiiii i 52
2.47. Exercising the most useful methods of an array dataset.cccoeeveieiiiiciiiiccie e 52
2.48. Creating a COMPOSITE AALASEL.ccvuiiiiieiii e e e e e e e e e eaaas 52
2.49. Adding a table dataset to a COMpPOSIte dataSel.ccuveviiieiiiieii e 53
2.50. Manipulating a COMPOSITE DaAASEL.uiivvneeiiieiii e e e e e e e e e e 53
2.51. Exercising the most useful methods of a composite dataset.ccooevviieiiiiiiiineiine, 53
2.52. AsSIgning UNitS t0 Variables.coiuiiiiii i 54
2.53. Assigning units to COIUMNS OF AALASELS.ccvuiiiiiiiii e e e e e e 55
2.54. Creating a new, derived UNit.ooiiiiiiiie e e e e e e 55
2.55. Converting units between standard Sl PrefiXes.vvvvviiiiiiiiiiiee e 55
2.56. Printing unit names for ASCII output or dialog output that includes symbols and Greek

(000 o = P 55
2.57. Parsing the string representation of the unit to assignitto avariable.ccocccevn. 55
2.58. AsSIigning UNitS 10 Variables.ooiuiiiiii i 56
2.59. Retrieving the conversion factor t0 Sl UNItS.oevviiiiiiiiiii e 56
2.60. Using the to method to explicitly convert Units.ccooieiiiiiiiiicii e 56
2.61. Checking if two different units refer to the same physical quantity.ccccoceveveennnenne. 56

Xii

Scripting Guide Build 15.0.3262

2.62. Checking if two units are the same but expressed differently.cccoooeiiiiiiiiiiiienns 56
2.63. Using physical constants provided within the Constant class.ccooeeviiiiiieiinennnn. 57
2.64. Adding and modifying metadata associated to atable dataset.ccceeeviiiiiiiiiiiins 57
2.65. Inspecting the metadata of a dataSet.c.vevviiiiiiiiei e 58
2.66. Creating an empty product with some metadata.ccoeveiiiiiiiiiiiii e, 58
2.67. Overwriting an array Within @ dataSet.co.iiiiiiiiiiii e 59
2.68. The most common metadata have attributes defined.ccooooeviiiiiiii e, 59
2.69. Some of the time attributes are instances of FINETIME.cocviiiiiiiiiii e 59
2.70. Creating TAl or UTC time strings to set time metadata.ccoovvviviiiiciiiiciiee 59
2.71. Inspecting an object from a subclass of Product.ccooeeiiiiiiiiiiiicie e 60
2.72. Saving the product history to a script file.ccooviiiiiiiii e 61
2.73. Checking if atask has been executed on a product (either locally or as part of standard

01001 o) 61
3.1. Adding data arrays as columns to a Spectrum dataset.ccoeevveiiiiieiiieeii e, 63
3.2. Setting the units of various spectral metadata.c.ccvveiiiieiiii e, 63
3.3. Adding spectral segments to a one-dimensional spectrum dataset.ccooevviiiiiieeinnnnns 64
3.4. Plotting the spectrum with the wave and the flux as aXes.cccccviviiiiiiiii i, 65
3.5. Turning off automatic conversion of errorsto weight.ccocoeeeiiiiiiiiiniii e, 65
3.6. Converting weights to errors and errors to WeIghtS.ccouviviiieiiiiieiiie e, 65
3.7. Manipulating Spectral SEgMENES.uuiiiiieiii e e e r e e e e e e 65
3.8. Creating a two-dimensional dataset containing four SPectra.c.ccvveeiiiiiiiiieiiiieeiis 67
3.9. Creating a multiband SPeCtrum dataSet.ccouveiiiiiii i e 67
3.10. Plotting some columns selected using Slice NOLatioN.cc.vevvieiiiieeiii e e 69
3.11. Accessing subbands using specific Methodsccocoviiiiiiiiii e, 69
3.12. Plotting the first spectrum of a subband using iNdICES.ccooeviiiiiiiiiie e 69
3.13. Plotting the first spectrum of a subband using the get method.ccooooiiiiiiinn 69
3.14. INSPECE SUBDANGS.iii i 69
3.15. Converting instrument specific spectral datasets to SimpleSpectrum.ccceevevinnnens 69
3.16. Creating cubes from NUMENIC @ITAYS.ucvvvnieiiieiiieeiieee e e e e e e e e e e e aaaas 70
3.17. Creating a WEIGht CUDE.couuiiii et e e e e e e e e e e et e e e eaneees 70
3.18. Extracting the image metadata (including Wcs information).cccoeeviieiiiiieiiieeinnnnns 71
3.19. Accessing the image (flux) datafrom acube.cccoooiiiiiiiiii i, 71
3.20. Extracting a single Spectrum from @ CUDE.ccvviiiiiiiiii e 71
3.21. Extracting a single image plane for a specific frequency.ccooeeviiiiiieeii e, 72
3.22. Printing the cUbe diMENSIONS.oiiiiiiiiiee e e e e e 72
4.1. Creating a WCS object from SCratCh.cooiiiiiiiiii e 76
4.2. Getting the world coordinates from a screen pixel POSItion.coooevvviiiiieiiieiineee e, 76
4.3. Adding a third axis to a WCS structure to define an image index.c.ccooveviiiiiiiieeinnnnns 77
4.4, Printing if the third axisisregularly sampled.ccooiiiiiiiiiiii e, 77
4.5. Transforming between world coordinates andcoooeviiiiiiieiiiiii e 77
5.1. Taking the square root of a numeric array of doUbIES.cccoieiiiiiiiiiiiii e 79
5.2. Numeric functions are applied to each element of an array.ccooevviiiiiniiiiniiie e 79
5.3. Converting values to double as it is the type of the numeric arrays.cccoeevviveiieennnnn. 79
5.4. Using lambda expression to apply new functionsto arrays in the same way as Numeric

0o [0 ST 79
5.5. For simple functions it is much more readable to use the built-in operators. 80
5.6. The SIN function works for arrays and SCalars.c.ccoeveviiiiiiiiecii e 80
5.7. Finding the minimum value of an array.ccocouieiiiiiiiiii e e 80
5.8. Differences between the lower-case Jython functions and the upper-case Numeric func-

10 ST 81
5.9. FFT of a modulated signal, with and without HAMMING smoothingcccoevevvneeennnn. 82
5.10. Transforming a signal into the modulus of itS SPECLIUM.ccevviiiiiiiiiiiec e, 82
5.11. Transforming areal signal into @ SPECLIUM.iiiviiiiiiiiii e e e e 83
5.12. Transforming areal signal with even symmetry into a SPeCtrum.ccccevvvvvnievinnennnnn. 83
5.13. Transforming areal signal with odd symmetry into a SPectrum.ccoeevviieiinernnnns 83
5.14. Example of the use of the convolution algorithm.ccoooeiiiiiii e, 87
5.15. Importing the Convolution MOAUIE.cccviiiiiiii e 87
5.16. Create a convolution function with zeroes beyond the edges.ccooeviiiiiiiiiiiciine, 87

Xiii

Scripting Guide Build 15.0.3262

5.17. Create a convolution function with circular wrapping beyond the edges. 87
5.18. Create a convolution function with value repetition beyond the edges.ccoceieeinnnies 88
5.19. Create a centred convolution function with zeroes beyond the edges.ccooceveveennnnne. 88
5.20. Create a centred convolution function with circular wrapping beyond the edges. 88
5.21. Create a centred convolution function with value repetition beyond the edges. 88
5.22. Creating different filtering functions using the Convolution module.cccceeevnnie. 88
5.23. Interpolation funCtioNS iN DPc.uiiiiiii e 88
5.24. Defining some X-Y dat@ POINES. .. .cuuiiiieiiiieriiie e e e e e e e e e e e e eeanns 89
5.25. Fitting data with a polynomia model (Iin€ar).c.couveeiiiiiiiii e 90
5.26. Fitting data with a gaussian model (NON-liNEar).ccciiiiiiiiiiii e 90
5.27. Executing the fit with or without parameters.cccoiiiiiii i, 90
5.28. Printing the results of the fitting.ccoovii i 90
5.29. Re-sampling the fit data according to the model.ccoiiiiiiii i, 90
5.30. Retrieving the statistical indicators of the goodness of fit.cccccoviiiiiiiiii e, 91
5.31. Retrieving the unscaled standard deviation from the fit.coocoiiiiiin i, 91
5.32. Creating a custom non-linear fitting model.ccooiiiiiiiii i, 92
5.33. Using a custom fitting MOGEL.couuiiiiiiii e e e e 93
5.34. Fitting aline using two models at the same time.ccccoeveiiiiiiii i, 93
5.35. Plotting the results of a polynomial fitting.ccocoiviiiiiiii e, 94
5.36. Setting the tolerance for the LevenbergMarquardt fitter.cocoeoviiiiiiiiniii e 95
5.37. How to get the dot product of two VECtOrs OF MatriCeS.ovevvneeiiieiiii e, 97
5.38. TranSPOSING @ MALTIX. «.vueeuneiiiieeteeeieeraeeeaeeest e esae e st eeateeateeetnresaaeetnreesnaaeanaees 98
5.39. Finding the determinant of @ MatriX.eiiuiiiiiiiiiiie e e r e e 98
L0 N0 \V= 4110 I W04 4 N 98
5.41. Multiplying matrices this way returns @ MatliX.coceuuieiiiieeiiieeiiii e e e e e eaeens 98
5.42. Multiplying a matrix by a vector with matrix multiplication.ccoooiiiiiiieinennnn. 98
5.43. Decomposing a matrix to lower and UpPer MatriCeS.oovvveieireeiiii e eeeiee e e eeaen 99
5.44. Verifying the results of a LU decomposition.ccceuiiiiiiiiiiiieiiiiieiieec e e 99
5.45. Getting the eigenvalues of a matrix after decomposing it.ccccvveviiiieiiiieiiiieeiie e, 99
5.46. Generating random numbers with this utility class.ccccociiieiiiiiiii e, 101
5.47. Setting a seed for a random NUMbBEr gENEaLOr.cvvneiieeiii e e, 101
5.48. Integrating numerically using the Romberg method.coooviiiiiiiii i 102
5.49. Integrating numerically using the Simpson method.ccooeviiiiiie e, 102
5.50. Integrating tabular data using Newton-Cotes method.cccoiviiiiiiiiiiinie e 103
5.51. Creating a fitter function with different fittersand models.ccooviiiiiiiiiin s 103
5.52. Customising the fitter even setting the SImplex.ccoooviiiiiii e, 103
5.53. Creating a cubic spline INtErPOIaLOr.ccuuiiiiieiii e e 103
5.54. Transforming a signal with a continuous Wavelet.cccoeeviiiiiiiiieiie e 105
5.55. Selecting one CONtiNUOUS WaVEIEL.c..uiiiiieiiie e e e e e e e e eaaeas 106
5.56. Transforming a signal using a discrete Waveletl.coocvviiiiiiiiiiiiecie e, 106
5.57. Discrete wavelet transformation of a one dimensional signal.cccoeeeiiiiiieeinnee, 107
5.58. Discrete wavelet transformation of a bidimensional signal.coccoeeiiiiiiiineeine, 108
5.59. Discrete Wavel et transformation manually handling the coefficients.cc..cceuee. 108
5.60. Stationary wavelet transformation of a one-dimensional signal.ccooevvvieeinnennnnn. 109
5.61. Stationary wavelet transformation of a bidimensional signal.cccocoeiiiiiiiinennnnnn, 109
5.62. Use of the wavelet thresholding tool.cccooviiiiii i, 110
5.63. Applying athreshold for wavelets using the visitor mechanism.c.cccoeveiiieeinnnnns 110
6.1. Printing the documentation Of @task.cccveiiiiiiiiiiiii e 113
6.2. Executing the clear task with one parameter.ccoovviiiiiii i, 113
6.3. Retrieving the output value from atask.ccuiviiiiiiiiiiiiiec e 113
6.4. Printing the status message Of atask.ccooovii i 114
6.5. Naming the parameters to omit optional ones or passtheminany order. 114
6.6. Mixing named and positional ParamMELEr'S.oeevuieiiiieiiii e e e e e e e 114
6.7. Wrong mix of mixed and named parameters.coovvuiieiiieeiiii e 114
6.8. Assigning output values to variables using list Slicing.coooeviiiiiiiiiie e, 114
6.9. Assigning output values to variables filtering using list comprehension syntax. 115
6.10. Assigning output values to variables filtering with lambda expression. 115
6.11. Assigning output values to variables filtering using list comprehension syntax (l1). 115

Xiv

Scripting Guide Build 15.0.3262

6.12. Assigning output values to variables using the utility method outTolndex. 115
7.1. Registering many pools at once during storage definition.cccoooeiieiiiiveiiinecin e, 116
7.2. Registering pools after Storage Creation.c.uuieviieeiiieeiiire e e e e e e e eeaens 117
7.3. Printing a map of all registered PoOIS.ccovviiiiiiiiiii e 117
7.4. Removing products from @ StOraQE.vvvuuiiiii e e e e e e e e e aens 117
7.5. Tagging a product and adding it t0 @ SIOTage. ... cvvvneiiiiiiii e 118
7.6. Loading a tagged product as a product referenCe.oevvvveeiiiieiiiieiiie e e e e 118
7.7. Loading atagged ProdUCL.oeiuuiiiiee e e e e 118
7.8. Tagging an eXisting PrOAUCE.ccuuiiiiieiii e e e e e e e e e e e e e aan s 118
7.9. Tagging a product With Several tags.ooveviiiiii e 118
7.10. Removing tags from @ ProdUCL.oeeiiiiiiii e e e 118
7.11. Checking tag existence (in a storage) before tagging.ccoeeviveiiiiiiiiieviieecceeeeee, 118
7.12. Rebuilding the index of @apool.co.viiiiiiiii e 119
7.13. Using keyword queries to retrieve products from a storage.cooceeevvviveiiineeennennnnn. 120
7.14. Querying a storage with several Keywords.cccviiiiiiiiiiicii e 120
7.15. Retrieving references to all productS in @ StOrage.ovevvieiiieiiiiieiii e e 120
7.16. Finding all products matChing @ Class.ccovvuiiiiiiieiii e 120
7.17. Querying by class and keywords at the same time.ccoeeeiieiiiiiiii e, 120
7.18. Inspecting the results Of @ QUENY.oiiiiiiicc e 121
7.19. Versioning products Within @ StOrage.oovvuiiiiiiiiiiiccie e e e e e 121
7.20. Retrieving the latest version of aproduct.cc.veiiiiiiiiiiiiie e 121
7.21. Printing version and tag information for each product.ccoooviiiiiiiiiiiiciieeees 121
7.22. Using a default query returns the [atest VErSIoN.ccvvvieviiieiiiieccii e e e 121
7.23. Returning all versions of a product in @ QUENY.ccceuuieiiiieeiiiieeieeeie e e e e 121
7.24. Creating ssimple, attribute, metadata and full (or data mining) qUEries.ccoeeevvneennne. 122
7.25. Creating @ SIMPIE QUETY. ©..cvvuneiieeii e et e e e e et e et e e e e e e et e e et e e st e e st e eaneeaneeeen 122
7.26. Creating an attribute QUENY.iiie e e 122
7.27. Creating @ MELAata QUETY.cevuneiiiieiii i eeie e e e e e e e e e e e e e e et e e et e e e e e aaeeaens 122
7.28. Creating @ fUll QUENY. ..ueciieii e e e 122
7.29. Creating a metadata query with SQL-like wildcards for values.cccooevviviiieennnnn. 123
7.30. Querying by metadata requires the keyword to exist in all filtered products. 123
7.31. First step filtering the products containing the keyword.cccooooiviiiniiinienenn, 123
7.32. Second step filtering by keyword value.cccoviiiiiiiiii e, 123
7.33. Changes to products should be done in memory before saving them to apooal. 124
7.34. Loading the product back from the pool, changing and saving to persist the change. 124
7.35. Checking if areferenceisloaded in MeEMOrY.ccocoviiiiiiiiiii e, 124
7.36. Loading specific parts of @ produCt.oovuviiiiiiiiii e 124
7.37. Saving a context to a pool without the leaf productsin memory.cccccceeveviieeennnn. 124
7.38. Comparing Products iN MEMOIY.c.uuieeieieii e e e e e e e e e e e e e et e e e eaaes 125
7.39. Comparing product references with hash codes.coocoiiiiiiiiiiii 125
7.40. Comparing product URNs using hash codes.cocoiiiiiiiiiiiiiiin e 125
S g To = W e) = SO 125
7.42. Filtering directly on metadata ValUES.cooviiiiiiii i 126
7.43. Filtering products in the archive that contain a specific metadata.c..cceeeennn. 126
7.44. Filtering by value a set of products that contain the metadata.ccccccoeviviiieninns 126
7.45. Using a full query to filter by data values.ccoceuiiiiiiiiiii e, 127
7.46. Creating a read-only pool connected to the archive.coccoiiiiiiiiin i, 127
7.47. Adding cache behaviour to the HSA read pool.cooevviiiiiiiiiiii e, 127
7.48. Creating an HTTP Client PO0L.oiiiiiiiiicii e e e e 128
7.49. Creating a cached pool from @ URL.coooiiiiiiiiiii e e e 128
7.50. Creating a cached pool from an already created remote pool.c.cceveviiiiiiiiieinnn, 128
8.1. Importing a COMPIEte PACKAJE. ...u.ivvniiii e e e e e 134
9.1. How to obtain the current time by various methods.ccccoiiiiiiiiin i, 145
9.2. Different ways of formatting time variables.cccoociii i, 146
9.3. Creating a date ODJECL.vuiiii e 146
9.4. Time conversion between Dat € and Fi NeTIi MBovviiiiiiiiiiiii e 147
9.5. Creating FineTime variables from other time formats.cooovviiiiiiii i 148
9.6. Calculating the angle BEtWEEN VECLOIS.viviiieiiii e 149

XV

Scripting Guide Build 15.0.3262

A.1. Boolean and operation between integersisaso valid.c.ccooveiiiiiiii 151
A.2. Boolean or operation between integersisalso valid.cooeeeiiiiiiiiiiin i 151
A.3. Boolean not operation between integersisaso valid.ccooeeiiiiiiiiiin 151

XVi

Build 15.0.3262

Preface

This manua is intended for advanced users interested in developing scripts and tools within HIPE.
It complements the cookbook approach, based mostly on graphical interfaces, followed by the Data

Analysis Guide.

XVii

Build 15.0.3262

Chapter 1. Scripting and Jython
basics

1.1. Getting started

1.1.1.

1.1.2.

1.1.3.

Why scripting with HIPE?

HIPE comeswith plenty of graphical toolsfor your data analysis (head to the Data Analysis Guide to
find out more about them). While you can go along way by using these point-and-click tools, scripting
can dramatically improve your efficiency:

* You can automate tedious tasks and have HIPE do them for you, as many times as you like.

* You canrecord aprocedure that worked particularly well and storeit asascript for future reference,
including the best values of any parameters.

» Some HIPE components, such as plotting, rely heavily on scripting.

Note that many graphical toolsin HIPE echo all their actionsto the command linein the Console view,
so that effectively HIPE writes a script for you as you point and click.

Testing commands

If you are unsure about the syntax or the behaviour of acommand, the best thing to do isto experiment
with it. Just back up your data before trying anything potentially risky!

The Consoleview of HIPE iswhereyou try commands for immediate execution. Write your command
at the prompt and press Enter.

There are plenty of commands for you to try in the rest of this chapter. For more information about
executing commands interactively, see Section 1.3.

If you are familiar with IDL and want to see what the most common commands look like in HIPE,
see Section 1.41.

Writing your first script

The Editor view of HIPE iswhere you write your scripts. Thisisafull code editor with features such
as syntax highlighting, automatic indentation, incremental search and many more.

In HIPE, choose File -. New - Jython Script. A new blank document opens in the Editor view. Copy
and paste the following script:

data = I nt2d(100, 100, 10)
nmyl mage = Si npl el nage()
nmyl mage. i mage = data

Di spl ay(nyl mage)

Example 1.1. Creating a simple image with fake data.

Tip
@ Jython is case sensitive. Thismeansthat Si mpl el nage isnot the sameassi npl el m
age or si nmpl ei mage.

This script does nothing too exciting: it defines an image of 100x100 pixels and a constant value of
10, then displays it with the default HIPE image viewer. Do not worry if you do not understand the
syntax of the script. The point is for you to become comfortable with running scripts.

Scripting and Jython basics Build 15.0.3262

1.1.4.

1.1.5.

For more information about editing scriptsin HIPE, see the HIPE Owner's Guide: Section 11 in HIPE
Owner's Guide.

Running your first script

Now that you have your script ready, you can execute it in three ways:

Line by line. Note the little arrow icon [" next to the first line of the script. That shows the line
that is going to be execute when you click the B iconin the HIPE toolbar. HIPE executesjust that
line, and the [" icon moves to the following line. Click the = icon again, and HIPE executes
that line, and so on. You can aso click to the left of any line to have the [} icon point there, so
that in theory you could execute single script linesin any order you want.

All at once. If you click the bl icon inthetoolbar, HI PE executes the whol e script, from beginning

to end. It does not matter where the [} icon on the left is, or whether you executed part of the
script before.

» Just one section. Click and drag your mouse pointer to select part of the script, so that the text

appears in white on blue background. If you click the = icon, HIPE only runs what you have
selected, all at once. Note that, if you have selected just part of aline, HIPE tries to execute just
that part, whether it makes sense or not!

For more information about running scripts in HIPE, see again the HIPE Owner's Guide: Section 9
in HIPE Owner's Guide.

Where to go from here?

Now you know the basics of writing and running scripts in HIPE. Y ou may want to explore the fol-
lowing topics next:

» Thescripting language. Read the rest of this chapter to learn about Jython, the scripting language
used in HIPE.

» Example scripts. You will find many examples in the rest of this chapter. Furthermore, you can
look at the Scripts menu in HIPE. Thismenu lists useful scriptsyou can run, or just open and study.
Y ou can also look at the Pipeline menu, which gives you access to the pipeline scripts for the three
instruments. All these scripts, usually well commented, are agood source to explore more advanced
scripting techniques.

» For IDL users. If you are familiar with IDL, you will fedl right at home after looking at the com-
parison tablesin Section 1.41.

» Sharing scripts. Once you have written your scripts, you can easily share them with colleagues as
HIPE plug-ins. Go to Section 1.40 to discover how.

1.2. Jython, Python and Java

The language you use to write scripts in HIPE is called Jython. Jython is an implementation of the
Python (please open thislink in a new window/tab) language, already heavily used for scientific pur-
poses (see for exampl e http://www.scipy.org).

Jython iswritten using the Java programming language, thus combining the power of Javaand Python.
HIPE currently uses version 2.5 of Jython. The original Python implementation is written in the C
programming language, and for this reason is sometimes called CPython.

http://www.jython.org/
http://www.python.org/
http://www.scipy.org

Scripting and Jython basics Build 15.0.3262

Note

@ HIPE 7 and earlier versions used Jython 2.1 instead of 2.5. If you have scripts written
for those versions, you may have to make changes for them to work under HIPE 8 and
newer. See this page in the public Herschel wiki for alist of issues related to the upgrade
to Jython 2.5.

If you want to try Python and Jython examples from external sources such as books and tutorials,
please keep in mind the following caveats:

» HIPE includes Jython version 2.5, which corresponds to version 2.5 of CPython. Scriptswritten for
more recent versions of CPython (for instance, 3.0 or newer) may not work in HIPE.

 HIPE includes the core Jython engine only. Additional libraries that are part of the full Jython
installation are excluded. This may cause example from Jython textbooks to fail when executed
in HIPE.

The best way to fix thisisto download the full Jython 2.5 installation from the Jython website, and
set the property hcss. j yt hon. user . pat h toincludethe Li b subdirectory of the full Jython
installation.

For moreinformation on setting properties, seethe HIPE Owner's Guide: Section 4inHIPE Owner's
Guide.

« If alibrary isonly available for Python (based on the C programming language) and not for Jython
(based on the Java programming language) you will not be ableto useit in HIPE. Thisisthereason
why alibrary such as NumPy cannot be used in HIPE.

For more information about the difference between Jython and Python, see http://wiki.python.org/
jython/JythonFag/General Info (please open this link in a new window/tab).

Tip
@ If you are familiar with IDL, see Section 1.41 for tables with common IDL commands
and their equivalentsin HIPE.

1.3. Writing commands interactively

Y ou can write any Jython command in the Console view of HIPE to have it executed immediately.

For example you can use the Console view as a calculator. Use +, -, * and / for the four basic
operations, and parentheses for grouping, as in the following example. Note the use of the hash mark
for inserting comments:

HI PE> print 2+2

‘IEH PE> # This is a comment and is ignored by the interpreter
HI PE> print 2+2

‘IEH PE> print 2+2 # A comment on the sane |line as the code
iu PE> print (50-5*6)/4

EH PE> print 7/3 # Integer division returns the floor

al PE> print 7/-3

-3

Y ou can write acommand spanning multiple lines by adding abackdlash\ at the end of any interme-
diate line. When you add a backslash at the end of aline and press Enter, the prompt in the Console
view changes from H PE>to. , indicating that you can add another line to the command.
Write the last line without a backdlash at the end and press Enter to execute the multiline command:

http://herschel.esac.esa.int/twiki/bin/view/Public/JythonUpgrade
http://www.jython.org
http://numpy.scipy.org/
http://wiki.python.org/jython/JythonFaq/GeneralInfo
http://wiki.python.org/jython/JythonFaq/GeneralInfo

Scripting and Jython basics Build 15.0.3262

H PE> print 5 + \
...... (3* 4) -\

Multiline commands are useful to make long and complicated commands more legible, or to define
multiline strings (see Section 1.7).

1.4. Writing a script

In the Editor view of HIPE you can write scripts, that is, series of Jython instructionsthat you can save
and execute. Y ou can execute a script all at once or line by line, or execute just a portion of a script.

Y ou can turn most code examplesin this chapter into scripts. Choose File - New - Jython Script . An
empty window opensin the Editor view. Copy and paste a code example, then choose File -. Save as
to save it. HIPE saves scriptswith a. py extension.

For more examples of Jython scripts, see entriesin the Pipeline menu of HIPE.

For more information on opening and running scripts, seethe HIPE Owner's Guide: Section9in HIPE
Owner's Guide.

For more information on editing scripts, see again the HIPE Owner's Guide: Section 11 in HIPE
Owner's Guide.

Non-ASCI| characters. If youinclude non-ASCII charactersin a Jython script, add the following
line at the top of thefile:

encodi ng=utf-8
Failing to do so could cause errors later.

Script length. Each Jython script cannot exceed a certain size limit, usually 65536 bytes. If your
Jython script is very long (more than afew thousands lines) then it is advisable to split it into separate
scripts.

1.5. Variables and variable types

A variable is a name corresponding to avalue. A variable can refer to anything from a number to an
entire Herschel observation.

To create avariable, or modify an existing value, use the = operator. Y ou can create severa variables
at once. The following command creates three variables called x, y and z, holding the values 1, 2
and 3 respectively:

X, y, z=1 2, 3

Example 1.2. Assigning multiple valuesto multiple variablesin oneline.

The following command creates two variables, a and b, both with the value 123.
a=b =123

Example 1.3. Assigning the same value to several variables at once.

To delete some of your variables, use the del command:
del (x,y,z) # Deletes three variables

Example 1.4. Deleting variables.

Scripting and Jython basics Build 15.0.3262

1.5.1.

1.5.2.

To delete all your variables, use the clear command:

clear() # Deletes all variables

Example 1.5. Deleting all variables.

Any variable has atype associated to it. To find out the type of avariable, usethet ype function:

a=>5
print type(a) # <type 'int'>

Example 1.6. Printing the type (class) of avariable.

Numeric variables (that is, variables representing numbers, can be of the following typesin Jython:
e Integer (int):a = 3

» Longinteger (I ong), denoted by thel or L suffix:a = 3L

e Float(float).a = 3.0

» Complex (conpl ex):a = (3 + 1j)

* Boolean (bool):a = Trueora = Fal se

More on complex numbers

Imaginary numbersarewrittenwithaj or J suffix. Complex numberswith anonzero real component
arewrittenas(real + imag j),orcanbecreatedwiththeconpl ex(real, i mag) function:

print 1j * 1J # (-1+0j)

print 1j * conplex(0,1) # (-1+0j)
print 3+1j*3 # (3+3j)

print (3+1j)*3 # (9+3j)

print (1+2j)/(1+1j) # (1.5+0.5j)

Example 1.7. How to represent complex numbersin Jython.
To extract the real and imaginary parts from acomplex number z, usez. real andz. i mag:

z = 1.5+0.5j
print z.real

1.5
print z.imag # 0.5

Example 1.8. Printing complex number sto the console.

Java variable types

In addition to native Jython numeric variabletypes, the following Javanumeric typesare also available
in HIPE:

* Byte: signed 8-bit integer. Values from -128 to 127.
» Short: signed 16-bit integer. Values from -32,768 to 32,767.
* Integer: signed 32-bit integer. Values from -2,147,483,648 to 2,147,483,647.

* Long: sSigned 64-bit integer. Vaues from = -9,223,372,036,854,775,808 to
+9,223,372,036,854,775,807.

e Float: single-precision 32-bit floating point. Vaues from 1.40129846432481707e-45 to
3.40282346638528860e+38, either positive or negative.

Scripting and Jython basics Build 15.0.3262

1.5.3.

» Double: double-precision 64-hit floating point. Values from 4.94065645841246544e-324 to
1.79769313486231570e+308, either positive or negative.

» Boolean: true orf al se.

Y ou can use Javatypes are used as follows:

a = Integer(3) # Create an Integer with value 3
print a # 3

b = Doubl e(3)

print b # 3.0

c = Bool ean(0)

print ¢ # false

Example 1.9. Printing numbers (with default for matting) to the console.

Warning
O Use only Jython primitive types in your scripts. If you use Java types like Doubl e or
I nt eger , Jython will silently and automatically convert back to native Jython typeslike
fl oat ori nt every timethat animplicit cast isrequired (on assignment or comparison),
which could result in strange errors when you try to operate on variables of incompatible
types. See Section 1.9.1 for more information on these automatic conversions.

Another problem is apparently wrong results in comparisons between numbers. This may
happen if you use Java number classes as in the following example:

a = Integer(2)
b = Integer(3)
print a <b
0

Example 1.10. Comparing variablesfrom Java classesisdifferent to Jython compar -
isons.

It would seem that, according to HIPE (more precisely, to Jython), two is not smaller than
three. Thisisbecause Jython is comparing the two objectsa and b, using criteriathat have
nothing to do with the numeric values they represent.

The range of Jython numeric types

It issafeto apply the same ranges of Javanumeric typesto Jython numeric types, according to thislist:

» Jython integer: same as Javal nt eger , from -2,147,483,648 to 2,147,483,647.

Jython long: same as JavaLong, -9,223,372,036,854,775,808 to +9,223,372,036,854,775,807.

Jython float: same as Java Doubl e, from 4.94065645841246544e-324 to 1.79769313486231570e
+308, either positive or negative.

Jython complex: real and imaginary part have the same range of their variable type (integer, long
or float).

If you go beyond the range of the integer type, avariable is automatically converted to long:

i = 2147483647 # Integer range limt
print type(i)

<type 'int'>

i =i +1 # Adding 1 to the variable
print type(i)

<type 'long' >

Example 1.11. Checking the range limits of types.

Scripting and Jython basics Build 15.0.3262

1.5.4.

Note that Jython allows you to go beyond the range of the long type, but you won't be able to use the
variablein HIPE-specific data structures such as Numeric arrays (see Section 2.2 for moreinformation
on Numeric arrays). Going beyond the range limit can cause errors like in the following example:

i = 92233720368547758072147483647 # Long range limt
print type(i)

<type 'long' >

i =i +1 # Adding 1 to the variable

print i

9223372036854775808L

print type(i)

<type 'long' >

a = Longld([i]) # Trying to create a Numeric array

java.lang. ||| egal Argument Exception: No inplicit conversion for
9223372036854775808L: too big for java.LlLong

Example 1.12. Demonstrating therangesfor built-in typesin Jython.

Other variable types

This section deals with numeric variable types, but there are many more types you will encounter
while working in HIPE. Some of the most important HIPE-specific variable types you are likely to
encounter are the following:

* Numeric arrays. Numeric arrays are HIPE-specific data structures of up to five dimensions.
They are described in Section 2.2.

» Array, table and composite datasets. These datasets are used to organise numeric arrays and
add metadata to describe their contents. The table dataset is by far the most used. These datasets
are described in Section 2.3, Section 2.4 and Section 2.5.

* Products. Products are the main building blocks of Herschel data. Products contain one or more
datasets plus additional metadata. They are described in Section 2.8.

» Contexts. Context are special types of products that act as containers for other products. The
most important type of context is the observation context. Contexts are described in Section 2.8.5
and observation contexts in Section 2.8.6.

» Spectraand spectral cubes. Thereare many variabletypes used to represent spectraand spectral
cubes. These are described in Chapter 3.

e Images. The Si npl el mage type is the most common variable type used to describe images.
See the Data Analysis Guide for more information on images in HIPE: Chapter 4 in Data Analysis
Guide.

1.6. Getting help on variables

While working in HIPE you come into contact with variables of many different types. Besides the
primitive numeric types described in Section 1.5, there are many more variabl e types coming from the
Javalanguage, and other HIPE-specific variable types, such as those described in Chapter 2.

The following are some ways in which you can obtain help on avariable:

* Right click on the variable namein the Variables view and choosg, if available, Helpin URM. This
opensin your default browser the corresponding entry in the User's Reference Manual.

The equivalent command from the Console view is the following:

hel p(nyVari abl e)

» Right click on the variable name in the Variables view and choose, if available, Help in DRM.
This opens in your default browser the corresponding entry in the Devel oper's Reference Manual.

Scripting and Jython basics Build 15.0.3262

This manual is intended primarily for developers, but you can find information on the methods
(functions) you can apply to your variable.

* Right click on the variable name in the Variables view and choose Show methods. This printsalist
of available methodsin the Console view.

The equivalent command from the Console view is the following:

print dir(nyVariable.__class_)

Example 1.13. Printing the methods available for a variablein the console.
* Issue the following command in the Console view:

print myVariable.__doc__

This prints a short help text, when available.

The User's Reference Manual ans Developer's Reference Manual include help for HIPE-specific vari-
able types. For help on Jython types, see the online Jython standard library reference.

1.7. Defining and modifying strings
Strings in Jython can be within single or double quotes:

print 'spameggs' # spam eggs
print "doesn't" # doesn't

String literals can span multiple lines in several ways. A backslash as the last character of aline
indicates that the next lineisalogical continuation of the previous one:

hello = "This is a rather long string containing\n\
several lines of text just as you would do in C \n\

Not e that whitespace at the beginning of the line is \
significant."

print hello

Notethat newlines still need to be embedded in the string using \ n; the newline following the trailing
backslash is discarded. The previous example would print the following:

This is a rather long string containing
several lines of text just as you would do in C.
Not e that whitespace at the beginning of the line is significant.

Y ou can access individual characters like this:

print hello[2] # Third character:
print hello[10:16] # 11th to 16th character: rather

Note that numbering of the characters starts at 0.

Countingthecharactersin astring. To obtain the number of charactersin astring, including any
white spaces, use the following command:

print len(hello) # 158
Concatenating strings. Use the + operator to concatenate strings:

"Bl ah Bl ah "
"Woof Woof "

http://www.jython.org/docs/library/

Scripting and Jython basics Build 15.0.3262

1.7.1.

print a + b # Blah Bl ah Wof Wof
Example 1.14. Concatenating stringswith + in Jython does not havethe performanceimpact it hasin Java.

Converting numbersto strings. Use backquotes () to convert a numeric variable to its string rep-
resentation:

a = 42
print type (a) # <type 'int'>
print type (‘a') # <type 'str'>

Example 1.15. Converting number sto string using the builtin “backquote” method.

Java string types

As with numeric types, you can use Java strings in addition to Jython native strings:

sl
s2

"Bl ah bl ah" # Jython string
String("Wof woof") # Java string

Example 1.16. Creating a Java string from a Jython string.

Java also has the Char act er type representing a single character. Note that it is not available by
default within HIPE, but it has to be explicitly imported (see Section 1.33 for more information about
importing):

c = Character("a")

<type 'exceptions.NanmeError'>: name 'Character' is not defined
fromjava.lang i mport Character

c = Character("a") # No error this tinme

print ¢ # a

Example 1.17. Creating Java Char acter variables.

Always use Jython strings in your scripting. If you come across a Java string, you will not be able to
use it together with Jython strings:

"Blah Blah " # Jython string

"Whof Woof" # Jython string

String("Wof Wof") # Java string

print a + b # Concatenating Jython strings

Bl ah Bl ah Wof Wof

print a + ¢ # Jython and Java string

<type 'exceptions. TypeError'>: cannot concatenate 'str' and 'java.lang.String'
obj ects

print a + str(c) # Convert Java string to Jython

Bl ah Bl ah Wof Wof

O T o
I

Example 1.18. Jython and Java string incompatibilities.

1.8. Formatting strings

You can insert variable values in a string, either numeric values or other strings, with the %operator.
The following example shows how to insert other stringsin a string:

a = "Herschel "

b = "H PE"

print "I like %." % (a)

| |ike Herschel.

print "I like % and %." % (a, b)
| like Herschel and H PE

Example 1.19. Printing text to the console with variable substitution.

Scripting and Jython basics Build 15.0.3262

The % means that the variable contents must be formatted as a string.
The following example shows how to insert numeric values:

value = 4.0/3.0

print "Four thirds is approximately %" % (val ue)

Four thirds is approximately 1.333333

print "Four thirds is approximately %. 2f" % (val ue)
Four thirds is approximately 1.33

Example 1.20. How to change the floating-point precision when printing numbers.

The % means that the variable contents must be formatted as a floating point number. In the second
command, %4. 2f means that the number must be written with at least four characters, with two
characters reserved for digits after the decimal point.

The following table shows other conversion types you can used in additionto s and f .

Table 1.1. Conversion typesfor string formatting.

_|
<
©

(0]

Description

signed integer decimal

unsigned octal

unsigned decimal

unsigned hexadecimal (lowercase)

unsigned hexadecimal (uppercase letters)

floating point exponential format (uppercase ‘E’)

floating point exponential format (lowercase ‘e’)

floating point decimal format (lowercase)

floating point exponential format if exponent < -4, otherwise float

floating point exponential format (uppercase) if exponent < -4, otherwise float

single character

nlo[plael~lom|x|[x[c|o]a

string

1.9. Converting between variable types

Use the following functions to convert variables to different Jython types: fl oat (), int(),
[ong() and conpl ex().

a=1
print a # 1
print float(a) # 1.0

print long(a) # 1 - No visible change
print conplex(a) # (1+0j)

Example 1.21. Converting between Jython types.

These conversions do not work with complex numbers, even if they have zero imaginary part:
a=1+0j

print float(a)

<type 'exceptions. TypeError'>: can't convert conplex to float; use e.g. abs(z)

Example 1.22. Complex to float conversion isimpossible.

Y ou can aso convert from string to numeric values:

10

Scripting and Jython basics Build 15.0.3262

1.9.1.

s = "01234.56"
print float(s) # 1234.56

Example 1.23. String to float conversion.

Note that with this method when you try to convert astring representation of afloating point to integer
you will get an error;

s = "01234.56"

print int(s)

<type 'exceptions.ValueError'>: invalid literal for int() with base 10
01234. 56

Example 1.24. Decimal to integer conversion isimpossible.

Converting between Java and Jython types

When it gets a Java numeric type, or a Java string, Jython automatically converts it into one of its
primitive types. Take for example the following code, which generates a random number between O
and 1 using a Java function.

fromjava.util inport Random
a = Randon() . next Doubl e()
print a

0.7865746478405673 (You will get a different nunber!)
Example 1.25. Implicit Java to Jython numeric conversion.

Theoutput of next Doubl e() isaJavaDoubl e, butif youinspectthetypeusingpri nt type(a)
you get something different:

print type(a)
<type 'float'>

Example 1.26. Printing thetitle of a variable.

Another way to see whether a variable is a Java or Jython type is to check for the . cl ass attribute.
Thisisonly available for Javatypes and gives an error for Jython types:

a =1 # Jython type

print a.class

<type 'exceptions.AttributeError'> 'int' object has no attribute 'class'
b = Integer(1l) # Java type

print b.class

<type 'java.lang.|nteger'>

Example 1.27. Printing the class of a Java variable.

Javatypes are converted to Jython types according to the following table:

Javatype Jython type

Byte Integer
Short Integer

Integer Integer
Long Long
Float Float

Double Float

Boolean Integer (Fal se =0, True =1)

11

Scripting and Jython basics Build 15.0.3262

Javatype Jython type
Character String (length 1)
String String

Incompatible types

1.10

Java and Jython numeric types do not mix well:
a = 123.45

print type(a) # <type 'float'>

b = Fl oat (123. 45)

print type(b) # <type 'java.lang.Float'>
print a +b

<type 'exceptions. TypeError'>: unsupported operand type(s) for +: 'float' and
'java.l ang. Fl oat"'

Example 1.28. Another example of Java and Jython numeric type incompatibilities.

Although the two variables look the same, to HIPE they are just two different things for which no
addition has been defined. For the addition to succeed, you have to convert the Java type to Jython
(you may get adlightly different result because of rounding errors):

print a + b.floatValue() # 246.9
Example 1.29. Converting the Java numeric variable to a Jython value.
Converting the Jython type to Javawill not work:

print Float(a) + b
<type 'exceptions. TypeError'>: unsupported operand type(s) for +:
"java.lang. Float' and 'java.lang. Fl oat"'

Example 1.30. the Jython typeto Java will not work.

To apply math operatorsto variables of Javanumeric types, you always haveto convert them to Jython
types. Thisis another very good reason to use Jython primitive types in the first place.

Lists, dictionaries and tuples

Lists, dictionaries and tuples are important data structures available in Jython.

Lists are arrays of values written in a specific order.

nyList = ["one", "two", "three"]

Tuplesarejust like lists, but they cannot be modified once they are created.

myTuple = ("one", "two", "three")

The only difference in syntax is round parentheses for tuples instead of square brackets for lists.
Dictionariesarelistsof key-value pairs. To access each val ue you must specify the corresponding key.
person = {"Alice": 111, "Boris": 112, "Clare": 113, "Doris": 114}

Example 1.31. Defining dictionaries.

In the previous example, Al i ce isakey and 111 the corresponding value.

1.11. Creating and modifying lists

12

Scripting and Jython basics Build 15.0.3262

1.12

1.13

Y ou can mix different variable types and nest lists within other lists:

name = ["lsaac", "Newton"] # List of strings

a =[1, 2, "Herschel", 4.5] # Mxing different types
y =z = 5

x =[[1,2,3],[y,z],[1,[2,[3,4]]1]] # Nested lists
print x

print x[0]

print x[2]

print x[2][1]
print x[2][1][1]

Example 1.32. Nesting lists does not require that all lists are of the same type.

To append values to the end of alist, you can use the += operator or the append function.

b =[1] # List nade of one el enent
b +=1[2] # Nowb =[1, 2]. Note that the result is not b = [3]!
b. append(3) # Now b =[1, 2, 3]

Example 1.33. Appending valuesto the end of a list, using different methods.

Y ou can use the += operator or theappend function to fill alist one element at atimethrough af or
loop. See Section 1.19 for more information on loops.

a =[] # Create enpty Ilist
for i in[0.1, 0.2, 0.3]:
a. append(SI N(i))

Example 1.34. Appending several values with the help of afor loop.

Concatenating lists and tuples

Use the + operator to concatenate (that is, join) lists or tuplesto form aresultant third list or tuple:

=(1,2,3,4)

= ("x","y","z")

=a+c

rint b # (1, 2, 3, 4, 'x', 'y, 'z")

Example 1.35. Concatenating two lists or tuples.

Y ou cannot concatenate a list and a tuple:

a (1,2,3) # Tuple

b =1["x", "y"] # List

print a +b

<type 'exceptions. TypeError'>: can only concatenate tuple (not "list") to tuple

Example 1.36. Concatenating a list and a tuple will not work.

Accessing lists and tuples

You can access individual list and tuple elements or range of elements, as shown in the following
example:

a=1[0 1, 2, 3, 4, 5]

print a[0] # Accessing first el ement

0

print a[1:3] # Accessing second and third el ement

13

Scripting and Jython basics Build 15.0.3262

1.14

1.15

#[1, 2]

print a[:3] # Frombeginning to third el enent

[0, 1, 2]

print a[3:] # Fromfourth to last element [3, 4, 5]

Example 1.37. Accessing elements or ranges using list slice notation.
Accessing list and tuple elements follow these rules:

» Each elementsisidentified by an integer index starting from 0. For example, in alist or tuple of ten
elements indexes go from 0 to 9 (list length minus one). So, a[0] returnsthefirst element, a[1]
the second element, and so on.

e af: 3] means "take every element from the beginning of the list or tuple up to the fourth element
not included.”

e a[3:] means"take every element from the fourth element included to the end".

» Negative numbers mean counting from the end of thelist or tuple. a[- 3] returnsthethird element
from the end.

You can access elements of lists nested within other lists (or tuples nested within other tuples) as
shown by the following example:

x =1[[21,2,3],[5,6],[1,[2,[3,4]]]] # Nested lists (tuples work the sane way)
print x # Entire |ist

print x[0] # [1, 2, 3]

print x[2] # [1, [2, [3, 4]]]

print x[2][1] # [2, [3, 4]]

print x[2][1][1] # [3, 4]

Example 1.38. Accessing elements of nested listsor tuples.

Creating and modifying dictionaries

A dictionary has a set of {key: value} pairs. Y ou can create adictionary as follows:
person = {"Alice": 111, "Boris": 112, "Clare": 113, "Doris": 114}
Example 1.39. Defining a dictionary.

The keys of thisdictionary are Al i ce, Bori s, Cl ar e and Dor i s. The corresponding values are
111,112,113 and 114.

To change avalue associated to a key:
person['Alice'] = 222
Example 1.40. Accessing a dictionary value using a key.

The value associated with Al i ce in the dictionary called per son has been changed to the number
222,

Accessing dictionaries

By providing akey to adictionary, you can access the corresponding value:
print person['Alice'] # 111

Example 1.41. Accessing and printing a dictionary value using a key.

14

Scripting and Jython basics Build 15.0.3262

1.16

1.17

To obtain alist of al the keys and valuesin adictionary:
print person. keys()

#['Care', 'Alice', '"Boris', '"Doris']

print person.val ues()

[113, 111, 112, 114]

Example 1.42. Printing all the keys of a dictionary.

Nesting dictionaries

Dictionaries can hold other dictionaries. Y ou can use this feature to create advanced data structures.
The following example puts adictionary called abc into another dictionary called di ct :

abc = {"John": 12345, "Jerry" : 23456, "Joe" : 34567}
dict = {"Alice" : 111, "Boris" : abc, "Charlie" : "angel"}

Example 1.43. Using a dictionary as a value of another dictionary.
In this case the value corresponding to key Bor i s isnot anumber or astring, but an entire dictionary:

print dict["Boris"]
{'Joe': 34567, 'John': 12345, 'Jerry': 23456}

Example 1.44. Accessing a dictionary value isthe same as any other value.

Y ou can get a value from the nested dictionary as follows:

print dict["Boris"]["John"] # 12345

Example 1.45. Accessing nested dictionariesisthe same aswith multidimensional arrays/lists.

Thisisthe same syntax you use for nested lists and tuples: see Section 1.13.

Code hlocks

A code block is a portion of your Jython script that is set apart from the rest of the code. You use
code blocks to make your scripts more readable and maintainable. The following are examples of
code blocks:

* Portions of code executed only if a specific condition is true. According to the condition, the exe-
cution of the script branches to different code blocks. See Section 1.18.

« Portions of code executed many times. The execution of the script loops over the code block. See
Section 1.19.

» Functions, that is, portions of code that you can call and execute from other points of your script.
See Section 1.27.

» Classes, that is, bundles of variables and associated functions called methods. See Section 1.29.

In Jython, code blocks areindicated only through lineindentation. No begin/end braces or other special
characters are required. See the following sections for examples.

Warning

O Do not leave blank lines in your code, especially within code blocks. This could lead to
errors or to different behaviours when executing the script line by line or in one go. If you
want to leave blank space between statements, use a single comment character # with the
correct indentation.

15

Scripting and Jython basics Build 15.0.3262

1.18. Writing branching code: if/elif/else

1.19

Thei f/elif/el se statement executes blocks of commands depending on given conditions. The
syntax is.
if conditionl
bl ock1
elif condition2
bl ock2

el se
bl ock3

The following example shows how to construct ani f/ el i f/ el se statement, including the use of
theand and or operatorsto combine logical conditions:

x = 13

if x <5 o0or (x> 10 and x < 20)
print "The value is K

if x <5 o0r 10 < x < 20
print "This value is X"

if 0 <=x <=10

print "The value is in the range [0, 10]"
elif 10 < x < 20

print "The value is in the range [10,20]"
el se

print "The value is not in the range [0, 20]"

Example 1.46. Checking if a number belongsto several ranges using comparison operators.

Writing loops: for and while

Thefor loop. Thef or loopisused to execute ablock of code a given number of times.
The syntax of thef or loop isthe following:

for variable in Iist:
bl ock

where list can be an array of values, sequence of dictionary keywords, tuples, strings.
Some examples:

for i inJ[1,2,3]:
print i

Example 1.47. Basic loop printing theindex values.
The above f or loop goes through the valuesiinthe[1, 2, 3] list. A simpler way to create lists of

increasing integer numbersisusing ther ange function:

for value in range(100)
print val ue

Example 1.48. Constructing loops with the help of the range function.
In the previous example, r ange(100) creates alist with valuesincreasing from 0 to 99.

Thef or loop can have an el se clause, likein the following example:

16

Scripting and Jython basics Build 15.0.3262

for i in range(3):
print i
ifi == 1
print 'YES!'
el se:
print 'NO'

Example 1.49. Adding an else code block to afor loop that is executed when the loop finishes.

Theel se block isexecuted after thef or block has terminated normally. The el se block isnot ex-
ecuted if thef or loop terminates prematurely with abr eak statement, likein the following example:

for i in range(3):
print i
ifi =2
br eak
el se:
print 'NO'

Example 1.50. Exiting the loop with break will not execute the else block.
The br eak statement is described in Section 1.20.

Thefollowing exampleusesaf or loopandani f/ el i f/ el se block together. Note theindentation
of the different blocks:

person = {"Alice" : 111, "Boris": 112, "Care": 113, "Doris": 114}

Get the list of people's nanes
list = person. keys()
For each nane in the list, get the associated value. This
could be a test score, for exanple.
for i inlist:

pval =person. get (i)

Check if the person is on the cutoff, and print the nane

if pval == 112:

print i, "is at the cutoff"
Bel ow the cutof f
elif pval < 112:

print i, "is below the cutoff"
O el se, above the cutoff
el se:

print i, "is above the cutoff"

Example 1.51. Branching and looping structuresin Jython.
Thewhileloop. Thewhi | e loop executes acode block while agiven condition istrue. The syntax
isthe following:

whi | e condi tion:
bl ock

The condition can be any expression which returns a value: zero is treated as Fal se, as are empty

strings, tuples or lists. Any other valueis Tr ue.

x =0
while x <= Math. Pl:
y = SIN(x)
x += 0.1

Example 1.52. Writing a while loop block.

1.20. Controlling loops: break and continue

17

Scripting and Jython basics Build 15.0.3262

1.21

1.22

Use the br eak command to immediately exit from aloop, and cont i nue to jump to the next iter-
ation of the loop without executing the rest of the block.

An example for their usage is given below.

print X,y
x += 0.1

Example 1.53. How to break out from a while loop.

The above example shows an infinitewhi | e loop (the condition isalwaystrue). Inside theloop block
a condition is checked to exit the loop at the first negative tangent.

for i in range(100):
if i %2: continue
print i
Example 1.54. Exiting an infinite loop with the use of the continue keyword.

The above example shows how you can skip the printing of the odd numbers (i % 2 isi modulus
2 anditiszerofor al even numbers).

Writing loops in the Console view

Multi-line code blocks are not only possible as part of a script, but you can also create and execute
them in the Console view of HIPE.

Write the following in the Console view and press Enter:

for i in (1,2, 3):

Thisreturns. instead of the usual HI PE> prompt. This means that the interpreter is waiting
for the rest of the block. Input for instance apri nt i command indented by at least one space.
A further is returned. Press Enter once more to signal that the block is complete, and the

interpreter executes the command.
The whole session should look like this (again, not that pri nt i isindented by one space):

H PE> for i in (1,2,3):
...... print i

Of course you could have added more commandsin the block after print i .

Printing to the screen

Use the print command to print values and variable contents to screen:

print 1, 2, 1+2
#123
print a

18

Scripting and Jython basics Build 15.0.3262

1.23

1.24

(1, 2, 3, 4)

The printout can be formatted in the same way aswiththe C spr i nf format codes. Some examples:

print "Wien % is % years old then PI will be %8.10f" % "John", 23, Math. Pl)

When John is 23 years old then PI will be 3.1415926536

print "When %8s is %94i years old then Pl will be 9916.12f" % "John", 23, Math. Pl)
When John is 0023 years old then PI will be 003.141592653590

To print lists or arraysit is necessary to make aloop:

a=1[11,2,3,5,8,13, 21, 34]
for i in range(len(a))
print "Line: 98i" 9%ali])

Example 1.55. Using the range utility function to generate index values.

Another useful usage of formatted printout is with dictionaries as shown in the following example:

record = {"nane": "John", "Rooni: 112, "class": "manager", "age": 27}
print "Extracted record\n Name: 9% nane)10s Room 9% Room4i" % record
Extracted record

Nane: John Room 112

Example 1.56. Printing content from dictionaries.

Writing strings to file
You can print to file in the following way:

a = "exanple string" # A Jython string variable
file = open("output.txt", 'wW) # 'wW allows wite access overwiting
previous contents.
'a' would append at the end of the file.
print >> file, 2 # Puts the nunber 2 into output.txt
print >> file, a # Puts the contents of the variable "a" into output.txt

Example 1.57. Printing text tofile.

Notethat it isnot necessary to close accessto afilewithin your HIPE session. To overwritethe original
text file, reopen the file. Reopening the file will remove the contents.

Tip
@ Why does Jython complain when | usethe backslash (\) in afilename? The back-
slash is the escape character in Java/Jython. For instance \a is interpreted as Control-A
while\t isinterpreted as the tab character. If you want to use a backslash, either escapeit,
that is, writeit twiceas\ \ , or replace it with aforward slash (/).

For example, change the expression \ Docunent s\ denp_dat a. t xt to either \
\ Docunent s\ \ deno_dat a. t xt or/ Docunent s/ deno_dat a. t xt .

Reading strings from file

Y ou can read strings of characters from afile as shown in the following example:

ile = open("input.txt", 'r')

file.read() # Reads entire file into variable a
file.read(5) # Reads first five bytes of the file
file.readline() # Reads one line of the file

f
a
a
a
a =file.readlines() # Reads all the lines of the file into an array

Example 1.58. Reading text from files.

19

Scripting and Jython basics Build 15.0.3262

1.25

1.26

1.27

Note that everything will be read as a string, even numeric values. If you want to read numeric values
in tabular form from atext file, see the Data Analysis Guide: Chapter 2 in Data Analysis Guide.

Writing numeric values to file

Y ou can write numeric Jython data (single numbers, lists, tuples, dictionaries) to filewith the pi ckl e
module. Use this method only if you want to write native Jython data and read it back with HIPE or
with another Jython/Python interpreter. The pi ckl e module has the following limitations:

» Dataarewrittentothefilein binary format, so you cannot read and change the file with atext editor.

» The pi ckl e command can be used only with native Jython data. To save the HIPE-specific data
described in Chapter 2, refer to the Data Analysis Guide: Chapter 2 in Data Analysis Guide.

» Donotusepi ckl e if youwant to exchange datawith other applications. Instead, use table datasets,
explained in Section 2.4, and save them to FITS or text filesviaaright click.

Y ou can write datausing pi ckl e asin the following example:

inmport pickle # Inporting nodule, you need to do it only once
a=1[1,2,3] # Creating two lists

b =1[3,4,5]

file = open("output.txt", "wb')

pi ckl e. dunp(a, file) # Saving lists to file

pi ckl e. dunp(b, file)

Example 1.59. How to use the well-known picklelibrary.

See Section 1.26 for information on how to read back into HIPE data saved with pi ckl e.

Reading numeric values from file

If you have written data to file using pi ckl e (see Section 1.25) you can read them back as in the
following example:

nport pickle # Inporting nodule, you need to do it only once
ile = open("output.txt", 'rb'")

pi ckle.load(file) # Read first record into a

pi ckle.load(file) # Read second record into b
d

i
f
a =
b =
And so on until the end of the file

Example 1.60. L oad data from file serialised using the picklelibrary.

Records can be simple numeric values or more complex Jython data structures such aslists, dictionar-
iesor classes. The HIPE-specific data structures described in Chapter 2 cannot be read from file using
pi ckl e. For information on how to read data from text files into HIPE-specific data structures, see
the Data Analysis Guide: Chapter 2 in Data Analysis Guide.

Functions

A function is a code block with a name. Y ou use the function name to call the function, that is, to
execute its code block.

A function may have aset of input parameters and one return parameter. Input parameters are values
that the function needs to execute its code. The output parameter is the result of the code execution.

Y ou create a function with the keyword def :

def square (x)

20

Scripting and Jython basics Build 15.0.3262

return x*x
Example 1.61. Defining functionsin Jython.

Thesquar e function takes one input parameter, called x. The following line calls the function pass-
ing 2 asthe value for the input parameter:

print square(2) # 4

The arguments of the functions are passed by value. This means that input arguments are not changed
outside the function:

def nyfunc(a)

a=a+1
return a
#
x = 4.0
print nmyfunc(x) # Passing x as input paraneter
5.0
print x # The function returned 5.0, but x was not changed
4.0

Example 1.62. Declaring functionsfor reuse.

Note that variablesfrom the main HIPE session have global scope: they are accessibleinside functions
but cannot be changed. The example below gives an error:

def myfunc(a)
a=a+1l
X =X +5
return a
#
X =4.0
print nyfunc(x)
<type 'exceptions. UnboundLocal Error'>: local variable 'x' referenced before
assi gnnent

Example 1.63. Global variablesin Jython.

Using global variables. The following example shows a dangerous effect of relying on global
variables:

def nyfunc(a)
return a*z + 1

#
x =4.0

z = 10.0

print myfunc(x)

41.0

Example 1.64. Declaring a global variable can be dangerousin an interpreted language like Jython.

The function works before the global variable z has been defined. However, thereis no guarantee that
z will be defined in future HIPE sessions, which could cause the function to give an error. The advice
isto always pass global variables as function arguments, as in the following example:

def myfunc(a, z)
return a*z + 1

4.0
10.0
rint nyfunc(x, z)

21

Scripting and Jython basics Build 15.0.3262

1.28

41.0

Example 1.65. Passing global variables as function arguments.

Default argument values. Input arguments may have default values. Thisisillustrated by the fol-
lowing example:

def nyfunc(x, y=1.0, ver bose=Tr ue)
Z = X*X +y
if (verbose)
print "The input is % % and the output is %" %Xy, z)
return z
#
myfunc(5.0) # Using default values for y and verbose
The input is 5.000000 1.000000 and the output is 26.000000
print nyfunc(5.0, y=5.0, ver bose=Fal se)
30.0
print myfunc(5.0,5.0, Fal se) # The sane as the previous
30. 0.
print myfunc(5.0,5.0)
The input is 5.000000 5.000000 and the output is 30.000000
30.0

Example 1.66. Setting default valuesfor function arguments.

Functions asfunction arguments. The arguments of a function can be functions themselves, like
in the following example:

def funcl(x)
return x*x

def func2(x)
return x/2.0

def nyfunc(f1,f2,x)
return f1(x) + f2(x)

= 3.0

#
X .
print myfunc(funcl, func2, x)
10.5

Even the user can input any avail able function of one argunent
print myfunc(SIN, funcil, x)

1.6411200080598671

Example 1.67. Passing functions as argumentsis allowed in Jython.

Functionswithout input arguments. To define and call afunction without input arguments, then
the () bracketsare still required:

def nyfunc(): # No argunents
print "This function just prints a nessage."
#
myfunc() # Calling the function
This function just prints a message

Example 1.68. Declaring a function without arguments.

Executing HIPE tasks from your scripts

HIPE tasks are prepackaged functions that take one or more input parameters and return results as
output parameters. Y ou can execute tasks from your scripts, thus taking advantage of HIPE advanced
features.

All taskshave agraphical interface you can open from the Tasksview of HIPE. Thegraphical interface
offers an easy way to find out the correct syntax to execute atask from a script:

22

Scripting and Jython basics Build 15.0.3262

1.29

1.30

1. Open thetask graphical interface by double clicking on the task name in the Tasks view.
2. Fill the task parameters with values and press Accept to run the task.

3. Thecommand corresponding to thetask execution appearsin the Consoleview. Copy the command
to anew line of your script.

4. Make any changes to adapt the command to your script. For example, you may want to substitute
aliteral value with avariable name.

For more information on running tasks, see Chapter 6.

If you want to create atask from scratch, or to modify an existing task, see these tutorials on the HIPE
community website:

» Creating your first Jython task

» Modifying an existing Jython task

Classes

A classisabundle of variables and special functions called methods.

From a class you create, or instantiate, objects. You can think of a class as a blueprint from which
you can create many objects.

Each object has a status and abehaviour. The status of an object is defined by itsvariables (also called
instance variables), and its behaviour is defined by its methods.

See the following section for an example of creating and using a class in Jython.

Creating and using classes

The following code creates a class called Basket :

cl ass Basket:

" A basket that can contain many itens.' # <co id="Basket.doc-co"
| i nkends="Basket . doc" />
def __init__(self, contents=None): # <co id="Basket.constr-co"
| i nkends="Basket . constr" />
sel f.contents = contents or [] # <co id="Basket.__init__-co"
I i nkends="Basket. _init__" />
def add(self, element):
sel f.contents. append(el enent) # <co id="Basket.add-co" |inkends="Basket.add" /

def print_me(self):

result ="'
for elenent in self.contents:
result =result +" " + “elenent’ # <co id="Basket.print_ne-co"

|'i nkends="Basket . pri nt_ne. add" />
print "Basket contains: "+result

Example 1.69. How to create a Jython class.

Bas- Thislineisadocumentation string, a short description of the class that you can see by invoking
ket.dabecorPPAand pri nt Basket. doc__ (notethetwo underscore characters before and after
doc).

Bas- Thisline declares a constructor, that is, aspecial methodcalled i nit __ thatiscaled when
ket.coreu want to create an object from a class. Note the two underscore characters before and after
str-cai AP2 , and thesel f parameter, which must always be present.

Bas- Thisline definestheinstance variable cont ent s, which holds the contents of the basket. You
ket. _gatpassmof@@ contents when you create a Basket object, otherwise you get an empty basket.

23

http://wiki.cosmos.esa.int/herschel/index.php?title=Creating_your_first_Jython_task
http://wiki.cosmos.esa.int/herschel/index.php?title=Modifying_an_existing_Jython_task

Scripting and Jython basics Build 15.0.3262

Bas- Theadd methodsadds an element to the contents of the basket (that is, tothesel f. cont ent s
ket.addudabl®)?

Bas- Thisline, part of the pri nt _ne method, prints the contents of the basket. Note the use of the
ket. primtentesamorP@as around el errent .

The class has one variable cont ent s and two methods, add and pri nt _me() (following def
in the above example).

Y ou can put the above class definition in ascript in the Editor view and run it al so that HIPE "knows"
about the Basket class. Now you can instantiate the class, that is, create a particular basket from
the Basket "blueprint":

a = Basket() # @
a.add("saw') # ©
a.add("hanmmer") # ©
a.print_me() # O

Example 1.70. Instantiating and using methods from a class.

Sets up an empty basket called a.

Adds the item sawto the basket. It runs the add method on the object a.

Addstheitem hamrer to the basket.

Prints the contents of the basket called a, which should be saw and hanmrer . The command
runsthe pri nt _me method on the object a.

[~)

Y ou could equally have created your basket with one item:
a = Basket (["saw'])

Example 1.71. Passing parametersto the class constructor.

Note

@ If you had written a = Basket ("saw') (without the square brackets) the
print_ne() method would have returned this: Basket contains: 's' 'a'
"W

The general syntax for calling methodsisobj ect . net hod(argl, arg2).

In the previous example a is the object, while add and pri nt _me are the methods. Note that you
do not explicitly call the__i ni t ___ method when you construct an object. Instead, you call the class
name, with or without arguments, depending on the class: in the previousexamples,a = Basket ()
ora = Basket(["saw']).

1.30.1. Printing objects

You can usethe special __str__ method to define a string representation of an object, that is dis-
played when you use the pri nt command on the object.

Inthe Basket classscript, replacethe pri nt _me method with the following method:

def __str__ (self):

result ="'
for element in self.contents:

result =result +" " + “elenent’
result = "Basket contains: " + result

return result
Example 1.72. Overriding the default behaviour of the __str__method.

Now youcanuseprint str(a) insteadof a. pri nt _ne() todisplay the contents of the basket.

24

Scripting and Jython basics Build 15.0.3262

1.31. Naming conventions for classes and
variables

Thefollowing rules are used to name classes and objectsin HIPE. Y ou are advised to follow the same
rules when creating your own.

+ Classes
Class names consist of words with capitalised initials:

MyOmndCl ass
Tabl eDat aset
Hi fi Product

* Classinstances (objects)

Objects (variables) of a particular class have names that start with the first letter in lower case. In
general, thistrandates to the following;:

nmyOmdC ass = MyOnC ass(....)
tabl e = Tabl eDat aset ()
a =2

Example 1.73. Naming conventionsfor objects.
» Constants

Constantshave nameswith all their | etters capitalised and words separated by an underscore' '. This
rule also appliesto so-called static instances. An exampleis Sl N: it isthe only allowed instance of
class Si n, sinceit does not make sense to have multipleinstances (they all would compute the sine
of an angle in the same way). Some examples are the following:

VARI ANCE
IS FINTE
ALL_PRESENT

1.32. Creating aliases for class and function
names

The names of classes and functions in HIPE are generally long and descriptive, such as Tabl e-
Dat aset rather than TDset .

L onger, descriptive namestend to make scripts more readable. However, you can create shorter aliases
to save typing as shown by the following example:

TDset = Tabl eDat aset
Example 1.74. Creating aliases.

You cannow use TDset asyouwould usetheoriginal name Tabl eDat aset . For moreinformation
onwhat aTabl eDat aset is, see Section 2.4.

1.33. Importing modules

Most useful classes and functions are put into Jython modules or Java packages. These are then im-
ported into a given environment or program with thei nport statement.

25

Scripting and Jython basics Build 15.0.3262

In Python and Jython, source code is automatically organised in modules by means of each file being
a module. Additionally, you can create Jython packages, which are directories with script files that
also contain a special filecalled i nit__. py. When importing other modules or packages, take
specia care in identifying the visibility of anything you have imported. For example, HCSS tasks
usually have an alias (or short name, see the URM for reference), e.g.: cal cAtti t ude isan dias
for Cal cAttit udeTask. If you want to use the alias of atask when using command-line hipe or
when several packages are involved, the best way is to re-create the alias by instancing the task (see
Section 1.31):

from herschel . i a. tool box. poi nting inport Cal cAttitudeTask
cal cAttitude = Cal cAttitudeTask()
def function()

cal cAttitude(...)

Example 1.75. Instantiating/aliasing an imported task.

Thisinstantiation statement will beimported along with your package or module and will be accessible
when Jython executesf unct i on inthe context of the caller module, avoidingananme not found
error.

Try issuing the following command from within HIPE:

print localtinme()
Example 1.76. Executing methods from non-imported modules.
You get an error:

<type 'exceptions. NanmeError' > nanme 'localtine' is not defined

Thisisbecause, althoughthel ocal t i ne functionispart of the software distribution, it has not been
imported into your session. Thel ocal ti me functionispart of thet i ne Jython module, which you
can import by issuing this command:

inmport tine
Example 1.77. Import statement.

This imports the entire module, but forces you to use the qualified name of the function (that is,
including the module name):

print time.localtine()
(2011, 9, 2, 12, 19, 46, 4, 245, 1)

Example 1.78. Using names after importing a whole module.

The following syntax allows you to usethel ocal t i me function without the qualified name:

fromtine inport |ocaltine
print time.asctine(localtinme())
Fri Sep 2 12:20:31 2011

Example 1.79.

Note that asct i me, which converts the time into a human-friendly format, still needs the qualified
name. To import more than one name from amodule, use acomma-separated list like in the following
example:

fromtine inport localtine, asctine
print asctime(localtinme())

26

Scripting and Jython basics Build 15.0.3262

Sun May 17 10: 44: 35 2009
Example 1.80. Importing several names from a module.

Note that some of the names imported from the module could overwrite names you defined locally.
To see dl the names contained in a module, use the following command (here for thet i me module):

print dir(tinme)
To avoid name clashes, you can define a different name from what you import:

fromtine inport localtime as Itine
print Itime()
(2011, 9, 2, 12, 19, 46, 4, 245, 1)

Example 1.81. Aliasing importsto avoid hame clashes.
Importing Java packages works in exactly the same way as importing Jython modules.

Most of the functions you are likely to need are imported automatically when HIPE starts, so you
won't need to use thei nport statement very often.

What modulescan you import? Thelist of modulesyou canimport into HIPE isvirtually endless.
Moreover, you will need only asmall fraction of all the modules you can theoretically import. When
amodule is not imported automatically by HIPE, the code examples in the documentation show the
necessary import statements.

If you want to have alook at what is available, these are some reference resources:

* HIPE-specific modulesand packages. Chapter 8 hasalist of the main packages that come with
your HIPE installation. For amore comprehensive list see the Devel oper's Reference Manual.

» Jython native modules. See the online Jython standard library reference.

» Java native packages. See the online Java reference documentation. This resourcesis likely to
be useful only if you are familiar with Java and know what you are looking for.

Warning

o Starting from HIPE 8, Jython was upgraded from version 2.1 to version 2.5. Some import
rules have changed, which could cause old scripts to stop working. For more information
see the Jython upgrade page on the Herschel public TWiki.

1.33.1. Importing, reloading and unimporting your own
modules

Suppose you have written the module myModul e. py and placed it into / home/ user / sone/
f ol der . The module file contains the following:

"""Thi s nodul e contains one sinple function"""

def sinpl eFunc():
print "Sinple nessage."”

Example 1.82. Self-contained module with documentation.
To have your module imported automatically when HIPE starts, you can modify the property hc-
ss.interpreter.inports.Todoso, follow these steps:

1. Choose Edit - Preferences. The Preferences window opens.

27

http://www.jython.org/docs/library/
http://docs.oracle.com/javase/8/docs/api/
http://herschel.esac.esa.int/twiki/bin/view/Public/JythonUpgrade

Scripting and Jython basics Build 15.0.3262

2. Click the Advanced button and answer Yes to the warning. The Properties window opens.

3. Inthe Filter by property nametext field, writehcss. i nt er pret er. i nports. Thisproperty
isthe only oneleft in the list. If you have not modified it previously, its value should be{ } .

4. Double click the Value cell to modify it. List al the files you want to import automatically, likein
the following example (but all on the same line):

{ /' hone/ user/sone/ fol der/ nyMdul e. py,
/ hone/ user/ anot her/ f ol der/ anot her Modul e. py }

5. Click Save and then Close. Click OK to close the Preferences window.

6. Restart HIPE. Y our modules are now imported. In the case of the si npl eFunc() example, the
function will be immediately available in the Console view:

si npl eFunc()
Sinpl e message

Example 1.83. Demonstrating that modulesimported at start-up are availablein HIPE.

With this property you can also execute alist of custom i nport statements when HIPE starts. Just
add them to afile, for instancei nport s. py:

from sone. nodul e i nport Foo
from anot her. nodul e i nport Bar

Example 1.84. Creating a file with just importsfor HIPE start-up.
Then add thei nports. py filetothehcss. i nterpreter.inports property:

{ / hone/user/ sone/ f ol der/ nyModul e. py
/ hone/ user/ anot her/ f ol der/ anot her Mbdul e. py,
/ hone/ user/yet/anot her/fol der/inports. py }

If your moduleis not imported automatically, you can import it on the fly within HIPE. First you have
to add the directory containing the module to the list of paths searched by Jython:

i mport sys

sys. pat h. append(' / hone/ user/sone/fol der')
i mport myModul e

myModul e. si npl eFunc()

Sinmpl e message

Example 1.85. How to modify the Jython classpath at runtime.

Reloading a module. If you modify your module and want to apply the changes to your current
HIPE session, use thereload command:

r el oad(myModul e)
Example 1.86. Reloading updates the module loaded in memory with the latest changes from the source

files.

Unimportingamodule. Tounimport amodulesothat itisno longer availablein your HIPE session,
use the del command:

del (myModul e)

Example 1.87. Removing a module from memory using del.

28

Scripting and Jython basics Build 15.0.3262

Of course this command does not delete the my Modul e. py file.

1.34. Understanding pipeline scripts

1.35

Rather than writing scripts from scratch, you may have to understand and possibly modify scripts
written by others. This is especially true for pipeline scripts, available from the Pipelines menu in
HIPE. These are the scripts you run when you want to reprocess your data.

Pipeline scripts are essentially a series of task calls. For specific details on running and understanding
pipeline scripts for a given instrument and observing mode, see the instrument manuals:

* HIFI.

» PACS photometry.

» PACS spectroscopy.

SPIRE photometry.

« SPIRE spectroscopy.

To fully understand a pipeline script you must also understand the tasks it calls. You can see the
documentation and the source code of each task by following these steps:

1. Find the task in the Tasks view and double click on it. The task dialogue window opens in the
Editor view of HIPE.

2. Click Help to open the task entry in the User's Reference Manual.

3. Click Source to open the source code of the task in the Editor view. For thisto work you must have
chosen to include the source code when installing HIPE.

Note that most HIPE tasks are written in Java, so you will need some familiarity with thislanguage
to understand their source code.

Accessing files and directories

It is possible to print the file contents of the current working directory using the following in aconsole
window.

i mport os

Print the working directory

print os.getcwd()

Print the nanes of the files in the working directory
print os.listdir(os.getcwd())

Any directory nanme can be placed in the brackets
print os.listdir('anotherDirectory')

Example 1.88. How to list the contents of the current directory.

The listdir provides an unsorted listing of al the files and subdirectories within a directory. Use the
glob module to filter thefilelist. Y ou can use wildcards such as"*", "?", "[]" and so on:

import gl ob

fitsfiles = glob.glob("/nmy/directory/*.fits")

fitsfiles is a list of the files that were found.
print fitsfiles # Print the |ist

Example 1.89. Using the glob moduleto recursively list files with wildcard matching.

29

../../hifi_um/html/runninghifipipeline.html
../../pacs_phot/html/PdrgP.Chp.2.html
../../pacs_spec/html/PdrgS.Chp.2.html
../../spire_drg/html/spire-photometer.html
../../spire_drg/html/spire-spectroscopy.html

Scripting and Jython basics Build 15.0.3262

1.36. Adding simple dialogue windows

This section explains how you can make your scripts more interactive, having them asking the user
for input and reacting accordingly.

The scripts in the following subsections use Swing, a Java library used to create graphical interfaces.
For more information about using Swing in Jython scripts, a possible source is the first chapter of

the Jython Book.
1.36.1. Dialogue box with message

The following example shows how to display a message in awindow, together with an OK button:

fromjavax.swi ng inport JOptionPane

print "Let's stop for a while"

JOpt i onPane. showiessageDi al og(None, "Press OK to continue")
print "Well done."

Example 1.90. Using pure Javato display dialoguesto the user.

Thefirst line imports the swing package (note that it isj avax rather than j ava). Then we have the
line creating the window, embedded between two lines printing text messages to demonstrate that the
script will not advance until we press the OK button.

B Message o

@ Press OK 1o continue

Figure 1.1. The window that appears calling the Swing showMessageDi al og method.

In the above example, the first parameter of showMessageDi al og isset to None. This parameter
indicates the "parent" element of the dialogue box. For creating single dialogue boxes, you do not
need to set this parameter to anything else.

Y ou can add two more parameters to customise the window title and the icon:

JOpt i onPane. showessageDi al og(None, "Press OK to continue", "Title bar text", \
JOpt i onPane. ERROR_MESSAGE)

Example 1.91. Configuring the style of Java dialogues.

Note that the third and four parameters must both be present. You cannot specify only the title or
theicon.

B Title bar text ©

® Press OK to continue

Figure1.2. Customising theicon and the window title.

30

http://www.jython.org/jythonbook/en/1.0/GUIApplications.html

Scripting and Jython basics Build 15.0.3262

BesidesERROR _MESSAGE, other availableiconsarel NFORVATI ON_MESSAGE, WARNI NG_MES-
SAGE, QUESTI ON_MESSAGE and PLAI N_MESSACE.

1.36.2. Dialogue box with text input field
The following command creates a window for entering text, just like ther aw_i nput function:

nyAnswer = JOpti onPane. show nput Di al og(None, "Please wite sonething, anything")

Example 1.92. Using input dialoguesto retrieve data from the user.

E\ Please write something, anything

| OK H Cancel‘

Figure 1.3. Thewindow that appears calling the Swing\show nput Di al og method.

Additional options are available for this method as well:

nyAnswer = JOpti onPane. show nput Di al og(None, "Please wite sonething, anything", \
"Bi g question", JOptionPane. QUESTI ON_MESSAGE)

Example 1.93. Customising the style of input dialogues.

You can aso put adefault string of text in the box, like this:

nyAnswer = JOpti onPane. show nput Di al og(None, "Please wite sonething, anything", \
"Default text")

Example 1.94. Providing a default value for input dialogues.

If you want the user to choose from a predefined set of options, you can use show nput Di al og,
as the following script demonstrates:

fromjavax.swi ng inport JOpti onPane
myAnswer = ""
possi bl eAnswers = ["H FI", "PACS", "SPIRE', "No clue", "All three"]
whil e nyAnswer == "":
nmyAnswer = JOpti onPane. show nput Di al og(None, "Favourite Herschel instrunent?", \
"Test", JOptionPane. QUESTI ON_MESSAGE, None, possi bl eAnswers, possi bl eAnswers[4])
if myAnswer == None:
myAnswer = ""
print "Your answer is: " + nmyAnswer

Example 1.95. Using liststo restrict the valuesto usein an input dialogue.

IE Favourite Herschel instrument?
|SPIRE |v

| Ok || Cancel|

Figure 1.4. A more complex window with a combo box.

31

Scripting and Jython basics Build 15.0.3262

Let us go through the parameters one by one:

1. None: the "parent”" element.

2. "Favourite Herschel instrumnment?":thewindow text.

3. "Test " : thewindow title text.

4. JOpt i onPane. QUESTI ON_MESSACE: the type of window.

5. None: the custom icon. We choose to provide no one and stick with the default one.
6. possi bl eAnswer s: the array of possible answers.

7. possi bl eAnswer s[4] : the default answer.

1.36.3. Dialogue box asking yes/no question

TheshowConf i r nDi al og method can be used to display a window asking the user to confirm or
block acertain action:

fromjavax.swi ng inport JOpti onPane

myAnswer = JOpti onPane. showConfirnDi al og(None, "Yes or no?")

if myAnswer == O: # Now nyAnswer is an integer variable
print "You agree"

elif myAnswer == 1:
print "You disagree"

el se:
print "You have no opinion on this"

Example 1.96. Displaying a confirmation dialogue.

B Selectan Option -

? Yes or no?

| Yes || No HCanceI

Figure 1.5. Using the Swing showConf i r nDi al og method.

Y ou can use predefined constants to make the code easier to understand:

fromjavax.swi ng inport JOpti onPane
nmyAnswer = JOpti onPane. showConfirnDi al og(None, "Yes or no?")
if myAnswer == JOpti onPane. YES_OPTI ON:
print "You agree"
elif myAnswer == JQpti onPane. NO_OPTI ON\:
print "You di sagree"
elif myAnswer == JOpti onPane. CANCEL_OPTI ON:
print "You have no opinion on this"
elif myAnswer == JOpti onPane. CLOSED OPTI ON:
print "You cl osed the wi ndow. How rude!"

Example 1.97. Using constantsinstead of the automatic indexesto improve readability.

Y ou can add another two parametersto provide atitle for the window and the type of buttonsyou want:

nyAnswer = JOpti onPane. showConfirnDi al og(None, "Yes or no?", "Question", \

32

Scripting and Jython basics Build 15.0.3262

1.37

1.38

JOpt i onPane. YES_NO_OPTI ON)

Example 1.98. Adding title and button type to the confirmation dialogue.

Other possible optionsare YES_NO_CANCEL _ OPTI ON, OK_CANCEL _OPTI ON, both self-explana-
tory, and DEFAULT_OPTI ON, which just displays an OK button.

Pausing and debugging scripts

You can pause a script at any point using the pause() command. This allows you to inspect and
change variable values while the script is paused, and to resume execution with the new values. This
is especially useful to diagnose problems in a script.

Run the following example script:

a = 10

pause() # Pause here. You can change the value of a in the debugger.
print a

pause() # Pause agai n.

print a

Example 1.99. Pausing a script to allow debugging or printing text to console.

When thefirst pause() statement isreached, the following window appears:

I Debug window
Lonsale

@ a

4k
DEBUG

Figure 1.6. The Debug window

Click on a variable name to display a summary in the right-hand area of the window. You can also
change the value of avariable at the DEBUG> prompt. For example, try changing the value of a by
writinga = 100 at the DEBUG> prompt and pressing Enter. Then resume the script execution by
choosing Console - Resume, and see the new value for a reflected inthe pri nt statements.

Another way to resume the execution of the script istoissuether esune() command at the DEBUG>
prompt. Note that using r esune() elsewhere, for instance in a script or in the Console view, has
no effect.

Interoperating with external software

HIPE offers a complete solution for reducing, visualising and analysing your data. However, for a
variety of reasons you may want to do some processing with other astronomical or data analysis soft-
ware, such as IDL or IRAF. This section explains how to do that.

Any data processing, whether done through an official pipeline or a custom script, is a series of tasks
applied on products, like in the code fragment below. For more information on tasks, see Chapter 6;
for more information on products, see Section 2.8.

33

Scripting and Jython basics Build 15.0.3262

product _2
product _3

TaskA() (product _1)
TaskB() (product _2)

Example 1.100. Outline on how to create a pipeline executing tasks sequentially.

Any task can output a product representing the state of processing up to that point. For example,
product 2 istheresult of processing by TaskA, before TaskB is applied.

To continue processing outside HIPE, you only have to export a product to FITS format, as explained
in the Data Analysis Guide in Data Analysis Guide. See also thesi npl eFi t sWi t er entry inthe
User's Reference Manual: Section 1.383 in HCSS User's Reference Manual.

Y ou can start processing outside HIPE with the sy st eminstruction. For example, to launch the my-
Command command insert the following in your script:

os. systen(' myCommand')
Example 1.101. Executing platform binariesfrom within HIPE.

For thisto work you need to import the os module first:

i mport os

Example 1.102. Importing the Jython module that allows communication with the operating system.

Note
@ Withos. syst emyou executeexternal software outside HIPE, which meansthat you will
not get feedback from the external command in the Console view of HIPE. For example,
if you are working on Linux and try to list filesin the current directory with the following
command, you will not get any resullt:

os.systenm('Is")

However, if you started HIPE from a command line window, you will see the output of
the Is command in that window.

By the way, you can use this command to obtain a list of files in the current directory
from within HIPE:

print os.listdir('.")

Example 1.103. Listing the contents of a directory.

ThemyCommand executable could be, for instance, ashell script with further processing instructions.
Whatever your external processing, it must accept asinput the FITS file produced by HIPE, and must
output another FITSfilethat can then be loaded into HIPE again. For more information on how to load
aFITSfileinto HIPE, seethef i t sReader entry inthe User's Reference Manual: Section 1.147 in
HCSS User's Reference Manual.

A script with part of the processing carried out outside HIPE would look something like this:

i nport os

aProduct = aTask() (i nput Product)

sinmpl eFitsWiter(product = aProduct, file = "aProduct.fits")

os. systen(' myCommand') # Reads aProduct.fits, produces output.fits
out put Product = fitsReader(file = "output.fits")

Example 1.104. Mixed processing with external commands and HIPE tasks.

1.39. Developing version-aware scripts

34

Scripting and Jython basics Build 15.0.3262

There are times when you require your scripts to check for the current HIPE version in order to use
features that were introduced in a particular version or build. To do that you have two options, de-
pending on the type of HIPE release that you want to check.

User releases: These rel eases are downloaded from the HIPE official page and use a Java-based in-
staller that sets some propertiesin several configuration files. One of these propertiesishcss. r e-
| ease. user and can beretrieved in Jython using the standard Java method:

version = java.l ang. System get Property("hcss. rel ease. user")
Example 1.105. Getting the version number of a user release (method 1).

Note that you can also usethe Conf i gur at i on classto retrieve this property:

versi on = Configuration. getProperty("hcss.rel ease. user")
Example 1.106. Getting the version number of a user release (method 2).
The string returned by both methods contains the version number in " maj or . m nor " format.

Developer builds (also known as CIB builds): These releases are generated each time anew change
in HIPE isintegrated and can be downloaded from the Continuous Integration Build (CIB) system

pages.

Note

@ These builds are not tested as much as the user releases and may not be suitable for
you if you are not a developer.

These builds do not set any property in the configuration system, but there are static methods (in
the Conf i gur at i on class) to obtain the version of a particular developer build. You can see an
example using these methods below:

pi = Configuration.getProjectlnfo()

pi.getBuild() # Retrieves the build nunber

pi.getTrack() # Retrieves the version (in "mjor.mnor" format)

pi.getVersion() # Retrieves the conplete version string (in "major. mnor. build"
format)

Example 1.107. Getting the build number of a developer build.

1.40. Sharing scripts

If you have asmall number of files you want to share with your colleagues, you can just send the. py
files by whatever means you prefer, for example by email.

If you have larger collections of scripts, you may want to pack them into a HIPE plug-in. Thisallows
other usersto easily install, update and remove all your scripts at once.

To share Jython scripts as a HIPE plug-in, follow these steps:

1

2.

Put al the scripts you want to share into a directory and rename this directory scri pt s.

Compress the directory into a zip file. The zip file must contain the scri pt s directory with the
scripts, not just the scripts.

. Rename the zip file as follows: plug-in name, followed by an underscore, followed by a version

number. The version number can be any number of digits separated by dots. An example of avalid
filenameisMyScri pts_0. 1. zi p.

. Thezipfileisthe plug-initself. Y ou can now shareit, for example by linking to it from aweb page.

35

http://herschel.esac.esa.int/hipe/
http://herschel.esac.esa.int/hcss/install.php
http://herschel.esac.esa.int/hcss/install.php

Scripting and Jython basics Build 15.0.3262

For information on installing HIPE plug-ins see the HIPE Owner's Guide: Section 6 in HIPE Owner's

Guide.

1.41. IDL to HIPE command mapping

1.41.1. Idl to Jython mapping

Thefollowing tables contain the HIPE equivalents of the most common IDL commands and functions.

X

Warning

HIPE uses [row, col umm] as notation for two-dimensional arrays, while IDL uses
[col um, row . In addition, HIPE uses row major ordering when allocating array
elements into memory: elementsin the first row are allocated first, followed by elements
in the second row, and so on. IDL uses column major ordering instead. This difference
also holds for arrays of more than two dimensions.

This means that IDL scripts involving loops on large arrays will suffer big performance
penalties unlessthey are adapted to row major ordering. Write your loops so that el ements
are accessed in the same order they are located in memory:

x =1[[21,2,3], [4,5,6]] # Two rows, three colums
Order of elements in menory: 1 2 3 4 5 6
Correct way of | ooping:
for i inrange (2): # Loop on rows
for j in range (3): # Loop on columms
print x[i][j]

Y ou should also use array operations instead of loops whenever possible. Look here for
more information: Section 2.2.10.

Basic commands IDL HIPE equivalent
Create avariable a=5 a=5

Get info on avariable type help, a printa._ class
Print value of variable print, a print a

Create an array a=[2,3] a=Floatld([2., 3.])
Create alist - a=[2,3]

Create an automatic array a = findgen(10) a= Floatld.range(10)
Get info on array variable print, a print a

Get one element of array print,a(1) print a[1]

Define new 1D array of 10 ele-
ments

a = fltarr(10)

a=Float1d(10)

Assign value inside an array

a(4) = 219

a4] =219

Define new 2D array of 5 rows,
10 columns

a=fltarr(10,5)

a= Float2d(5, 10)

First element index number 0 0

Pausetime wait time.sleep()
Execute script execute() exec()

Plot commands IDL HIPE equivalent

Open a plotting window

window,retain = 2

p = PlotXY()

Plot two numeric arraysa & b

plot,ab

p = PlotXY(ab)

36

Scripting and Jython basics

Build 15.0.3262

Plot commands

IDL

HIPE equivalent

Define axis ranges and styles

plot,a,b,[xy]range
[xy]title = "lambda"

[0.,10],

PlotXY (a,b,[xy]range = [0.,10.],
[xy]title = "λ")

Defineline style

plot,ab,linestyle=1

p.styleline=2

Define plotting symbol

plot,ab,psym =2

p.style.symbol =5

Define plot title

plot,abtitle ="title

PlotXY (ab,titleText = 'title)

Overplot oplot,ac p[1] = LayerXY (a,c)

Make annotations xyouts,0.2,0.7,Label' d.addAnnotation("Label", 0.2,
0.7)

Save as postscript set_plot,'ps p.saveAsEPS("file.ps")

device filename = "file.ps"

device,/close
set_plot,'X'
Save as PG - p.saveAsIPG("filejpg")
Save as PNG - p.saveAsPNG("file.png")
Save as PDF - p.saveAsPDF("file.pdf")
Further customisations - (right-click on plot and select
Properties)
Data import/export com-|IDL HIPE equivalent
mands
Read atext table readcol,file.dat',a,b,c t = smpleAsciiTableReader(file
="file.dat")
Plot read data plot,ab p = PlotXY(t["c0"].getData(),

{["c1"].getData())

or right-click on t and choose
Open with TablePlotter

Read a comma separated table
(.cov) text file

readcol,'file.csv',

DELIMITER ="

t = asciiTableReader(file
"file.csv")

Read aimage FITSfile

im = mrdfits("image.fits")

im=fitsReader(file="imagefit-
s)

Display an image

tved,im

right-click on "im" and Open
with "ImageViewer"

Read acube FITSfile

cube = mrdfits("cube.fits")

im = fitsReader(file = "cubefit-
s')

Display acube

right-click on "cube" and Open
with "CubeAnalysisToolbox"

Read a spectrum FITSfile

sp = mrdfits(" spec.fits")

sp =fitsReader(file ="spec.fits")

Display a spectrum plot,wave,flux right-click on "sp" and Open
with " SpectrumExplorer”

Writeto FITS mwrfits,image,'image.fits simpleFitswriter(product = im-
age, file ="imagefits")

Writeatext table (csv by default) | get_un,u asciiTableWriter(table =t, file =

"file.csv")

37

Scripting and Jython basics

Build 15.0.3262

Data import/export
mands

IDL

HIPE equivalent

openw, u, file.csv'

printf,u,ab
closeu
free lun,u
Arithmetics commands IDL HIPE equivalent
Add 3+4 3+4
Multiply 3.*4 3.*4
Powers 34 3**4
Absolute value abs() absolute(), fabs()
Arc cosine acos() arccos()
Natural logarithm aog() log()
Base 10 logarithm aogl0() 10g10()
Arcsine asin() arcsin()
Arc tangent atan() arctan()
Cell ceil() ceil()
Conjugate conj() conjutage()
Cosine cos() cos()
Hyperbolic cosine cosh() cosh()
Exponential exp() exp()
Floor floor() floor()
Invert (matrix) invert() Matrix (module)
Bit shift operations ishft() right_shift(),left_shift()
Sine sin() sin()
Hyperbolic sine sinh() sinh()
Square root sart() sart()
Tangent tan() tan()
Hyperbolic tangent tanh() tanh()
Random 0-1 generator randomu() random()
Reverse array 'a reverse(a) a::-1]
Collapse array total(a) sum(a)
Number of elements n_elements() len(), size()
Number of parameters n_params() len(*args)
Extra parameters _extra **kwargs
Array size size() shape(),arrayvar.type()

These are external resources that you may find useful:

» IDL to Python
 Jython homepage

38

http://www.johnny-lin.com/cdat_tips/tips_array/idl2num.html
http://www.jython.org

Scripting and Jython basics Build 15.0.3262

HIPE isbased on Jython 2.5. External examplesfor different Jython/Python versions might not always
work.

39

Build 15.0.3262

Chapter 2. Arrays, datasets and
products

2.1. HIPE-specific data structures

The previous chapter described some data structures available in Jython, such as tuples and dictionar-
ies. This chapter introduces other data structures available in HIPE, but that are not part of Jython:

* Numeric arrays: arrays of boolean, integer, floating point or complex values, from one to five
dimensions. One of their major advantages with respect to Jython lists is the ability to do array
arithmetic in single line commands rather than having to loop through arrays.

» Datasets: sets of arrays with additional information, such as a description of the content of each
array, measurement units, and other metadata. Metadata consist of keyword-value pairs and have
the same role as keywords and their values in the header of aFITSfile.

There are three types of datasets:

* Array datasets: an array dataset contains a single numeric array.

» Table datasets: atable dataset contains one or more numeric arrays organised in columns. The
arrays can be of different types and sizes.

e Composite datasets. a composite dataset is a container for other datasets, including other com-
posite datasets.

» Products; setsof one or more datasets with additional metadata.

» Contexts: special products acting as containers for other products, including other contexts.

2.2. Numeric arrays

Numeric arrays available in HIPE are shown in the following table. A numeric array can have from
oneto five dimensions.

For completeness the following table also shows the St ri ngld array type, which is not a numeric
array. String arrays can only be one-dimensional.

Table2.1. Typesof numericarray (N =1...5)

Name Type
BoolNd boolean
ByteNd byte
ShortNd short

IntNd integer
LongNd long
FloatNd float

DoubleNd double
ComplexNd complex
String1d string

40

Arrays, datasets and products Build 15.0.3262

2.2.1.

2.2.2.

Differences with Jython native arrays. Numeric arrays are optimised for holding Herschel data
and for working with HIPE tasks and tools. Many tasks and functions accept Numeric arrays as their
input, but not native Jython arrays. Y ou are advised to use Numeric arrays when mani pul ating Herschel
data

Creating an array
See the following example for various ways in which you can create a one-dimensiona array:

Doubl eld() # Create an enpty array

Doubl e1d([3.0, 5.5, 2.1, 6.0]) # Create froma Jython array
Doubl eld(4) # [0.0, 0.0, 0.0, 0.0]

Doubl eld(4, 42.0) # [42.0, 42.0, 42.0, 42.0]

Doubl eld.range(4) # [0.0, 1.0, 2.0, 3.0]

KKK
[| | | |

Example 2.1. Declaring an array of doubles.

You can create a complex array, with the same commands. In addition, you can specify real and
imaginary parts separately:

Conpl ex1d() # Create an enpty array

Conpl ex1d([1+4j, 2+3j, 5+8j]) # Create froma Jython array

Conpl ex1d([1, 2, 5], [4, 3, 8]) # Sane result as previ ous conmand
Conpl ex1d(4) # [0j, O0j, 0Oj, 0Oj]

Conpl ex1d(3, 1+4j) # [(1+4j), (1+4j), (1+4j)]

Conpl ex1d. range(4) # [0j, (1+0j), (2+0j), (3+0j)

K <
{1 I | | A 1|

The following example shows how to create atwo-dimensional array. Y ou can create arrays of more
dimensions in the same way:

Doubl e2d() # Create an enpty array

Doubl e2d([[3.0, 5.5], [2.1, 6.0]]) # Create froma Jython array
Doubl e2d(4, 4) # Creates a 4x4 array whose values are all zero.
Doubl e2d(4, 4, 42.0) # Creates a 4x4 array whose values are all 42.

<K<
I

Example 2.2. Declaring a two-dimensional array of doubles.

Rectangular and jagged arrays. Rectangular arrays are multidimensional arrays which always
have the same number of elementsin each row or column. Jython and Java allow you to create jagged
arrays. Jagged arrays are multidimensional arrays where each row can have a different number of
elements. The following example creates a two-dimensional jagged array, with two rows of two and
three elements, respectively:

x =[[1,2], [3,4,5]]

Example 2.3. Creating Jython jagged arrays.

However, you cannot create Numeric jagged arrays.

x = Doubl e2d([[1,2], [3,4,5]]) # Gves an error

Example 2.4. It isimpossible to create Numeric jagged arrays.

Inspecting an array

Array elements along each dimension are defined by an index running from zero to the array length,
minus one;

x = Doubl eld([3.0, 5.0, 9.0, 4.3]) # Four elenents
print x[0] # Prints the first element, 3.0

41

Arrays, datasets and products Build 15.0.3262

2.2.3.

2.2.4.

print x[3] # Prints the fourth element, 4.3

Example 2.5. Accessing array elements using theindices.

To access ranges of elements, or slices, use anotation like[i:j]:

print x[1:3] # Fromindex 1, included, to 3, excluded
[5.0,9.0]

print x[2:] # Fromindex 2, included, to end of array
#[9.0,4.3]

print x[:3] # Fromstart of array to index 3, excluded
#[3.0,5.0,9.0]

Example 2.6. Using array slicesto access ranges from Jython lists.

To access e ementsin multi-dimensional arrays, separate indices or ranges along each dimension with
commas:

x = Int2d([[1,2,3],[4,5,6]])

123

456

print x[1] # 2 (second el enment of the first row)
print x[O0,:] # Row O0: [1,2,3]

print x[1,1] # I ndividual elenment: 5

print x[:,:] # Print entire array. Same as print x
print x[:,1] # Colum 1: [2,5]

Example 2.7. Accessing ranges of indices using slices.

Multi-dimensional arrays are conceptually arrays of lower-dimensional arrays. For atwo-dimensional
array, the first subscript selects arow and the second subscript selects an element within that row (the
column).

Note
@ Thisisthe opposite order to some other computer languages, but it is the same behaviour
asin the Java programming language.

Note the difference in syntax when inspecting native Jython arrays and numeric arrays:

Jython array:

x =1[[1,2,3,4],[5,6,7,8]]

print x[1][2] # 7

print x[1][1:3] #6, 7

Nuneric array:

y = Int2d([[1,2,3,4],[56,7,8]])
print y[1,2] # 7

print y[1,1:3] #6, 7

Example 2.8. Checking the differ ences between Jython arrays and numeric arrays.

Inspecting a complex array

Complex arrays offer the following additional commands:

z = Conpl ex1d([1,2,3,4],[4,3,2,1]) # Set up conplex array

print z.real # [1.0,2.0,3.0,4.0]

print z.imag # [4.0,3.0,2.0,1.0]

print z.conjugate() # [(1.0-4.0j),(2.0-3.0j),(3.0-2.0j),(4.0-1.0j)]

Example 2.9. I nspecting and manipulating a Complex Numeric array.

Modifying an array

42

Arrays, datasets and products Build 15.0.3262

2.2.5.

Y ou can append single values or entire arrays to an existing array:

y = Doubl eld()
y.append(2.0) # Append a single val ue
y. append(Doubl e1d([3.0, 7.5, 2.8])) # Append a whole array

Example 2.10. Appending valuesto an array.

Individual elements or slices can be set as follows:

x[1,2] = 22 # Set an element in place
x[0,1:3] = 42
print x

[
#[2.0,42.0,42.0],
#[1.0,3.0,22.0]
#]

Example 2.11. Assigning values with the use of indices and dlice notation.

Itispossible to set arow to a copy of a 1d array of the same length:

x[0,:]
yl1,:]

[5,6,7,38] # Set a rowto (a copy of) a Jython array
Int1d([9,7,6,5]) # Set a row to a Doubl eld array

Example 2.12. Assign arraysto arrays using slice notation.

Ordering of array elements

The following line of code creates an array of two rows and three columns:

x = Doubl e2d([[2,4,6],[1,3,5]])

Example 2.13. Declaring multidimensional Numeric array.

Y ou can access the element corresponding to the i-th row and j-th column like this:
x[i, j]

Example 2.14. Accessing elementsin multidimensional arrays.

The values are stored sequentially in memory as follows:

[246135]

This means that, if you go through the array elements as they are stored in memory, their indices
would vary asfollows:

x[0,0] x[0,1] x[0,2] x[1,0] x[1,1] x[1,2]

That is, index j variesmore rapidly than index i. This can be generalised to more than two dimensions
by saying that the rightmost index varies most rapidly. Thisis called row-major ordering, and is the
convention followed by languages such as Javaand C, but not Fortran.

This has an implication on performance. When looping through a multidimensional array, it is more
efficient to read its elementsin the order they are stored in memory.

Confusion may arise when dealing with images, which are stored as two-dimensional arrays. If you
visualise the array with horizontal rows and vertical columns, then the number of rows and columns
representsthe size of thevertical (y) and horizontal (x) side of theimage, respectively. When accessing
aparticular pixel (array element), you have to specify the y coordinate before the x coordinate:

nyl mage(y, x)

43

Arrays, datasets and products Build 15.0.3262

2.2.6.

2.2.1.

Numeric array arithmetic

HIPE numeric arrays support arithmetic operationsthat are applied element-by-element. For example:

y = Doubl eld. range(5)

#[0.0,1.0,2.0,3.0,4.0]
print y *y* 2 +1 #[1.0,3.0,9.0,1

9.0, 33.0]
Example 2.15. Applying multiplication and addition to all elementsof an array.

Thisis much simpler (and runs much faster) than writing an explicit loop in Jython. The'+' oper ator
does not concatenate arrays, asit doeswith Jython arrays. For example:

Addi ng Jython arrays
print [0,1,2,3] + [4,5,6,7] #[0, 1, 2, 3, 4, 5 6, 7]

Addi ng numeric arrays
print Doubl eld([O, 1, 2,3]) + Doubl eld([4,5,86,7]) # [4.0,6.0,8.0,10.0]

Concatenate two nuneric arrays
print Doubl eld([O, 1, 2, 3]) . append(Doubl el1d([4,5,6,7]))
#[0.0,1.0,2.0,3.0,4.0,5.0,6.0,7.0]

Addi ng Jython arrays to nuneric arrays
print [0,1,2,3] + Doubleld([4,5,6,7])
print Doubleld([O0,1,2,3]) + [4,5,6,7]

Example 2.16. Concatenating numeric arrays.

All arrays support the following arithmetic operators:

et %

Note that the 'modulo’ operator ‘%' provides the normal Jython semantics for this operation, which
is not the same as that of the Java '%' operator. The Jython definition is more consistent with the
mathematical notion of congruence for negative values.

The following relational operators return aBool 1d array:
<, >, <=, >=, ==, I=
For example:

y = Doubl e1d([0, 1, 2, 3, 4])
print y > 2 # [fal se, fal se, fal se, true, true]

Example 2.17. Applying relational operatorstoa Numeric array.

Selecting and filtering array values

Use thewher e function to select the elements of an array that satisfy a given condition:

y = Doubl e1d([2, 6, 3,8,1,9])
print y.where(y > 4) # [1,3,5] Indices of elenments greater than four

Example 2.18. Filtering array elements with the where method.

Note that the result contains the indices of the elements that satisfy the condition, not the elements
themselves. Y ou can combine more conditions with the & (and), | (or) and ~ (not) operators:

print y.where((y > 4) & (y <
print y.where((y > 8) | (y <

#[1,3]

9)
2)) # [4,5]

44

Arrays, datasets and products Build 15.0.3262

print y.where(~(y > 4)) # [0,2,4]
Example 2.19. M ore complex filtering using the where method.
Y ou can obtain the actual array elements instead of the indices as follows:

print y[y.where(y > 4)] # [6.0,8.0,9.0]
print y.get(y >4) # [6.0,8.0,9.0]

Example 2.20. Accessing the array valueswith afilter.

Obtaining the indices rather than the actual values can be useful, for instance, when you want to select
the same elements from different arrays:

X Doubl eld([5, 6, 7, 8, 9, 10])
S = y.where(y > 4)
print x[s] + y[s] # [12.0,16.0,19.0]

Example 2.21. Adding two arrayswith the same set of filtered array indices.

Y ou can aso use thewher e function to set values:

S = y.where(y > 4)

y[s] = 0 # Set all matching el enents to O

print y #1/[2.0,0.0,3.0,0.0,1.0,0.0]

y[s] =19,8,7] # Set matching el enents using an array
print y #1[2.0,9.0,3.0,8.0,1.0,7.0]

Example 2.22. Assigning values with the results of the where method.

Y ou cannot use the wher e function like this:

a = Doubl eld. range(10)

b = a.where(a < 3)

print b[0] # AttributeError: _ getitem _
print b[0:2] # AttributeError: _ getitem _
print a[b[0]] # AttributeError: _ _getitem _

Example 2.23. The output list of whereisnot accessible by index.

The commands fail becauseb isaSel ect i on object rather than a Jython or Numeric array. For the
above to work you need to convertitto | nt 1d:

c = b.tolnt1d()

print c[0] # O

print c[0:2] # [O,1]

print a[c[0]] # 0.0

Example 2.24. Converting the output of whereto anormal array that you can manipulate.

By converting to | nt 1d you can also loop over al the selected elements:

for i in c:
print a[i]

Example 2.25. Converting the output of where makestheresulting object iterable.

Another useful functionisget , with which you can extract individual elements or a subset of element
values from an array. There are four waysto useit:

» Getasinglevaue:

H PE> print y.get(0)

45

Arrays, datasets and products Build 15.0.3262

2.2.8.

2.0

Thisisthesameaspri nt y[O0].
 Retrieve elements based on aBool 1d array (in other words, a mask):
H PE> mask = Bool 1d([0,0,1,0,1,1])

H PE> print y.get(nmask)
[3.0,1.0,9.0]

The mask array can be shorter than the target array (in which case the remaining elements in the
target array will be ignored), but not longer.

* Retrieve elementsbased on aSel ect i on object:
H PE> indices = Selection([1,2,4])

H PE> print y.get(indices)
[6.0,3.0,1.0]

An out of bounds index will cause an error.
 Retrieve elements based on aRange object:
HI PE> range = Range(2, 4)

print y.get(range)
[3.0,8.0]

Note how the lower boundary (second element) isincluded, while the upper boundary (fourth ele-
ment) is excluded. An out of bounds value will cause an error.

Y ou cancombineget callsto perform the same operation asacompound | DL VWHERE execution such
as the one shown in this example:

IDL> a =[1, 2, 3, 4, 5, 6]
IDL> b =[2, 3, 4, 5 6, 7]
IDL> c =[3, 4, 5 6, 7, 8]
IDL> q = WHERE(a ge 2 and b It 6 and c gt 5)
IDL> x = [a[q],b[q],c[q]]
IDL> print, x
4

5 6

Thisisthe equivalent in HIPE:

q=(a>2) &(b<6) &(c >05)

X = a.get(qg),b.get(qg),c.get(qg) # x == ([4.0], [5.0], [6.0])
HIPE> a = Int1d([1, 2, 3, 4, 5, 6])

HIPE> b = Int1d([2, 3, 4, 5, 6, 7])

HPE> c = Int1d([3, 4, 5, 6, 7, 8]

HPE>q = (a > 2) &(b<86) & (c >5)

H PE> x = a.get(q),b.get(q),c.get(Qq)

HI PE> print x
([41. [5], [6])

Using logical operators with arrays

TheJython logical operatorsand, or andnot work like normal Boolean operators (see Appendix A
for more details), but using them with arrays (both the native Jython arrays and HIPE numeric arrays)
can give unexpected results. The reason isthat these operators do not work on an element-by-element
basis when applied to arrays, but they evaluate the entire array at once.

The Jython bitwise operators, represented by the symbols &, | and * (see Appendix A for more
details) can be used with numeric arrays (I nt 1d, Bool 3d and so on), but what you get is not a

46

Arrays, datasets and products Build 15.0.3262

bitwise comparison. Instead, these operators perform the usual boolean comparisons, but this time
working element by element. Precisely what and, or and not do not do.

Finally, Numeric array classes have the and, or and xor methods acting like boolean operators
working element by element. An example will clarify the differences among all these operators:

j yt honOne [1, 0, O, 1]

j yt honTwo [0, O, 1, 1]

nureri cOne = Bool 1d(j yt honOne)

nureri cTwo = Bool 1d(j yt honTwo)

print jythonOne and jythonTwo

[0, 0, 1, 1] # jythonOne is not enpty so it is treated as true, which neans that
jythonTwo is evaluated and returned

print numericOne and numnericTwo

[fal se,false,true,true] # Sane thing as with the Jython native arrays

print jythonOne & jythonTwo

Here an error is returned

print nunmericOne & nunericTwo

[fal se, fal se,fal se,true] # Here the operator works el enent by el enent

print numericOne. and(nuneri cTwo)

[fal se,fal se,false,true] # Sane thing as the & operator

Example 2.26. Differ ences between Jython and Numeric arrays.

2.2.9. Removing infinite and NaN values from arrays

Toremoveinfiniteand NaN valuesfromanarray, usethel S_FI NI TE,I S_| NFI Nl TEandl S_NAN
functions as shown in the following examples.

First example:

Set up an array with non-finite el ements
x = Doubl eld. range(5) +1

x[0] = Doubl e. NaN

x[3] = Doubl e. POSI TI VE_I NFI NI TY

print x # [NaN, 2.0,3.0,Infinity,5.0]

Keeping finite val ues

q = x.where(lS_FI N TE)
print g # [1,2,4]

print x[q] # [2.0,3.0,5.0]

Example 2.27. Removing infinite and NaN values from an array.

Second example:

Creating a mask
mask = |1 S_FI NI TE(x)
print mask # [false,true,true,false,true]

q = X.wher e(mask)
print g # [1,2,4] (as before)
print x[q] # [2.0,3.0,5.0] (as before)

Asking to filter the non-finite nunbers:
gq = X.wher e(~mask)

print g # [0, 3]

print x[q] # [NaN Infinity]

Repl aci ng sel ected val ues
x[q] =0
print x #[0.0,2.0,3.0,0.0,5.0]

Example 2.28. Creating a filter (mask) with a function ro remove NaNs.

2.2.10. Advanced tips for improved performance

47

Arrays, datasets and products Build 15.0.3262

The underlying array operations and functions are very fast, as they are implemented in Java. The
overhead of invoking them from Jython is relatively small for large arrays. However, the advanced
user may find the following tips useful to improve performance in cases where it becomes a problem.

The arithmetic operations, such as'+', have versions that allow in-place modification of an array with-
out copying. For example:

Doubl eld. r ange(10000)
y + 1 # The array is copied
+= 1 # The array is nodified in place

y
y
y
Example 2.29. Avoiding unnecessary array allocation for the addition operation.

Copying an array is slow as it involves allocating memory (and subseguently garbage collecting it).
For simple operations, such as addition, the copying can take longer than the actual addition.

Function application also involves copying the array. This can be avoided by using the Java API
instead of the simple prefix function notation. For example:

X
X
X

Doubl eld. range(10000)
SIN(x) * COS(x) # This operation involves three copies
x.appl y(SIN). mul tiply(x.apply(COS)) # Only one copy

Example 2.30. Using Java array utility methodsto avoid wasteful array allocation.

When writing array expressions, it is better to group scalar operations together to avoid unnecessary
array operations. For example:

y = Doubl eld([1, 2, 3, 4])

print y * 2 * 3 # 2 array nultiplications
print y * (2 * 3) # 1 array nultiplication
print 2 * 3 * vy # 1 array nultiplication

Example 2.31. Grouping scalar multiplication avoids costly array multiplication.

It is better to avoid explicit loops over the elements of an array. It is often possible to achieve the
same effect using existing array operations and functions. For example:

sum= 0.0
for i iny:
sum=sum+ i * | # Explicit iteration

sum= SUMy * y) # Array operations

Example 2.32. Using arithmetic operations on arraysto avoid loops.

2.2.11. Type conversions

Since the numeric library supports different types it would be very convenient to be able to convert
an array from one type to another. The numeric library supports both implicit conversion from within
Jython for all supported dimensions and explicit conversion from one data type to another.

2.2.11.1. Explicit conversion

Explicit conversion is supported for all data types by constructing a numeric array from another nu-
meric array of the same or a different type. Note however that some explicit conversions may result
in rounding and/or truncation of the values e.g. an explicit conversion from Longld to Doubleld will
reduce the number of significant digits.

Int1d([1,2,3])
Doubl eld(i)

o
==
N W
)

*
e

.0,3.0]

48

Arrays, datasets and products Build 15.0.3262

c
b

Conpl ex1d(r) # [(1.0+0.0j),(2.0+0.0j), (3.0+0.0j)]
Byt eld(r) #[1,2,3]

Example 2.33. Converting types explicitly requiresthe creation of a numeric array of a specific type.

2.2.11.2. Implicit conversion

Implicit conversions are conversions that can be done automatically, provided that such a conversion
isawidening operation, for example. from Intld to Doubleld. Implicit narrowing conversions are not
allowed and result in an error message.

Note
@ A widening operation is when the result is stored in more bits than the source, thus not

losing any accuracy. A narrowing operation isthe opposite and datalossis possible asthe
result is stored using fewer bits than the source.

Thelibrary supportsimplicit conversionsin the following cases:

* access: [...]

» operators: +, -, *,/,M and %

* in-line operators: +, -, *, /, ~ and %

The examples below show allowed implicit conversions.

d = Doubl eld(5)
d[1] =3
d[1:4] =[-5 0, 5]

H* H H

[0.0,0.0,0.0,0.0,0.0]
[0.0,3.0,0.0,0.0,0.0]
[0.0,-5.0,0.0,5.0,0.0]

Example 2.34. Converting typesimplicitly in Jython.

HIPE considersthe conversion fromint to float and from long to float/doubl e as an automatic widening
operation, but some of the least significant digits of the value may be lost during the conversion. Y ou
will not be notified of thisloss of significant digits.

Another thing to notice is that floating point operations will never throw an exception or error. As
shown in the following example, adivision by zero resultsin NaN or Infinity.

d Doubl eld. range(5)

| Longld. r ange(5)

print d/l # [NaN,1.0,1.0,1.0,1.0]

print d/SH FT(l, 1) # [0.0,Infinity,2.0,1.5,1.3333333333333333]

Example 2.35. Dividing by zero will generate NaN or Infinity asappropriate.

2.3. Array datasets

2.3.1. Creating an array dataset
The following example shows the available commands to create an array dataset:

X = ArrayDataset() # Create an enpty dataset

Create an array dataset with an enbedded array

array = Doubl eld([1.0, 5.3, 2.1]) # Create the array first

X = ArrayDataset(array) # Create the array dataset

Create an array dataset with neasurenent units and a description
from herschel . share. unit inport *

X = ArrayDat aset (array, Power.WATTS, "M/ neasurenents")

Example 2.36. Declaring an array dataset.

49

Arrays, datasets and products Build 15.0.3262

See Section 2.6 for more information about measurement units.

2.3.2. Modifying an array dataset
The following example shows various ways of modifying an array dataset:

Change the description

x. description = "New description"
Change the neasurenent unit
from herschel . share.unit inport *
X.unit = Mass. GRAMS

Change the data

x.data = Intl1d([2,5,6,4])

Change one el enent of the data
x.data[1l] =7

Example 2.37. How to modify an array dataset.

See Section 2.7.1 for how to change the array dataset metadata.

2.3.3. Inspecting an array dataset

The following example shows various ways of inspecting an array dataset:

print x.description # Print the description

print x.unit # Print the nmeasurenment unit

print x.hasData() # Check if the array dataset contains data (returns 1 if yes)
print x.data # Print only the data contained in the dataset

print x.data[2] # Print a single elenent of the data

Example 2.38. Accessing relevant data of an array dataset.

2.4. Table datasets

A tabledataset is made up of anumber of columns. Each column containsan array (data), adescription
and a measurement unit.

Note

@ For reasons of flexibility, memory consumption and performance, this classis not check-
ing whether all columns are of the same length: thisis your responsibility.

2.4.1. Creating a table dataset
The following example shows how to create a table dataset:

t Tabl eDat aset () # Enpty tabl e dataset, no description
t = Tabl eDat aset (description = "My dataset") # Enpty table dataset, with
description

Example 2.39. Creating a table dataset.
Y ou can only create empty table datasets and fill them later with columns.

Creating columns is very similar to creating array datasets:

c = Colum() # Create an enpty dataset

Create a colum with an enbedded array

array = Doubl eld([1.0, 5.3, 2.1]) # Create the array first
c = Colum(array) # Create the array dataset

Create a columm with nmeasurenment units and a description

50

Arrays, datasets and products Build 15.0.3262

from herschel . share.unit inport *
¢ = Colum(array, Power.WATTS, "M/ neasurenents")

Example 2.40. Creating isolated columns.
See Section 2.6 for more information about measurement units.

The following example shows how to add columns to a table dataset:

Add colum c with nane Measurenents
t["Measurenents"] = c

You can create and add a colum in one step
t["secondCol um"] = Colum(Intld([1,2,3,4,5]))

Example 2.41. Adding data columnsto table datasets.

Warning
O Do not use the same column multiple times in a table dataset:

col = Col um(Doubl eld(10)) # Col um hol di ng ten doubl e nunmbers
t = Tabl eDat aset ()

t["First"] = col

t["Second"] = col # Using "col" twce

Example 2.42. Avoiding references to the same data from two different columns.

The two columns in the table dataset have different names, but they both refer to the col
variable, so any change to one column will appear in the other one.

To properly define independent columns, create a different variable for each column:

col 1 = Col um(Doubl e1d(10)) # Col umm hol di ng ten doubl e nunbers
col 2 = Col um(Doubl e1d(10))

t = Tabl eDat aset ()

t["First"] = coll

t["Second"] = col2 # Using different variables

Example 2.43. How to correctly create independent columnsin atable dataset.

You can aso create the columns inside the table dataset without defining separate vari-
ables:

t = Tabl eDat aset ()

t["First"] = Col um(Doubl eld(10)) # Creating and addi ng col ums
in one step

t["Second"] = Col utm(Doubl e1d(10))

Example 2.44. Adding columns directly to a table dataset.

2.4.2. Modifying a table dataset
The following example shows how to modify atable dataset:

Changi ng the description

t.description = "New description"

Substituting a columm (sane as addi ng a col umm)
t["Measurenments"] = Col um(nyQ her Array)

Changi ng columm data

t["Measurenments"].data[0] = 2 # First elenment set to 2

Changing a specific data el ement

t.setValueAt (12, 0, 1) # Set the value 12 at row = 0, colum =1
Renoving a col utm by nane

t. removeCol um(" myCol um") # Renove col umm cal | ed myCol umm
Renoving a col um by i ndex

t.removeCol um(0) # Renove the first colum

51

Arrays, datasets and products Build 15.0.3262

2.4.3.

2.4.4.

Adding a row, assum ng the table dataset has two integer
and one floating point colum

t.addRow([5, 9, 3.2])

Renoving a row

t.removeRow 1) # Renpve the second row

Example 2.45. Exercising some of the most useful methods of a table dataset.

Copying a table dataset into another

Y ou can append data from one table dataset to another, provided that they have the same number of
columns and each column in either dataset is of the same type. The following example addst 2 as
rowstotablet 1.

Create two conpati bl e table datasets
t1l = Tabl eDat aset ()

t1["x"] = Col um(I nt1d.range(5))
t1["y"] = Col um(Doubl eld. range(5))

t2 = Tabl eDat aset ()

t2["a"] = Col um(I nt1d.range(10))
t2["b"] Col umm(Doubl eld. range(10))

Append the data in t2 to the data in tl
t 1. addRows Byl ndex(t 2)

Example 2.46. Copying table datasets.

Inspecting a table dataset

The following example shows various ways of inspecting an array dataset:

print t.description # Print the description

print t.columCount # Print the nunber of columms

print t.rowCount # Print the nunber of rows

print t.getColumNane(i) # Print the name of the colum at integer position i
print t.columNanes # Print a vector with the names of all the col ums

print t[i] # Print the colum at integer position i

print t["nane"] # Print the columm called nane

print t["nane"].data # Print only the data inside the columm called nane

print t["nane"].data[2] # Print a specific value of the data

print t["nane"].unit # Print the unit of the colum called nane

print t["nane"].description # Print the description of the colum called nane
print t.getRowmi) # Print a vector containing the values of the row at integer
position i

print t.getValueAt(0,1) # Print the value contained in row =0, colum =1

Example 2.47. Exercising the most useful methods of an array dataset.

If the table dataset has columns of different lengths, get Rowgives an error if some of the row values
are undefined.

2.5. Composite datasets

2.5.1.

A composite dataset is a container in which you can place other datasets (array or table), including
other composite datasets.

Creating a composite dataset
This example shows how to create a composite dataset:

Create an enpty conposite dataset
¢ = ConpositebDataset ()
Create an enpty conposite dataset with a description

52

Arrays, datasets and products Build 15.0.3262

2.5.2.

2.5.3.

c = ConpositeDataset ("M dataset")
Example 2.48. Creating a composite dataset.

Adding datasets to a composite dataset follows the same syntax as adding columns to a table dataset:

Assune that t is a table dataset and c is a conposite dataset
c["neasurenents"] =t # Addingt to ¢ with the name neasurenents

Example 2.49. Adding a table dataset to a composite dataset.

Modifying a composite dataset

This example shows how to modify a composite dataset:

Set the description

c.description = "My conposite dataset"

Repl ace the dataset called coordinates with the one held in variable t
c["coordinates"] =t

Renove a dat aset

c.renmove("coordi nat es")

Extract a copy of a dataset to a variable

c["neasurenents"] = nyData # Dataset called measurenents now held in nyData
Changes to nyData will also affect the conposite dataset

Example 2.50. M anipulating a composite dataset.

To change a dataset name, remove it and add it again with the new name.

Inspecting a composite dataset

This example shows how to inspect a composite dataset:

print c.description # Print the description

print c.keySet() # Print a vector with the names of all the datasets

print c["nane"] # Print the dataset called nane

print c["nane"].data # Print only the data inside the dataset called nane
print c["nane"].description # Print the description of the dataset called nane

Example 2.51. Exercising the most useful methods of a composite dataset.

2.6. Measurement units

Y ou can assign measurement units to array datasets and columnsin atable dataset. Different columns
in the same table dataset may have different units.

To use units in your scripts, you have to manually import the unit package with the following com-
mand:

from herschel . share.unit inport *

The following table shows the measurement units available in HIPE.

Note
@ Constants describing the units are given in American English spelling (e.g.: meter versus
metre) because that isthe way they are stored within the software.
Type VALUES
Acceleration METERS_PER_SECOND_SQUARED
Angle RADIANS, DEGREES, MINUTES_ARC, SECONDS_ARC

53

Arrays, datasets and products Build 15.0.3262

2.6.1.

Type VALUES

AngularMomentum JOULE_SECOND

AngularSpeed RADIANS _PER_SECOND, DEGREES_PER_SECOND

Area SQUARE_METERS, SQUARE_KILOMETERS

Constant H_PLANCK, K_BOLTZMANN, ELECTRON_CHARGE,
SPEED_OF LIGHT

Duration SECONDS, MINUTES, HOURS, DAY S

ElectricCapacitance

FARADS, MILLIFARADS, MICROFARADS, NANOFARADS, PICO-
FARADS

ElectricCharge COULOMBS
ElectricConductance |SIEMENS

ElectricCurrent AMPERES, MILLIAMPERES
Electriclnductance HENRIES

ElectricPotential VOLTS, MILLIVOLTS
ElectricResistance OHMS

Energy

JOULES, ERGS, ELECTRON_VOLTS

Entropy JOULES PER_KELVIN

Flux density JOULES PER_SQUARE_METER, JANSKYS, MILLIJANSKY S, MI-
CROJANSKYS

Force NEWTONS, DYNES

Frequency HERTZ, KILOHERTZ, MEGAHERTZ, GIGAHERTZ, TERAHERTZ

Length METERS, ANGSTROMS, KILOMETERS, CENTIMETERS, MIL-
LIMETERS, MICROMETERS

Mass GRAMS, KILOGRAMS

NEP (Noise Equivalent |WATTS PER_SQRT_HERTZ

Power)

Power WATTS, KILOWATTS, MEGAWATTS

Pressure PASCALS, BARS, MILLIBARS

Scalar This class represents scalar units and provides some constants.ONE, PER-
CENT,DECIBELS

SolidAngle STERADIANS, SQUARE_MINUTES_ARC, SQUARE_SECOND-
S ARC

Speed KILOMETERS_PER_SECOND, METERS PER_SECOND

Temperature CELSIUS, KELVIN

ThermalConductivity |WATTS PER_METER_KELVIN

Timelnstant TAI,UTC

WaveNumber RECIPROCAL_METERS, RECIPROCAL_CENTIMETERS

Creating and assigning units

To create a variable representing a unit, specify the type and value of the unit, separated by adot, as
shown in the following example:

a
b

Angl e. DEGREES # Type Angl e,
Tenper at ur e. KELVI N

val ue DEGREES

Example 2.52. Assigning unitsto variables.

Arrays, datasets and products Build 15.0.3262

2.6.2.

2.6.3.

Y ou can then assign the unit to an array dataset or to acolumn of atable dataset. Y ou can useavariable

representing the unit, or specify the unit definition:

nmyTabl eDat aset["x"].unit = Angle. DEGREES # Assign to a columm, specify unit
definition

nmyArrayDataset.unit = b # Assign to array dataset, use existing variable

Example 2.53. Assigning unitsto columns or datasets.

Warning

O If you change the unit assigned to a dataset, this will have no effect on its values. For
example, changing a unit from metres to centimetres will not result in the values being
multiplied by 100. For a discussion on how to properly convert the units of a quantity,
affecting the values, see this chapter in the Data Analysis Guide in Data Analysis Guide.

Obtaining derived units

Y ou can obtain derived units with simple expressions, as shown in the following example;

N = Force. NEWITONS

m = Length. METERS

m = nf*2 # Square neters
Pa = N/ nR # Pascal s

J =N*m # Joul es

Example 2.54. Creating a new, derived unit.

Y ou can al so obtain multiplesand fractions of unitsby using functionssuchas. m I 1'i (),. nega(),
.kilo():

Dur at i on. SECONDS
s.mcro() # mcroseconds
s. nano() # nanoseconds

S}
us
ns

Example 2.55. Converting units between standard Sl prefixes.

All Sl prefixes from atto (10™®) to exa (10"°) are available. Fr alist of Sl prefixes, see for example
http://www.bipm.org/en/measurement-units/prefixes.html .

Converting units to and from strings

Y ou can convert a unit variable to various string representations:

A = Lengt h. ANGSTROVS

print A nane # angstrom ASClI| characters only.
print A dial ogNane # A

um = Lengt h. M CROVETERS

print um # mcroneter [1.0E-6 n]. Includes factor
with respect to Sl unit
print um nane # mcroneter. ASCI| characters only.

print um di al ogNane # pm

Example 2.56. Printing unit names for ASCII output or dialog output that includes symbols and Greek
characters.

You can aso convert a string to a unit variable:

myUnit = Unit.parse("kms-1")

myUnit = (Unit.parse("knt') / Unit.parse("s"))
myUnit = Unit.parse("kms-1")

myUnit = Unit.parse("arcsec")

myUnit = Unit.parse("eV")

55

http://www.bipm.org/en/measurement-units/prefixes.html

Arrays, datasets and products Build 15.0.3262

2.6.4.

2.6.5.

2.6.6.

myUnit = Unit.parse("cni)
myUnit = Unit.parse("mi')
myUnit = Unit.parse("mcront')

Example 2.57. Parsing the string representation of the unit to assign it to avariable.

If you give an invalid string to the par se method, a unit is created anyway, but it will give an error
if you try any operation onit.

Converting units to other units

To obtain the SI equivalent of aunit, use. asSl :

a = Angle. DEGREES # a is an angle in degrees

b a.asSl # b is an angle in radi ans

vl = Speed. KILOVETERS _PER HOUR # v1 is a speed in kmh
v2 =vl.asSl # v2 is a speed in ms

Example 2.58. Assigning unitsto variables.

To obtain the conversion factor between aunit and its Sl equivalent, use. t oSl :

a = Length. ANGSTROVMS # a is a length in angstrons
print a.toSI # 1le-10

print Duration. HOURS. t oSl # 3600.0
print FluxDensity.M LLIJANSKYS.toSI # 1.0E-29
print Unit.parse("g cms-2").toSl # 1.0E-5

Example 2.59. Retrieving the conversion factor to Sl units.

To obtain conversion factor between two units, uset o:

mn = Duration. M NUTES
ms = Duration. M LLI SECONDS
print mn.to(mns) # 60000. 0

Example 2.60. Using the to method to explicitly convert units.

Comparing units for compatibility

Y ou can compare units to seeif they are of compatible types.

kg = Mass. KI LOGRAMS
g = Mass. GRAMS
m = Length. METERS

print kg.isConpati bl e(g) # true
print kg.isConpatible(m # fal se
print kg.isConpati bl e(Mass) # true
print kg.isConpati bl e(Area) # fal se
print Unit.parse("g cms-2").isConpatible(Force) # true
print Unit.parse("g cms-2").isConpatible(Power) # false

Example 2.61. Checking if two different unitsrefer to the same physical quantity.

Comparing units for equivalence

You canusethe. i sEqui val ent method to determineif two unit types are the same.

kg = Mass. KI LOGRAMS

S = Durati on. SECONDS

m = Lengt h. METERS

N = Force. NEWIONS

dyn = Force. DYNES

print N.isEquival ent (dyn) # fal se

56

Arrays, datasets and products Build 15.0.3262

2.6.7.

print N isEquivalent(kg * m/ s**2) # true

Example 2.62. Checking if two units ar e the same but expressed differently.

Obtaining physical and mathematical constants

Y ou can obtain the following physical constants, complete with units:

h = Constant. H PLANCK

print h.value # 6.62606896E-34
print h.unit #J s

print h # 6. 62606896E-34 J s
k = Constant. K_BOLTZMANN

© Const ant . SPEED OF_LI GHT

e Const ant . ELECTRON_CHARGE

Example 2.63. Using physical constants provided within the Constant class.
The following mathematical constants are also available:

fromjava.lang. Math inport PI
print Pl # 3.141592653589793
fromjava.lang. Math inport E
print E # 2.718281828459045

2.7. Metadata

2.7.1.

Metadata contain additional information about a dataset. Metadata consist of couples of keys and
values. A key describes a piece of information, while the value is the actual piece of information. For
example, in the metadata entry i nstrument = HI Fl, thekey isi nstrunent and the value
isH FI .

Metadata are automatically created whenever you create a dataset. For products, the metadata set is
filled with afew compulsory entries. For other datasets, the metadata set isinitially empty.

Metadata entries, or parameters, can be of the following types:
e StringParanet er : strings of text.
» Bool eanPar anet er : true/false values.

» LongPar anet er : integer numbers.

Doubl ePar anet er : floating point numbers.

» Dat ePar anet er : date values.

Modifying metadata

The following example shows how to add or modify the metadata of a dataset called s. If a metadata
entry with a given key value already existsin the dataset, it is modified. If not, it is added.

.neta["observation"] = StringParaneter("NGC 4151")

nmeta["princi pal investigator"] = StringParanmeter("W/II|iam Herschel")
Set "date" as the current date and tine

net a["date"] = DateParaneter (FineTime(java.util.Date()))

neta["ra"] = Doubl ePar anet er (182. 836)

Add a description

net a["dec"] = Doubl ePar anet er (39. 405, "Declination")

Add a description and a unit

Units are only avail abl e to Doubl eParaneter and LongPar anet er

rom herschel . share.unit inport *

SHHEOHO O HOO

57

Arrays, datasets and products Build 15.0.3262

2.7.2.

s.neta["ra"] = Doubl eParaneter (182.836, "Ri ght Ascension", Angl e. DEGREES)
Renove a key-val ue pair
s. neta. renove("dec")

Example 2.64. Adding and modifying metadata associated to a table dataset.

Date parameters are expressed as Fi neTi nme objects. For more information see Chapter 9.

Inspecting metadata
The following example shows how to inspect the metadata of a dataset called s:

Print all the netadata

print s.meta

Print alist of all the paraneters in the nmetadata
print s.nmeta. keySet ()

Print a specific paraneter.

print s.metal"observation"]

Print the value of a specific paraneter

print s.metal"observation"].val ue

Print the description of a specific paraneter

print s.metal"observation"].description

Print the unit of a specific parameter (numeric paraneters only).
print s.metal"wavel ength"]. unit

Check if a key value is present. Returns True or Fal se.
print s.meta.contai nsKey("obsid")

Check if the nmetadata is enpty. Returns True or Fal se.
print s.nmeta.enpty

Example 2.65. Inspecting the metadata of a dataset.

If you want to search the metadata of datasets held in a pool, use the Product Browser perspective.
See the Data Analysis Guide for more information: Section 1.7 in Data Analysis Guide.

For more information on searching metadata from the command line, see Section 7.3.

2.8. Products

2.8.1.

A product is an object containing a set of metadata entries and one or more datasets.

With respect to composite datasets, products offer more features, such as a history recording al the
changes (see Section 2.8.7) and a set of metadata parameters added automatically whenever a product
is created.

The automatic metadatavaluesaret ype, cr eat or ,cr eat i onDat e, descri pti on,i nstru-
nment , nodel Nane, st art Dat e, endDat e and f or mat Ver si on.

Creating a product

The following example shows how to create a product:

Create an enpty product

myProduct = Product ()

Create a product with a given description

nmyProduct = Product ("This is my product")

Create a product by specifying some of the conpul sory netadata val ues
myProduct = Product (creator="Mself", instrunent="SPlI RE", \
description="An enpty product", nodel Name="PFM', type="ABC')

Example 2.66. Creating an empty product with some metadata.

Adding datasets or other products to a product follows the same syntax as adding datasets to a com-
posite dataset:

58

Arrays, datasets and products Build 15.0.3262

2.8.2.

2.8.3.

Assune that t is a table dataset and p is a product
p["nmeasurenents"] =t # Addingt to p with the nane neasurenents

Modifying a product
The following example shows how to modify a product:

Substituting an array/product (same as addi ng an array/ product)
p[" Measurenents"] = myQ her Dat aset

Renoving an array/ product

p. renove(" Measur enent s")

Example 2.67. Overwriting an array within a dataset.
To change a dataset name, remove it and add it again with the new name.

Thereisasimplified syntax to set the compulsory metadata val ues:

nmyProduct . t ype = "ABC'

myProduct . creator = "Mysel f"
myProduct . description = "An enpty product”
myProduct . i nstrunment = "SPlI RE"

myPr oduct . nodel Nane = "PFM' # And so on

Example 2.68. The most common metadata have attributes defined.

Setting date and time in product metadata

Thest art Dat e, endDat e and cr eat i onDat e are mandatory metadata parameters and are set
to the current date and time when the product is created. To set any of these parameters to the system
date and time, use these commands:

myProduct . creati onDate = Fi neTi ne(java. util.Date())
nmyProduct . startDate = FineTime(java.util.Date())
nmyProduct . endDate = FineTi me(java.util.Date())

Example 2.69. Some of thetime attributes are instances of FineTime.

To set these parameters to an arbitrary date and time, expressed as UTC or TAI, use the following
commands:

formatter = SinpleTi neFornat (Ti meScal e. UTC)
timeUtc = formatter. parse("2008-01-31T12: 35: 00. 0Z") # Z at the end is mandatory
for UTC

formatter = SinpleTi neFornat (Ti meScal e. TAl) # or just SinpleTi meFormat ()
timeTai = formatter. parse("2008-01-31T12: 35: 00. 0TAI") # TAl at the end is nmandatory
for TAl

timeUc # or
ti meTai

myProduct . creati onDat e
myProduct . creati onDat e

Example 2.70. Creating TAIl or UTC time stringsto set time metadata.
Note that the two previous dates, represented as Fi neTi ne, are different:

H PE> print timeUtc
2008- 01- 31T12: 35: 33. 000000 TAI (1580474133000000)
H PE> print timeTai
2008- 01-31T12: 35: 00. 000000 TAI (1580474100000000)

See Section 9.1 for more information on representing time in the Herschel software.

59

Arrays, datasets and products Build 15.0.3262

2.8.4. Inspecting a product

2.8.5.

2.8.6.

2.8.7.

The following example shows how to inspect a product:

print myProduct.description # Print the description of a product

You can use the above syntax for any of the conpul sory netadata. For exanple:
print myProduct.type

print myProduct.creationDate # And so on

print nmyProduct.isEnpty() # Check whether a product is enpty. Returns True or
Fal se.

print myProduct.sets.size() # Print the nunber of dataset/products in the product.
print myProduct. keySet() # Print a vector with the names of all the datasets and
products in this product

print myProduct.default # Print the first inserted dataset.

print myProduct["anotherDataset”] # Print the dataset called anotherDataset.

Example 2.71. Inspecting an object from a subclass of Product.

Instead of just printing out the datasets you get, you can assign them to variables and execute other
operations on them. To see how to expl ore the contents of datasets please refer to the previous sections
of this chapter.

See the HIPE Owner's Guide in HIPE Owner's Guide for ways of inspecting a product viaagraphical
interface.

Product contexts

Contexts are specia types of products that contain references to other products. Contexts are used
to organise related products into a coherent structure. For example, the observation context in HCSS
User's Reference Manual contains all the data related to an observation.

There are two standard types of context products provided: ListContext in HCSS User's Reference
Manual, for grouping products into sequences or lists, and MapContext in HCSS User's Reference
Manual, for grouping products into containers with access to each by key. The observation context
isamap context.

Most likely you will not have to create your own contexts, but just access those you retrieve from the
Herschel Science Archive.

Observation contexts

Every observation you download from the Herschel Science Archive is an observation context. An
observation context contains other contexts and many data products. While the high-level structure of
observation contexts is broadly the same, the detailed structure and product types vary according to
the observation type. See the following resources for more information on observation contexts:

 For abrief introduction to observation contexts see the Products Definitions Document: Section 2.9
in Product Definition Document.

» For more information on HIFI observation contexts, see the HIFI Data Reduction Guide.

» For more information on PACS observation contexts, see the PACS Products Explained.

» For more information on SPIRE observation contexts, see the SPIRE Data Reduction Guide.

Product history

The Product history is generated or updated whenever atask isrun on a product. It contains the tasks
which have been run to generate the product (including used parameters), aswell asthe used calibration
files and the track and build number of the used build.

60

../../hifi_um/html/hum_tour.html
../../pacs-ppe/html/Ppe.Chp.obscontext.html
../../spire_drg/html/spire-obs-context.html

Arrays, datasets and products Build 15.0.3262

Y ou can retrieve the history of a product in Jython as follows:

hi story = product. history

A simplepr i nt showswhich tasks, build numbers and calibration files have been used:

H PE> print history

Additional interesting functionalities of the history list are the following:

Get the history as a Jython script:

script = product. history. script
product . hi story. saveScri pt ("script. py")

Example 2.72. Saving the product history to a script file.
Find out if a certain task has been run (useful in atask which depends on another task):

i f not product. history.isTaskPerforned("soneTask"):
print "You have to run soneTask first!"
exit

Example 2.73. Checking if a task has been executed on a product (either locally or as part of standard
processing).

Cadlibration file appear in the history with identifiers constructed from meta keywords. How this is
done depends on the instrument:

For PACS the identifier is constructed from the meta keywords cal Fi | el d, nodel Nane and
cal Fi | eVer si on asfollows:

Common| Phot onet er | Spect ronet er _cal Fi | el d_nodel Nane_cal Fi | eVer si on

Also, if you want to introduce your own handcrafted PACS calibration file you should change
especialy thecal Fi | el d keyword to make sure that thisis visible in the history.

For SPIRE thef i | eNane metakeyword is used to identify calibration files.

For HIFI no standard has been implemented yet.

61

Build 15.0.3262

Chapter 3. Spectra and spectral
cubes

3.1. Spectrum containers and segments

Within HIPE there are several types of datasets and products that are used to contain spectra. These
consist of the data and metadata that are necessary for correct handling of spectral display and com-
bination (e.g. spectral arithmetic).

The available spectral datasets are Spect r unld and Spect r und. These are extensions of the
generic Herschel TableDataset, and are made up of columns containing arrays of numbers. A Product
isawrapper which can contain one or more Datasets collected together with metadata (header) - see
Section 2.1 for more details on datasets and products. Examples of spectral Products are Si npl e-
Spect rumand Spect r al Si npl eCube.

In general, most of the datasets and products dealing with spectrainside HIPE make use of the " Spec-
trumContainer” interface. This interface specifies the way that the spectral data are accessed so that
the sametasks (e.g. those in the Spectrum Toolbox) can operate on all of the different types of spectral
datasets and products.

A "SpectrumContainer" is built up of severa layers. It can contain one or severa "PointSpectrum’
objects, with each PointSpectrum consisting of one or several " Spectral Segments’”.

» The Spectral Segment is the most basic unit of spectral data, with a frequency, wavelength or ve-
locity array, aflux array and, optionally, weights, errors, flags and masks.

» ThePointSpectrum containsindividual segments, and may a so contain additional parameters that
hold for all of its segments. Examples are integration time, observation time, position on sky or
other instrument specific information (e.g. house-keeping data).

In genera, the full complexity of SpectrumContainers, PointSpectra and Spectral Segments is only
used by HIFI, where a Spectral Segment physically corresponds to asingle HIFI subband. For PACS
and SPIRE, a SpectrumContainer usually contains a single PointSpectrum with one Spectral Segment.

The most basic SpectrumContainers for Herschel data are the Spect r unid (see Section 3.2) and
Spect r und (see Section 3.3) datasetsand the Spect r al Si npl eCube product (see Section 3.5).
They form the basic building blocks and can be wrapped into various kinds of other products (i.e. with
added metadata) or extended to form instrument-specific products.

3.2. Spectrumld

A Spect rumild is a one-dimensional representation of a spectrum. It is a TableDataset (see Sec-
tion 2.4) that has columns for wave, flux, flag, weights and segment number. In this case, the column
called wave can contain any of wavelength, frequency, wavenumber, or velocity information. If the
dataset has more than one segment, they are contained within the same columns, and distinguished
by the segment number. For PACS and SPIRE, an error column is used instead of weights. A SPIRE
exampleisshownin Figure 3.1. Details of the Spect r umld can also be found in the User Reference
Manual in HCSS User's Reference Manual.

62

Spectra and spectral cubes Build 15.0.3262

3.2.1.

-~ Meta Data -
name value unit description

dec 69.00016316436611 deg Dec pointing for this channel
ra 265.05276199695494 |deg Ra pointing for this channel
channelhame [SLWC3 Channel name

(waveunit cm-1 Units of the WaveCalumn

- Table Data

Index | wave [cm-"]

flux Wi{m?*-Hz-sr)]

error [WAm*Hz-sr)]

mask

146

-7.016801537367034E-20

9.015834526797619E-20

-8.08043954345055E-20

8.300907187397333E-20

-1.0639787101925635E-19

9.4180548458016E-20

-1.58320393373954E-19

1.3381692542005841E-19

-2.2848449865094403E-19

2.0613995888743143E19

-1.9549735258440146E-19

2.1799688706425017E-19

-9.746143604398556E-20

1.4874872934796137E-19

-4.586591876082572E-20

9.816504396993623E-20

0|00 |~ | [|
pry
-
m
i

-2.0949709627759984E-20

7.034193710635918E-20

ololaalalalaalala

-1.403852972677565E-21

5.57780877336805E-20

Figure 3.1. An example of a Spectrumld product from SPIRE (in the HI PE Dataset Viewer). In this case,
the wave column contains wavenumbersin cm™, ther eisno segment number column (as only one segment
iscontained) and there are additional columnsfor error and mask.

In addition to the actual data, each column can also contain the units and a description, which is used
to label the axes in plots generated by spectral tools within HIPE. Metadata can also be added to a
Spect r unild to describe the target, RA, Dec. etc. (see Section 2.7.1).

Severa related spectra, or sub-spectra, can be kept together in a single Spect r unild dataset by
storing them as different spectral segments. Different spectral segments can be stored in the same
dataset even if they do not have the same number of datapoints or an identical wave array (but they
must have the same units). The spectra tools in HIPE operate on al of the segments - in general
applying the selected function to all segments separately. However, the spectrumFitterGUI works on
one specified segment at atime.

Creating a Spectrumld

TomakeaSpect r unild from scratch the datafor each column must be created asan array and added
to the dataset - the following is a simple example with a single segment:

Define the spectrum
#(in this case in frequency and bri ghtness tenperature)

wave = Doubl eld([1000.0, 1000.2, 1000.4, 1000.6, 1000.8,\
1001.0, 1001.2, 1001.4, 1001.6, 1001.8])
flux = Doubl eld([12.2, 12.5, 13.0, 11.8, 11.9, \
12.6, 12.2, 12.8, 12.2, 15.2])
Flags all set to zero (by default)
flag = I nt1d(10)
Weights all set to one

(note that weight of zero neans the sanple is irrel evant)

wei ght = Doubl e1d(10) + 1

Put all the data into a single segnent (i.e. all segnent Ids to zero)
segs = | nt1d(10)

Create the Spectrunild

nySpect runild = Spectrunild(flux, wave, weight, flag, segs)

Example 3.1. Adding data arrays as columns to a spectrum dataset.

This simple example can now be viewed and operated upon by spectral toolsin HIPE. More informa-
tion can be added to define the units (see Section 2.6) and descriptions of the axes:

Inport the Herschel unit classes

from herschel . share. unit inport *

Set the wave and flux units and descriptions
nySpect runid. waveUnit = Frequency. G GAHERTZ
nySpect runid. waveDescri pti on = "Frequency"

63

Spectra and spectral cubes Build 15.0.3262

3.2.2.

mySpect rumld. fl uxUnit = Tenperature. KELVIN
mySpect rumld. f | uxDescri pti on = "Bri ght ness Tenper at ure”

Example 3.2. Setting the units of various spectral metadata.

Multiple spectral segments can be added by changing the segment 1D in the segments column (note
that if several segments are present, they do not necessarily need to have the same number of data
points, or the same wave array):

Define the spectrum
#(in this case in frequency and brightness tenperature)

wavel = Doubl eld([1000.0, 1000.2, 1000.4, 1000.6, 1000.8,\
1001.0, 1001.2, 1001.4, 1001.6, 1001.8])

wave2 = Doubl eld([453.0, 453.2, 453.4, 453.6, 453.8,\
454.0, 454.2, 454.4])

flux1l = Doubl eld([12.2, 12.5, 13.0, 11.8, 11.9, \
12.6, 12.2, 12.8, 12.2, 15.2])

flux2 = Doubl eld([6.2, 6.5, 5.0, 6.8, 7.9, \
6.6, 5.2, 5.8])

Flags all set to zero (by default)

flagl = Intld(10)

flag2 = I nt1d(8)

Weights all set to one

(note that weight of zero neans the sanple is irrel evant)
wei ght1 = Doubl e1d(10) + 1

wei ght2 = Doubl e1d(8) + 1

Set the segnent |Ds

segl = Int1d(10)

seg2 = Int1d(8) + 1

Create the Spectrunid

flux = fluxl. append(fl ux2)

wave = wavel. append(wave2)

wei ght = wei ght 1. append(wei ght 2)

flag = flagl. append(fl ag2)

segs = segl. append(seg2)

nmySpect rumld = Spectrumld(flux, wave, weight, flag, segs)

Example 3.3. Adding spectral segmentsto a one-dimensional spectrum dataset.

Accessing data from a Spectrum1d

The following table defines the standard Spect r unild columns and how these are accessed on the
command linein HIPE.

Table 3.1. Spectrumld columns and access

Column |Contents Direct data access Java access Jython Type

Name method shortcut

wave Wavelength, ['"wave'].data .getWave() |.wave Doubleld
frequency,
wavenumber, or
velocity

flux Flux density, ['flux'].data .getFlux() |.flux Doubleld
brightness tem-
perature, bright-
ness, etc.

weight |Weightforeach |[' wei ght']. data . get Wi ght ()|. wei ght |Doubleld
datapoint

flag Flag for each ['flag'].data .getFlag() |.flag Intld
datapoint

segments | Spectral seg- ['segnent'].data . get Seg- . segment |Intld
ment number nment ()

Spectra and spectral cubes Build 15.0.3262

The direct data access (using square brackets) is the generic way to access columns inside Herschel
datasets (see Section 2.1). The Java access method and related Jython shortcut provide shorter waysto
access specific columns of data, and so are preferred by some people in their scripts. These methods
are explicitly coded into the class definition of the Spect r unld dataset and so only exist for the
columns included in that definition (this is one of the things that can be added in instrument-specific
extensions of the Spect r unid).

Asan example, thefollowing code plotsthe spectrumfromaSpect r unld in PlotXY (seethe chapter
on plotting in the Data Analysis Guide in Data Analysis Guide) using the Jython shortcut access:

pl = Pl ot XY()
pl . addLayer (Layer XY(nmySpect runid. wave, nySpectrunild. fl ux))

Example 3.4. Plotting the spectrum with the wave and the flux as axes.

Theweightscolumnisused by HIFI, and by default, these are computed based on receiver temperature.
A weight of zero means that sample was irrelevant.

For PACS and SPIRE, errors are (or will be, for PACS) used rather than weights. Therefore, PACS
and SPIRE products contain an error column instead of the weights column. The errors are converted
into weightson-the-fly when either . get Wei ght () or. wei ght arecalled. The conversionfollows
thisformula:

weight = 1/error’

The HIPE Spectrum Toolbox tasks work solely with weights, and so they apply the above conversion
automatically if only errors are present. The task then uses/propagates the weights and automatically
converts them back to errorsin the output. This automatic conversion in the Spectrum Toolbox tasks
can be turned off by setting a Boolean parameter in the Spect r umld:

Turn off automatic conversion of errors to weights
(default is True)
mySpect rumld. set Aut oConver si on(Fal se)

Example 3.5. Turning off automatic conversion of errorsto weight.
The conversion can be carried out explicitly by calling the following methods:

error
wei ght

mySpect rumld. wei ght 2Er r or (mySpect r unild. wei ght)
mySpect rumld. err or 2Wei ght (mySpect rumld. error)

Example 3.6. Converting weightsto errorsand errorsto weights.

The flag column contains an integer flag per sample. These are used by HIFI to show which data
samples are affected by particular issues such as saturation (see the HIFI Data Reduction Guide: Flags
in HIFI data). The flags are used by some of the Spectrum Toolbox tasks to mask out bad samples.

More details of the Spectrum Toolbox tasks can be found in the Data Analysis Guide in Data Analysis
Guide and in the User Reference Manual.

Some useful commands related to manipulating spectral segmentsin ascript are:

The total nunber of segnments in this spectrunild
segnent Count = nySpect rumld. segnment Count

The valid segnment indices in the spectrunld
segnent | ndi ces = nySpect rumld. segnment | ndi ces

Extract the segment using the segnment |D

(as given in the segnment col um)

segnent 0 = mySpect rumld. get Segnent (0)

Access the wave and flux data of this segment
waveO = segment 0. wave

flux0 = segnment 0. fl ux

Extract the segment using a counter over segnent |Ds
(i.e. the nunber given refers to the order of

the IDs in the segnent colum, starting at zero)

65

../../hifi_um/html/hififlags.html
../../hifi_um/html/hififlags.html

Spectra and spectral cubes Build 15.0.3262

segnent 0 = mySpect rumld. get Spect r al Segnent (0)

Example 3.7. Manipulating spectral segments.

3.3. Spectrum2d

For multiple spectrataken in an observation, atwo-dimentional structureisrequired. The components
of aSpect r und dataset are similar to the Spect r uniid dataset (see Section 3.2), except for the
provision of asecond dimension where each spectrum is stored horizontally in anew row of thetable.
The same column names exist as in the Spect r umld, but each element in the column is an array
containing a spectrum. Details of the Spect r und can also be found in the User Reference Manual
in HCSS User's Reference Manual .

The Spect r unPd dataset is used by HIFI to store al of the data from different data frames from a
single observation (see Figure 3.2). For SPIRE, it isused to collect together the spectrafrom different
sky positionsbefore gridding them into aspectral cube (see Figure 3.3). The advantage of thisstructure
over many separate Spect r umld datasets is that a group of related spectra can be contained in a
single dataset that is easier to display and manipulate than a bunch of individual datasets.

05
04F
—~ 03FE
M
~ 02F
#
S 01E
=
00
0.1
020 10 TS T TS N S T S I S T N T T T Y S T S I R
4000 4500 5000 5500 6000 6500 7000 7500
frequency (MHz)
faxis
<r - - - - -
AL 12 34 buffer | bbiype |LoFreque..| longitude | latitude | longitude ..| latitudeE . | Chopper | cmd_cho. IN_ATT | MC_HI
0.0 MEEE 1 6042 982.165| 325.757 _ 66.056 1.05 1.05 -7.56 -4.965 14 0.
0.1 [N 1 6042 982.165] 325.757 66.056 1.07 1.07 -7.569 -4.965 14 0.
0.2 DEEE 1 6042 982.165] 325.757 66.056 1.06 106 -7.569 -4.965 14 0.
03 | MW W 1 6042| 982.165| 325.757 66.056 1.08 1.08 -7.569 -4.965 14 [}
0.4 MEEN 1 6042 982.165| 325.757 66.056 1.09 1.09 7.57 4.965 14 [
0.5 MENE 1 6042 982.165| 325.757 66.056) 3.14 3.14 -7.568 -4.965 14 0.

Figure3.2. Exampleof aHIFI Spectrum?2d viewed in the SpectrumExplorer in HIPE. Different spectraap-
pear asdifferent rows, and in thiscase each spectrum has4 subbands. Each subband isplotted in the colour
shown in the boxes on the lower Ieft. The other columns give further information about each spectrum.

E I e e e e o e o L e o e e

)
=)
| AN AR RN RRRRN RARL

Brightness (W/(m?-Hz-sr))

5010 - " =
e o o ot e i i vl VIS RPN Bl NV AP BTN
n 3 % 38 40 a2 “ 4% a8 50 2

Wavenumber (cm™")

Jiggld \ pointNum

detecior

2 1] -
2 1
2 1
2 1]
SSWC3 2 1
¥ sSWC2 2 1
315.346)| 68.2[3SWC5 Fil 1]
: 315348 68.191/SSWC4 2 1
08 M| 315414 68.185/SSWF3 2 1
09| 315327 68.187/SSWB3 | 1
010 | 315325 68.195/35WB4 2 1
011 | 315415 8§8.177|SSWF2 2] 1 -

Figure 3.3. Example of a SPIRE Spectrum2d viewed in the SpectrumExplorer in HIPE. Different spectra
appear asdifferent rows, but in this case each spectrum only has one subband. There are fewer columns
for additional information than in the HIFI examplein Figure 3.2.

An additional component of the Spect r unkd, whichisimportant for HIFI data, isthe ability to split
each spectral row into sub-spectra (analogous to the segmentsinthe Spect r unild - see Section 3.2).

66

Spectra and spectral cubes Build 15.0.3262

3.3.1.

The output from the HIFI spectrometers contains subbands, where several CCD or autocorrelator
readouts lead to several "chunks' (subbands) of spectrain one data frame. This functionality is only
used by HIFI, and so these chunks, or segments, in the Spect r unkd are (officialy) referred to as
"subbands’.

Inside the Spect r und, subbands are vertical splits in the flux (and weight, flag etc.) columns,
equivalent to the functionality of the segment column in the Spect r unild . The flux etc. columns
are replaced with flux_1, flux_2, ... columns, depending on how many subbands were defined. The
definition of the subbands in terms of the starting index (e.g. the channel number in the HIFI CCD)
and the length (the number of datapoints in the subband) are stored in metadata items called sub-
bandst art and subbandl engt h (see Figure 3.4). The subbandst art refersto the index in
the original spectrum before it was split into subbands, and for HIFI this refers to the physical chan-
nel inside the instrument. It is an important parameter because some data samples might have been
discarded from the beginning/end of the spectrum when it was split into subbands (i.e. the first sub-
bandst art isnot necessarily equal to zero).

Temperature SSB (K)

s

) auj mn s nzu w n PERTY
usbfrequency (GHz)

spectiumelrow 0, segment 4, channel 319][838.34 -2 66]

AL 12 34 LoFrequ ude | lauge | lonlude.. | latudeEr_| Band_ATT Cnuppél \ W_ATT J»mr code | LoFreque. | MJC_Hor | MIC_Ver |
00 MMMM 520785 300754 42.328 1607 1.60715.24.0] 15[97767.140..| 620.836 0.031 003310

| ;

Figure 3.4. Example of a HIFI Spectrum2d viewed in the SpectrumExplorer in HIPE, showing the meta-
data describing the different subbands (to display the metadata, right click in the plot and select Dialogs
- Metadata). In this dataset, thereis one spectrum with 4 subbands.

Creating a Spectrum2d

An example of creating a simple Spect r und containing 4 spectra, from scratch, is given below.
Theinputs to create the Spect r un2d are 2D arrays of wave, flux etc., and so every spectrum must
have the same number of datapoints.

wave2d Doubl e2d([[1000. 0, 1000. 2, 1000. 4, 1000. 6] , \
[1000. 0, 1000. 2, 1000. 4, 1000. 6], \
[1000. 0, 1000. 2, 1000. 4, 1000. 6], \
[1000. 0, 1000. 2, 1000. 4, 1000. 6] 1)

Doubl e2d([[12.2, 12.5, 13. 6, 12. 8], \
[12.8,12.2,13.3,12.9],\
[10.2,14.5,12.5,11.4],\
[12.2,12.5,13.6,12.8]])

flag2d Int2d([[1,21,1,1],[1,2,2,1],[2,1,2,1],[2,1,1,1]])

wei ght2d = Doubl e2d([[1,1,1,1],[1,1,1,1],[41,1,1,1],[1,1,1,1]])

nmySpect runRd = Spect runRd(flux2d, weight2d, flag2d)

nmySpect run2d. set Wave(wave2d)

flux2d

Example 3.8. Creating a two-dimensional dataset containing four spectra.

A further example to set up a basic Spect r und with associated subbands is given below. This
example sets up a dataset which holds 2 spectra, each with 2 subbands. Each subband can cover a
different wavelength range if necessary (e.g., asfor the individual subbands of the HRS spectrometer
of HIFI). Thisformsthe basis of how HIFI observations, which aretypically made up of many frames,
are stored in HIPE.

This exanple creates a SpectrunRd that contains
two rows of spectra, each containing tw subbands

67

Spectra and spectral cubes

Build 15.0.3262

3.3.2.

#
Initialise the Spectrun2d
mySpect rum2d = Spect runRd()
#

Define the two spectra - each will be split into tw subbands

wave2d = Doubl e2d([[1000. 0, 1000. 2, 1000. 4, 1000. 6, 1000. 8, 1001. 0, 1001. 2, 1001. 4], \
[1000. 0, 1000. 2, 1000. 4, 1000. 6, 1000. 8, 1001. 0, 1001. 2, 1001. 4]])

flux2d = Doubl e2d([[12.2, 12.5, 13.6,12. 8,10. 2, 14.5,12.5,11. 4] ,\
[12.8,12.2,13.3,12.9,12.2,12.5,13. 6, 12.8]])

#

Indicate the nunber of subbands that each spectrumwi |l have

mySpect runRd. set Subbands(2)

#

Set the index at which each subband starts and its length
Here, the intial spectrumis split into two equal |ength
subbands wi t hout discarding any data

mySpect runRd. set SubbandStart (I nt1d([0, 4]))

mySpect runRd. set SubbandLengt h(I nt1d([4, 4]))

#

Now set the (2D) data for each subband according to the
start and | ength above
Subband 1

mySpect rund. set ("wave_1", wave2d[:, 0:4])
mySpect runRd. set ("flux_1", flux2d[:, 0:4])
#

Subband 2

mySpect rund. set ("wave_2", wave2d[:

4:8])
mySpect runRd. set ("flux_2", flux2d[:, 4:8])

Example 3.9. Creating a multiband spectrum dataset.

Accessing data from a Spectrum2d

The following table defines the standard Spect r un2d columns and how these are accessed on the

command linein HIPE.

Table 3.2. Spectrum2d columns and access

Column |Contents Direct data access Java access Jython Type

Name method shortcut

wave Wavelength, ['wave']. data . getVave() |.wave Double2d
frequency,
wavenumber, or
velocity

flux Flux density, ['flux'].data .getFlux() |.flux Double2d
brightness tem-
perature, bright-
ness, etc.

weight |Weight foreach |[' weight']. data . get Wi ght ()|. wei ght |Double2d
datapoint

flag Flag for each ['flag'].data .getFlag() |.flag Int2d
datapoint

The direct data access (using square brackets) is the generic way to access columns inside Herschel
datasets (see Section 2.1). The Java access method and related Jython shortcut provide shorter waysto
access specific columns of data, and so are preferred by some people in their scripts. These methods
are explicitly coded into the class definition of the Spect r und dataset and so only exist for the
columns included in that definition (this is one of the things that can be added in instrument-specific

extensions of the Spect r und).

If subbands are not used (e.g. for SPIRE data), al the access methods above work to return 2D arrays.
For example, to plot (see the chapter on plotting in the Data Analysis Guide in Data Analysis Guide)

the first spectrum using the Jython syntax:

68

Spectra and spectral cubes Build 15.0.3262

pl = Pl ot XY()
pl . addLayer (Layer XY(mySpect runid. wave[0, :], nySpectrumld. flux[O0,:]))

Example 3.10. Plotting some columns selected using slice notation.

For HIFI, where different subbands can be specified, each columnis split into sub-columns (appended
with the subband number - e.g. flux_1, flux_2..), and only the Java-like access methods (get FI ux()
etc.) work, with the subband number specified inside the brackets. For example:

To access (e.g.) subband nunber 3
subbandNum = 3

subbandWave
subbandFI ux

mySpect r unkd. get Wave(subbandNum)
mySpect r un2d. get Fl ux(subbandNum)

Example 3.11. Accessing subbands using specific methods

In the above example, subbandWave and subbandFl ux are 2D arrays. There aretwo (equival ent)
ways to access the individual spectra - either specifying the indices (the first index is for the subband
number), asin the previous plot example above:

Plot the first spectrumfor the subband
pl . addLayer (Layer XY(subbandWave[0, :], subbandFl ux[O0,:]))

Example 3.12. Plotting thefir st spectrum of a subband using indices.

Or by using a"get()" method, specifying the subband index number:

Plot the first spectrum for the subband
pl . addLayer (Layer XY(subbandWave. get (0), subbandFl ux. get(0)))

Example 3.13. Plotting the fir st spectrum of a subband using the get method.

Some other useful commands to investigate subbands are:

To determ ne how many subbands there are

print mySpect runfd. subbandCount

print nySpect run2d. nunber O Subbands

To determne the start elenment and | ength of each subband

(returns an array of indices/lengths taken fromthe netadata)
print mySpectrunRd. subbandSt art

print mySpectrunfd. subbandLengt h

Example 3.14. Inspect subbands.

3.4. SimpleSpectrum

The Si npl eSpect r umisaproduct containing asingle Spect r umld (see Section 3.2) dataset and
metadata describing the associated observation. It is designed to allow a Spect r unild to be written
out to aFITSfile and easily shared between collaborators, and also to allow simple spectrafrom other
instrumentsto be read into HIPE with meaningful metadata preserved. Details of the Si npl eSpec-
t r umcan also be found in the User Reference Manual in HCSS User's Reference Manual. Note that
also, a Spect r unild object can be written directly to a FITS file without the Si npl eSpect r um
product wrapper.

There are tasks for each instrument to extract a Si npl eSpect r umproduct from any of the more
complicated instrument products:

si npl eSpectrum = convert Si ngl eHi fi Spectrum()
si npl eSpect rum = spi reProduct 2Si npl eSpect rum()
si npl eSpectrum = convert PacsProduct 2Si npl eSpectrun()

Example 3.15. Converting instrument specific spectral datasetsto SimpleSpectrum.

69

Spectra and spectral cubes Build 15.0.3262

Details of how to run these tasks can be found in the User Reference Manua for HIFI, SPIRE and
PACS.

3.5. SpectralSimpleCube

3.5.1.

3.5.2.

The Spect r al Si mpl eCube isaproduct containing three-dimensional datasets with axes denoting
the longitude, latitude and spectral dimension of the data. The three dimensions are interpreted as
spectral stacks of images, each with the same spatial grid - i.e. theSpect r al Si npl eCube contains
data that has been projected (gridded) onto a regular square grid. It is the format used by al three
instruments as the output of their gridding/projection tasks for spectral mapping observations.

The spatial grid of the cubeis specifiedintheWorld Coor dinate System with aWCS object defining
cdelt, crpix, crval etc. in the same way as Herschel images (see Chapter 4). Theindividual spatial grid
squares are referred to either as"pixels' (e.g. by HIFI) or as"spaxels’ (e.g. by PACS).

The spectral axisvaluesare provided asaDoubl eld array. It isassumed that the spectral axisapplies
to each spatial position.

The product can contain cubes for the flux, weight, error, flag, coverage, depending on the gridding
algorithm used (Spect r al Si npl eCubes need not contain al of these datasets).

Creating a SpectralSimpleCube

You can create a Spect r al Si npl eCube out of athree-dimensiona array, like in the following
example:

Create a 100x100x100 cube with all values equal to 1.0
data = Doubl e3d(100, 100, 100, 1.0)

Create a Spectral Si npl eCube

myCube = Spectral Si npl eCube(i mage=dat a)

Example 3.16. Creating cubes from Numeric arrays.

Y ou can then set other cube components among the ones shown in Table 3.3. For instance, you can
set the weight for each data point asin the following example:

Create a dummy wei ghts cube with all weights equal to 1.0
wei ght = Doubl e3d(100, 100, 100, 1.0)

Assign wei ghts to cube

myCube. wei ght = wei ght

Example 3.17. Creating a weight cube.

Y ou can set components in any order, with one exception: before assigning awavelength array to the
cube (wav e component) you must have assigned avalid WCS (wcs component). For information on
how to assign aWCSto a cube, see Section 4.1.

Accessing data from a SpectralSimpleCube

The standard datasets that can be contained in a Spect r al Si npl eCube are described in the fol-
lowing table (not all of them must be present) with how they are accessed on the command line in
HIPE.

Table 3.3. Spectral SimpleCube content and access

Column |Contents Direct data access Java access Jython Type

Name method shortcut

wave Wavelength, ['" I magel ndex'] .getWave() |.wave Doubleld
frequency, [' Dept hl ndex'].data

70

../../hifi_urm/html/herschel.hifi.pipeline.util.data.ConvertSingleHifiSpectrumTask.html
../../spire_urm/html/herschel.spire.ia.pipeline.spec.util.SpireProduct2SimpleSpectrumTask.html
../../pacs_urm/html/herschel.pacs.toolboxes.spec.ConvertPacsProduct2SimpleSpectrumTask.py.html

Spectra and spectral cubes Build 15.0.3262

Column |Contents Direct data access Java access Jython Type

Name method shortcut
wavenumber, or | (Remove space between] and
velocity D)

image |Flux density, ["image'].data .getlmage() |.inmage Double3d
brightness tem-
perature, bright-
ness, etc.

wces World Coordi- |* .getWs() .WCS Wecs
nate System pa-
rameters

weight |Weightforeach |[' weight']. data . get Wi ght ()|. wei ght |Double3d
datapoint

error Errorforeach |['error'].data .getError() |.error Double3d
datapoint

flag Flag for each ['flag'].data .getFlag() |.flag Short3d
datapoint

coverage | Coverage for ['coverage'].data . get Cover- |.cover- |Double3d
each datapoint age() age
from gridding
task

* the WCS information is stored in the "image" metadata. The values can be accessed in the form of
metadata items with the square bracket notation as follows:

Extract the "image" netadata
wcsMeta = cube['inmage']. meta

Wap this into a Ws obj ect
wes = Wes(wesMet a)

Example 3.18. Extracting theimage metadata (including Wcs infor mation).

The direct data access (using square brackets) is the generic way to access columns inside Herschel
datasets (see Section 2.1). The Java access method and related Jython shortcut provide shorter waysto
access specific columns of data, and so are preferred by some people in their scripts. These methods
are explicitly coded into the class definition of the Spect r al Si npl eCube and so only exist for
the data included in that definition (thisis one of the things that can be added in instrument specific
extensions of the Spect r al Si npl eCube).

An example of extracting the 3D array of fluxesfrom acubeis:
flux3d = cube.inage
Example 3.19. Accessing the image (flux) data from a cube.

The most basic operations that might be useful for scripting with a cube are to extract a spectrum from
a particular location (one spaxel/pixel), or to extract a single image plane asa Si npl el mage (see
the chapter on image analysisin the Data Analysis Guide in Data Analysis Guide). More complicated
operations can be achieved using the Cube Spectral Analysis Toolbox (see the Data Analysis Guide
in Data Analysis Guide) or with the basic Spectrum Toolbox (see the Data Analysis Guide in Data
Analysis Guide).

To extract a single spectrum

Define the RA and Dec of the position to extract

e.g. taking the nom nal (commanded) source position fromthe netadata
ra = cube.neta['raNom nal']. val ue

dec = cube. nmeta[' decNomi nal '] . val ue

First find the pixel/spaxel closest to the desired RA/ Dec

71

Spectra and spectral cubes Build 15.0.3262

pi xCoord = cube. near est Pi xel s(ra, dec)

#

Extract the flux as a Doubl eld specifying RA, Dec

in deci mal degrees

extract edFl ux = cube. get Fl ux(ra, dec)

or, specifying pixel/spaxel position (row, colum)

extract edFl ux = cube. get Fl ux(pi xCoord[0], pixCoord[1])

#

Extract the flux as a Spectrumld at pixel/spaxel position
extract edSpectrum = cube. get Spect runid(pi xCoord[0], pi xCoord[1])

Example 3.20. Extracting a single spectrum from a cube.

Note: the near est Pi xel s and get Fl ux(ra, dec) methods work by calculating the exact
position in fractions of a pixel from the WCS (usingwcs. get Pi xel Coor di nates(ra, dec)
and then rounding this to the nearest integer with Mat h. r ound()).

To extract an image plane

Find the nearest plane to a particul ar

wave-scal e value (e.g. 1000.0 GHz)

freq = 1000.0

pl anel ndex = cube. near est Pl ane(freq)

#

Extract a single plane as a Doubl e2d specifying the frequency
extract edFl ux = cube. get Fl ux(freq)

or, specifying the plane index

extract edFl ux = cube. get Fl ux(pl anel ndex)

#

Wap the extracted Doubl e2d dataset into a

Sinplelnmage so that it can be displayed in H PE

extract edl nage = Si npl el mage()
extract edl nage. i nage = extract edFl ux
extract edl nage. wes = cube. wcs

Example 3.21. Extracting a single image planefor a specific frequency.

Note: the near est Pl ane and get Fl ux(freq) work by starting at the zero element in the wave
array and looping through all planesin the cube to find the smallest separation with the entered value.
This applies even if the entered value is outside of the cube range.

Displaying cubedimensions. Y ou can display the dimensions of the cube with the following com-
mand:

print nyCube. di mensi ons
#array('i', [100, 70, 30])

Example 3.22. Printing the cube dimensions.

Thefirst number (100 in the example above) isthe size in the wavelength dimension, while the second
and third number are the y and x dimensions, respectively, or in other words the number of rows and
columns. For more information about cube dimensions see the Data Analysis Guide: Section 6.3 in
Data Analysis Guide.

3.6. Instrument-specific spectral products

The following table summarises the spectral products used by each instrument and how these relate
to the basic building blocks defined in the previous sections.

Table 3.4. Instrument-specific spectral products

Instrument |Product/Dataset |Basic building Description

block
SPIRE (L ev- | SpectrometerDetec- | Spectrumld Composite dataset containing spectra
d-1) torSpectrum from all detectors and scans from one

72

Spectra and spectral cubes

Instrument |Product/Dataset |Basic building Description
block
observation. Uses SpireSpectrumld
datasets which are extensions of Spec-
trumad for SPIRE containing an error
column and ra, dec and channelName
metadata.
SPIRE (Lev- | Spectrometer- Spectrumld Composite dataset containing point
el-2) PointSourceSpec- source calibrated spectrafrom the cen-
trum tral detectors. Uses SpireSpectrumld
datasets.

SPIRE SpirePreprocessed- | Spectrum2d Datafrom al sky positions prepared for

Cube gridding into a cube.

SPIRE (Lev- | Spectra Simple- Spectral Simple- Spectral SimpleCube used directly with-

e-2maps) |Cube Cube out SPIRE specific extension.

HIFI Hifi Spectrum- Spectrum2d Extension of Spectrum2d for HIFI -

Dataset contains additional data specific to HIFI
(e.g. housekeeping , flags).
HIFI HrsSpectrum- Spectrum2d Extension of aHifiSpectrumDataset -
Dataset contains additional information for the
HRS (e.g. correlation functions).
HIFI WhbsSpectrum- Spectrum2d Extension of aHifiSpectrumDataset -
Dataset contains additional information for the
WBS.

PACS (Lev- |PacsCube - PACS specific format - it is a Spectrum-

dl Container, but does not extend any of the
basic building blocks described in this
chapter. Does not contain flag or weight
information, rather it has PACS-specific
Masks.

PACS (Lev- | SpectralSimple- Spectral Simple- The so-called PACS "projectedCube’”.

d 2) Cube Cube Currently does not contain flag or weight
information. This uses the SpectralSim-
pleCube without PACS specific exten-
sion.

PACS (Lev- |PacsRebinnedCube | Spectral Simple- PACS extension of the SpectralSimple-

d 2) Cube Cube. Currently does not contain flag or

weight information.

73

Build 15.0.3262

Build 15.0.3262

Chapter 4. The World Coordinate
System

4.1. Assigning a World Coordinate System to
Images and cubes

You can assign WCS information to images and cubes. The World Coordinates System (WCS) de-

scribes the coordinates of aSi npl el mage or Si npl eCube. It makesit possible to convert image

coordinates to world coordinates and the other way around. The WCS can have alot of parameters,
as defined in the FITS standard:

* naxis: the number of axes

 crval: First coordinate of the centre

* crva2: Second coordinate of the centre

 crpix1: Reference pixel X coordinate

*» crpix2: Reference pixel Y coordinate

» cdeltl: Pixel scale of axis 1. Step per pixel or number of degrees per pixel aong x-axis when con-
verting to Sky Coordinates. These parameters are no longer used in modern Wcs definition, but are
included in the CDi_j matrix.

 cdelt2: Pixel scaleaxis2. Step per pixel or number of degrees per pixel along y-axiswhen converting
to Sky Coordinates. These parametersare no longer used in modern Wcs definition, but areincluded
in the CDi_j matrix.

* ctypel, ctype2: Projection type name. This can be "LINEAR", "PIXEL" or the FITS convention.
The default value for ctypel and ctype2 is "LINEAR". When using the FITS convention, the first
four characters are:
¢ RA-- and DEC- for equatorial coordinates
¢ GLON and GLAT for galactic coordinates
e ELON and ELAT for ecliptic coordinates
The next four characters describe the projection. Possibilities are:

e -AZP: Zenithal (Azimuthal) Perspective
e -SZP: Slant Zenithal Perspective

¢ -TAN: Gnomonic = Tangent Plane

¢ -SIN: Orthographic/synthesis

e -STG: Stereographic

¢ -ARC: Zenithal/azimuthal equidistant

e -ZPN: Zenithal/azimuthal PolyNomial

e -ZEA: Zenithal/azimuthal Equal Area

74

The World Coordinate System Build 15.0.3262

-AlR: Airy

-CYP: CYlindrical Perspective

-CAR: Cartesian

-MER: Mercator

-CEA: Cylindrical Equal Area

-COP: COnic Perspective

-COD: COnic equiDistant

-COE: COnic Equal area

-COOQO: COnic Orthomorphic

-BON: Bonne

-PCO: Polyconic

-SFL: Sanson-Flamsteed

-PAR: Parabolic

-AlT: Hammer-Aitoff equal area all-sky
-MOL: Mollweide

-CSC: COBE quadrilateralized Spherical Cube
-QSC: Quadrilateralized Spherical Cube

-TSC: Tangential Spherical Cube

-NCP: North celestial pole (specia case of SIN)

-GLS: GLobal Sinusoidal (Similar to SFL)

Other types are also possible (for example TEMP for temperature.)

cunitl: The Unit of Axis 1.

cunit2: The Unit of Axis 2.

epoch: Epoch of coordinates.

Radesys: The reference frame, default valueis"ICRS".

pcl 1. Element (1,1) of the linear transformation matrix. The pcl and pc2 parameters are no
longer used in modern Wcs definition, but are together with CDELT1 and CDELT2 included in
the CDi_j matrix.

pcl 2: Element (1,2) of the linear transformation matrix.

pc2_1: Element (2,1) of the linear transformation matrix.

pc2_2: Element (2,2) of the linear transformation matrix.

cdl_1: Element (1,1) of the corrected kigear transformation matrix.

The World Coordinate System Build 15.0.3262

« cdl 2: Element (1,2) of the corrected linear transformation matrix.

e cd2 1. Element (2,1) of the corrected linear transformation matrix.

e cd2_2: Element (2,2) of the corrected linear transformation matrix.
With athird dimension the following also applies:

* ctype3: Description of what the 3rd axis represents, for instance Wavelength, Time, M1 Tempera-
ture, and so on.

e cunit3: The Unit of Axis 3.

» crva3: [Optional - in case of equidistant 3rd dimension]. Wavelength, time, ... of reference layer;
unit : length, time, ...

 crpix3: [Optional - in case of equidistant 3rd dimension] Reference layer index

 cdelt3: [Optiona - in case of equidistant 3rd dimension] Scale in 3rd dimension - unit: length,
time, ...

» PC elements:
¢ pcl _3: Element (1,3) of the linear transformation matrix.

e pc2_3: Element (2,3) of the linear transformation matrix.

pc3_1: Element (3,1) of the linear transformation matrix.

pc3_2: Element (3,2) of the linear transformation matrix.

pc3_3: Element (3,3) of the linear transformation matrix.
To create aWCS abject that can be assigned to an image you can use something like the following.

Create the WCS object, units in degrees by default

myWs = Wes(crpixl = 29, crpix2 =29, crvall = 30.0, crval2 = -22.5, \
cdeltl = 0.0004, cdelt2 = 0.0004, cunitl = "DEGREES", \
cunit2 = "DEGREES", ctypel = "RA---TAN', ctype2 = "DEC - TAN')

Check whether the WCS is valid

print myWs.valid

Assign the world coordinates to our inage

nmyl mage = Sinpl el nage(description = "Mck inage", wes = nyWs)

You can then obtain the world coordi nates at any pi xel

print nyl mage. get Ws() . get Wor| dCoor di nat es(31, 31)

This provides an array of sky coordi nates in degrees.

You can get the intensity at a given WS position

Assign a nock image with all intensity values set to 1.0

nmyl mage. i mage = Doubl e2d(100, 100, 1.0)

Get the intensity at a given WS position.

print nyl mage. getl nt ensi t yWor| dCoor di nat es(30. 0012, -22.498)

Example 4.1. Creating a WCS object from scratch.

For the Si npl eCube and Spect r al Si nmpl eCube objects you can do thisalmost identically. Us-
ing the d3 cube defined in a previous example:

Create WCS object, units in degrees by defaul t
nyWs = Ws(crpixl = 29, crpix2 =29, crvall = 30.0, crval2 = -22.5, \
cdeltl = 0.0004, cdelt2 = 0.0004, cunitl = "DEGREES", \
cunit2 = "DEGREES', ctypel = "RA---TAN', ctype2 = "DEC - TAN')
Create a nock cube with all intensity values set to 1.0
nyCube = Si npl eCube(descri pti on="Mck cube", image=Doubl e3d(100, 100, 100, 1.0),
wes=ny\Ws)
Add third axis (WS is created with two axes by defaul t)

76

The World Coordinate System Build 15.0.3262

myWs. NAXis = 3
Add quantities related to the third axis
myWs. crval 3 = 300.0

myWs.crpi x3 = 0
myWs. cdel t3 = 0.001
myWs. ctype3 = "Wavel engt h"

nyWs. cunit3 = "M CROVETERS"

You can obtain the world coordinates at any pixel on the inage.

print myCube. get Ws() . get Wor| dCoor di nat es(31, 31)

Get the intensity at a given WCS position. W need three

argunents now, with the first argument being the |ayer nunber (depth)
fromwhich we want the intensity measure. Count starts from O.

print myCube. getl nt ensityWrl dCoor di nat es(0, 30. 0012, -22.498)

Example 4.2. Getting the world coor dinates from a screen pixel position.

If the third axis of the cube is irregularly sampled, you can define an i nagel ndex array with the
sampling values of each layer along the axis. Such array would replace the values of the cr val 3,
crpi x3 and cdel t 3 parameters:

Create WCS object, units in degrees by default

myWs = Wes(crpixl = 29, crpix2 =29, crvall = 30.0, crval2 = -22.5, \
cdeltl = 0.0004, cdelt2 = 0.0004, cunitl = "DEGREES", \
cunit2 = "DEGREES', ctypel = "RA---TAN', ctype2 = "DEC - TAN')

Create a nock cube

myCube = Si npl eCube(descri pti on="Mck cube", inmge=Doubl e3d(100, 100, 100, 1.0),

wes=nmy\Ws)

Add third axis (WS is created with two axes by default)

myWs. NAXis = 3

Add quantities related to the third axis

nyWs. ctype3 = "Wavel engt h"

nyWs. cunit3 = "M CROVETERS"

Add the imagel ndex array

from herschel . share. unit. Length i nport M CROVETERS

wavel engt hs = Doubl eld([20.0, 45.0, 100.0])

nmyWs. set | nagel ndex(wavel engt hs, M CROVETERS)

Example 4.3. Adding a third axisto a WCS structur e to define an image index.

To check whether the third axisis regularly sampled, the following will return 1 if true, O if false:
print nyWs. equi di stant|nZ

Example 4.4. Printing if the third axisisregularly sampled.

A summary of queries on thewcs of the cube (replace the specific numbers here with those appropriate
for your cube):

You can obtain the world coordinates at any spaxes/ pi xel
print myCube. get Ws(). get Wor| dCoor di nat es(31, 31)

You can obtain the spectral coordinate at any index position
print myCube. get Ws(). get Wor| dCoor di nat eZ(0)

O the spaxel/pi xel and wavel ent h/ frequency coordi nate
for a world coordinate position

print myCube.wcs. get Pi xel Coor di nat es(30. 0012, -22.498)
print myCube. wcs. get Pi xel Coor di nat eZ(300. 023)

Get the intensity at a given WCS position. W need three
argunents now, with the first argument being the |ayer nunber (depth)

fromwhich we want the intensity nmeasure. Count starts fromO.
print myCube. getl nt ensityWrl dCoor di nat es(0, 30. 0012, -22.498)

Example 4.5. Transfor ming between world coordinates and

4.2. Correcting the astrometry of your data

77

The World Coordinate System Build 15.0.3262

With the ast r onet r yFi x task you can correct the astrometry of your data to make it consistent
with the astrometry of some other data. To learn more about the ast r omet r yFi X task, see the
corresponding entry in the User's Reference Manual: Section 1.29 in HCSS User's Reference Manual.

If you area SPIRE user, thereisahel per script to correct the astrometry of your observations. In HIPE,
choose <cripts - SPIRE Useful scripts - Photometer Astrometry Correction.

78

Build 15.0.3262

Chapter 5. The Numeric library

Thischapter describesthe numeric functionsavailablewithin HIPE. For information on numeric arrays
and other datasets, see Chapter 2. For reference information about al the numeric functionsin HIPE,
see the User's Reference manual in HCSS User's Reference Manual.

5.1. Numeric functions and lambda expres-
sions

Y ou can apply functions as follows:

print SQRT(16) # 4.0 (applied to a scal ar)
y = Doubl eld([1, 4, 9, 16])
print SQRT(y) # [1.0,2.0,3.0,4.0] (applied to a DP nuneric array)

Example 5.1. Taking the squareroot of a numeric array of doubles.

As shown by this example, functions on scalars (such as SQRT) are implicitly mapped over each ele-
ment of an array. Y ou can combine functionswith arithmetic operatorsto perform complex operations
on each element of an array:

t = Doubl eld([1, 2, 3,4])

print SIN(1000 * t * (1 + .0003 * COS(3 * t)))

[0.6260976237441638, 0. 5797470124743422, 0. 8629107307631398,
#-0.9811675382238753]

Example 5.2. Numeric functions are applied to each element of an array.

The names of functionsin thenumeric library have ALL LETTERS capitalised. Thisis to avoid
ambiguity, as Jython already defines certain functions, such as ‘abs’, which are not applicable to our
DP numeric arrays.

There are various types of functionsin the numeric library:

y = Doubl eld([1, 2,3, 4])
print SQRT(4) # doubl e->doubl e
print SQRT(y) # doubl e->doubl e (mapped)

print REVERSE(y) # Doubl eld->Doubl eld
print MEAN(y) # Doubl eld- >doubl e

Example 5.3. Converting valuesto double asit isthe type of the numeric arrays.

Y ou can define new functions as lambda expressions in Jython and apply them to numeric arrays.
For example:
y = Doubl eld([1, 2, 3, 4])

f = lanbda x: x*x + 1 #take the given array, call it 'x' and
#return the value x"2 +1 to an array called f.

print f(y) #[2.0,5.0,10.0,17.0]. Each elenment of y was

#taken -> x then each el enent was squared
#pl us 1 added.

Example 5.4. Using lambda expression to apply new functionsto arraysin the same way as Numeric func-
tions.

However, in this case, it is much easier and faster to do this with array operations.

79

The Numeric library Build 15.0.3262

print y *y +1
Example 5.5. For simple functionsit is much morereadableto usethe built-in operators.

Lambda expressions are not as fast as the standard Java functions provided by the numeric library,
but this is often not a problem.

More complex functions (equivalent to subroutines) can be created using the def command, whichis
discussed in Section 1.27.

5.2. Basic functions

Basic functions applicable to scalars or arrays, and returning scalars or arrays of the same size:

ABSin HCSSUser's

ARCCOSin HCSSUs-

ARCSIN in HCSSUs-

ARCTAN in HCSSUs-

Reference Manual er's Reference Manual | er's Reference Manual | er's Reference Manual
CEIL inHCSSUser's | COSinHCSSUser's | EXPin HCSSUser's FIX inHCSSUser's
Reference Manual Reference Manual Reference Manual Reference Manual (not

applicable to scalars)

FLOOR in HCSSUs-
er's Reference Manual

LOGinHCSSUser's
Reference Manual

LOG10in HCSSUs-
er's Reference Manual

ROUND in HCSSUs-
er's Reference Manual

SIGNUM in HCSSUs-
er's Reference Manual

SIN in HCSSUser's
Reference Manual

SORT in HCSSUs
er's Reference Manual

SQUARE inHCSSUs
er's Reference Manual

TAN in HCSSUser's
Reference Manual

These are applied in the form

b = SIN(a)

Example 5.6. The SIN function worksfor arraysand scalars.

b will be an array of the same dimension asa, or ascalar if a isascaar.

Array functions on Doubl e<n>d returning adoubl e:

MIN in HCSSUser's
Reference Manual

MAX in HCSSUs-
er's Reference Manual

SUM in HCSSUser's
Reference Manual

PRODUCT in
HCSSUser's Ref-
erence Manual

MEAN in HCSS Us-
er's Reference Manual

MEDIAN in HCSSUs-
er's Reference Manual

STDDEV in HCSSUs-
er's Reference Manual

X

b=MNa) #'b

Warning

is the mninumvalue of the array 'a'.

Example 5.7. Finding the minimum value of an array.

Remember to strip your arrays of any NaN (Not a Number) values before using these
functions, or the result will always be a NaN. See Section 2.2.9 for more information.

These functions can a so be used to reduce the dimensionality of an array (for instance, three- to two-

dimensional).

Functions applicable to one-dimensional arrays and returning an array of the same size:

 REVERSE in HCSS User's Reference Manual

80

The Numeric library Build 15.0.3262

Functions applicable to arrays and returning an array of increased rank (number of dimensions):

* REPEAT in HCSSUser's Reference Manual

X

Warning

Many of these functions have lower case equivalents built-inin Jython. Be aware of which
one you are using, because their behaviour could differ in some cases, as shown by the
example below which creates a table with NaN valuesin it.

tt =Doubl eld. range(10)

tt[0] =Doubl e. NaN

print max(tt)

NaN

print mn(tt)

NaN

tt[1] =Doubl e. NaN

tt[0]=1.0

print max(tt) # By using the built-in Jython functions
9.0

print mn(tt)

1.0

print MAX(tt) # By using the DP Nunmeric functions
NaN

print MN(tt)

NaN

Example 5.8. Differences between the lower-case Jython functions and the up-
per-case Numeric functions.

5.3. Integral transforms

HIPE has two options for performing fast Fourier transforms: FFT and FFT_PACK. These two class-
es are comparable in terms of their accuracy. Both FFT and FFT_PACK transform data from a com-
plex array to acomplex array. They differ in execution time. Additional classes, which are related to
FFT_PACK, add the options of transforming real dataand of taking advantage of symmetry for shorter
execution run-times. Table 5.1 gives an overview of the available transformation options:

Table5.1. Forward Fourier transformsfor input of length N.

Name Input type |Output type|Output length |Notes
FFT Complexld |Complexld [N
L I
X, = Z x e N k=0,.... N—L1
n=0
FFT_PACK Complex1d ‘Complexld |N \
Fol it
X,=> xe " k=0,.,N-L
n=10
Real DoubleFFT#ft |doublel] ‘ComplexlD |f|oor(N/2) +1 ‘Calculat% FFT of real inpu.

N—1 -
ak:Z xncos}m%, k=0,...,[N/2|.

=0

81

The Numeric library Build 15.0.3262

5.3.1.

5.3.2.

Name Input type |Output type|Output length |Notes
FFT_PACK_EVEN|Doubleld |Doubleld [N Discrete cosine transform.
N-1
¢, =x,+2 Z x, coskn ;-H —1f Xy, k=0,... N—L
o N-—1
FFT_PACK_ODD |Doubleld ‘Doubleld |N Discrete sine transform.
-1
ckzzzxﬂsin[f(Jrl]IﬁnJrlﬁl%, k=0,....N—1,
n=1 L4y

FFT

The FFT class offers a Discrete Fourier Transform for Conpl ex1d arrays. It uses a radix-2 FFT
algorithm for array lengths that are powers of 2 and a Chirp-Z transform for other lengths.

Example 5.9 shows the generation of afrequency modulated signal, followed by a FFT both with and
without windowing:

ts = 1E-6 # Sanpling period (sec)

fc = 200000 # Carrier frequency (Hz)
fm = 2000 # Modul ati on frequency (Hz)
beta = 0.0003 # Modul ation index (Hz)

n = 5000 # Nunber of sanpl es

pi = java.lang. Math. Pl # define pi

t = Doubl eld.range(n) * ts
1t is a 5000 el enment array holding tinme val ues

signal = SIN(2 * pi * fc *t * (1 + beta * COS(2 * pi * fm* t)))
#create the nodul ated signal with nodul ati on frequency fmand carrier
#frequency fc, t is the array we created above for the tine el enents.

spect rum = ABS(FFT(Conpl ex1d(si gnal)))
#spectrum hol ds the absolute value (ABS) of the FFT of the signal.
#We need to handl e these arrays as Conpl exld rather than Doubl eld.

freq = Doubl eld. range(n) / (n * ts)
#The frequency val ues for the spectrum

Repeat with apodi zing
spectrun? = ABS(FFT(Conpl ex1d(HAMM NG signal))))

Example 5.9. FFT of a modulated signal, with and without HAMMING smoothing

FFT_PACK

HIPE offers a Java implementation of FFT_PACK for the fast calculation of the Discrete Fourier
Transform for Conpl ex1d arrays and for Doubl eld arrays. Specialized classes are available to
operate on Doubl eld arrays that contain data of even or odd symmetry. FFT_PACK aimsto make
use of the data properties (real only, symmetry) in order to reduce execution run-time.

FFT_PACK (Discrete Fourier Transform for complex data) in HCSS User's Reference Manual

FFT_PACK transforms complex input into complex output. For the numbers from 2 to 10,000,
FFT_PACK isfaster than FFT in more than 55% of all cases. FFT_PACK is dlower than FFT if the
length of the input array is a power of 2. FFT_PACK is also slower than FFT if the prime factor de-
composition of the length of the input array contains alarge value.

Handl e these arrays as Conpl exld rather than Doubl eld.

82

The Numeric library Build 15.0.3262

spect rum = ABS(FFT_PACK(Conpl ex1d(signal)))
spectrum now hol ds the absol ute value (ABS) of the FFT of signal.

Example 5.10. Transforming a signal into the modulus of its spectrum.

RealDoubleFFT#ift (Discrete Fourier Transform for real data) in HCSSUser'sReference Manual

Real Doubl eFFT#f t transformsreal input into complex output. It makes no assumption about the
symmetry of theinput data. To speed up thetransform, Real Doubl eFFT#f t only calculatesvalues
which cannot be determined from conjugate symmetry (recall that for real input, Xy = (Xnk)*). Given
an input of length N, Real Doubl eFFT#f t outputs only the first f | oor (N/ 2) +1 values of the
FFT.

from herschel .ia. nuneric.tool box. xformutil inport Real Doubl eFFT

Initialization of the Real Doubl eFFT to a certain |l ength N nust be perfornmed
only once for each new array | ength

N = 10

si gnal = Doubl eld. range(10)

rdf ft = Real Doubl eFFT(N)

Create a Conplexld to store the FFT of signal.

spect rum = Conpl ex1d()

Execute the real double FFT with an explicit copy as the cal cul ation
invalidates the input signal. Handl e the signal array as a Java array.
rdfft.ft(signal.copy().array, spectrum

spectrum now hol ds the FFT of signal

spect rum = ABS(spectrum

spectrum now hol ds the absol ute value (ABS) of the FFT of signal.

Forward transformof real signal of length N

rdf ft = Real Doubl eFFT(N)

spect rum = Conpl ex1d()

rdfft.ft(signal.toArray(), spectrum

I nverse transform of conplex spectrumof |ength N 2+1

recreat edSi gnal = Doubl eld(N)

rdf ft.bt(spectrum recreatedSignal.array)

Normal i ze signal

signal = recreatedSignal/N

Example 5.11. Transforming areal signal into a spectrum.

FFT_PACK_EVEN (Discrete Cosine Transform for real data with even symmetry) in HCSS
User's Reference Manual

FFT_PACK_EVEN implements the Discrete Cosine Transform. It transforms real input into re-
a output, assuming data with even symmetry of the form (xg, X1, ..., XN-2y XN-1, XN-25 «-=r X1)-
FFT_PACK_EVEN isfast for input lengths for which the input array length minus 1 can be decom-
posed into small prime factors.

N_ext ended = signal . si ze

spectrum = FFT_PACK_EVEN(si gnal [0: N_ext ended/ 2+1])

spectrum now hol ds the positive real frequencies of the FFT of signal
(assum ng that signal has even symmetry)

Example 5.12. Transforming areal signal with even symmetry into a spectrum.

FFT_PACK_ODD (Discrete Sine Transform for real data with odd symmetry) in HCSS User's
Reference Manual

FFT_PACK_ODD implements the Discrete Sine Transform. It transforms real input into imaginary
output (the imaginary part of a complex array) assuming data with odd symmetry of the form (0O, X,
X1y «oey XN-1, Oy -XN-1, -+, -Xg). FFT_PACK _ODD is fast for input lengths for which the input array
length plus 1 can be decomposed into small prime factors.

N_ext ended = signal . size

83

The Numeric library Build 15.0.3262

5.3.3.

5.3.4.

spectrum = FFT_PACK_ODD(si gnhal [1: N_ext ended/ 2])
spectrum now hol ds the positive imginary frequencies of the FFT of signal
(assum ng that signal has odd synmetry)

Example 5.13. Transforming areal signal with odd symmetry into a spectrum.

Selecting the right Fourier transform

If run-time efficiency is critical, it is necessary to be careful about selecting the Fourier transform
suitable for the job at hand. The guidelines below help select the right Fourier transform to minimize
execution run-time, based on N, i.e. the length of the input array:

e If Nisapower of 2,i.e. N= 2" for an integer m, then use FFT.

If the largest value in the prime number decomposition of N isrelatively large, then compare exe-
cution run-time between FFT and FFT_PACK.

If theinput isreal, use Real Doubl eFFT instead of FFT_PACK.

If input isreal and multiple transforms need to be performed on different inputs of the same length,
create asingle Real Doubl eFFT object and perform all transforms using the same object.

If theinput isreal and has even symmetry, use FFT_PACK _EVEN. Note that for fast execution, the
length of theinput to FFT_PACK EVEN minus one should decompose into small factors.

If the input is real and has odd symmetry, use FFT_PACK _QODD. Note that for fast execution, the
length of theinput to FFT_PACK DD plus one should decompose into small factors.

Comparison of FFT, FFT_PACK and RealDoubleFFT execution times

1000

100
@ 10
ry = FFT
E + FFT_PACK
5 RealDoubleFFT
5 1
o
] .

0.1 ‘__-.'__._-’_..__ .. i

0.01

1 10 100 1000 10000

Figure5.1. The speed of FFT_PACK isdependent on input length: if the input length can be factored into
small numbers, FFT_PACK is faster than FFT; if the input length contains a large prime factor, FFT is
faster than FFT_PACK. FFT is also faster when input length is a power of two. For strictly real input,
Real Doubl eFFT isalwaysfaster than FFT_PACK.

Inverse Fourier transforms

HIPE offersinverse Fourier transforms which correspond to each forward Fourier transform.

84

The Numeric library Build 15.0.3262

5.3.5.

Table 5.2. Optionsfor theinverse Fourier Transforms. Note that the output of Real Doubl eFFT#bt de-
pends on the value of N with which the Real Doubl eFFT object was created.

Name Input type |Output Output [Notes
type length
IFFT Complex1d |Complex1d |N

-1 i 22
-"n:Tlrz—Ykei ¥ m=0.....N-L
N =1

IFFT_PACK Cmnd@dd‘Cmnd@dd|N \
N ks
xn:Z_Yke N, n=0,...,.N—1.
k=1
RealDoubleFFT#bt |Complex1D |Doubleld |2L-2 L is the length of the input to RealDou-
bleFFT#bt.
(N even)

N is the length of input to Real DoubleFFT#ft
2L-1 and is fixed when the RealDoubleFFT object

is created.
(N odd)
Outputs strictly real data.
N even:
& 2 2w o
x,=a,+2 2, la,coskn ~ bysinkn—+ay,—17 n=0,. N-L
k=1 ¥ e
N odd:
(A—1)2 21t 27t
x,=a,+2 Z la,coslm——Db sinkn—|, n=0,... N-1
k=1 N N
IFFT_PACK_EVEN |Doubleld ‘ Doubleld | N ‘ Inverse discrete cosine transform.
& 27 2w o
x,=a,+2 2, la,coshn——>b, sinkn—+a,,—117 n=0,.. N-L
k=1 N N '
IFFT_PACK_ODD |Doubleld ‘ Doubleld | N ‘ Inverse discrete sine transform.
N -l -
x, =2 cksinkn%, n=1,. . ,N-1.

=

=1 4

Normalization

The application of the forward transform followed by the application of the inverse transform is an
identity operation if the output of the inverse transform is normalized.

Table5.3. For thefollowing normalizations, assumethat the signal has N elements.

Forward and in-| Normalization toidentity
versetransforms
FFT, IFFT

Autonmtically nornalized
signal = | FFT(FFT(signal))

FFT_PACK,

IFFT_PACK signal = | FFT_PACK(FFT_PACK(si gnal))/N

Real Doubl eFFT#ft,
Forward transform of real signal of length N
rdf ft = Real Doubl eFFT(N)

85

The Numeric library Build 15.0.3262

Forward and in-| Normalization toidentity
versetransforms

ReaDoubleFFT#bt | ¢ = Conpl ex1D()

rdfft.ft(signal.toArray(), c)

Inverse transform of conplex spectrumof length N 2+1
recreat edSi gnal = Doubl eld(N)

rdfft.bt(c, recreatedSignal.array)

Nornalize signal

signal = recreatedSi gnal /N

FFT_PACK_EVEN,

signal = | FFT_PACK_EVEN(FFT_PACK_EVEN(si gnal))/ (2*N-2)

IFFT_PACK_EVEN

FFT_PACK_ODD,

si gnal | FFT_PACK_ODD(FFT_PACK_ODD(si gnal))/ (2* N+2)

IFFT_PACK_ODD

5.4. Power spectrum

With the Power Spect r umclass you can create the power spectrum of each column of a Table
Dataset. Table dataset that are suitable for power spectrum conversion typicaly contain a column
bearing unitsof time, plusother columns of quantitiesfrom whichto compute power spectra. Sincereal
signals sometimes contain unwanted strong excursions, called glitches or spikes, that will dominate
the power spectrum, the Task includes a simple deglitcher, that detects and removes such events from
the data stream, replacing them with an average of the surrounding data.

The Power Spectrum Viewer, agraphical interface wrapping the functionality of thisclass, isdescribed
in the Data Analysis Guide.

Y ou can abtain your power spectra by invoking the get Power Spect r ummethod on the Power -
Spect r umclass. The method takes the following arguments:

 t abl e: theinput Table Dataset.

o flimt:theinverse cut-off frequency (default 0.1).

 si gma: the deglitcher threshold (default 4).

e degl i t ch: boolean, activates the deglitcher if t r ue (default).

* ti meCol um: aCol umm containing time information.

The inverse cut-off frequency determines the length of the intervals into which the data timeline is
subdivided before performing the FFT. Each of these datasetsis Fourier transformed individually, and
the resulting power spectra are quadratically co-added to yield a power spectrum with a better SIN
ratio, that is, ahigher cut-off frequency will yield a better S/N for the resulting power spectrum.

The sigmavalue controls asimple sigmalkappa deglitcher, that eliminates al datapointsthat are more
than sigma (default = 4) times the standard deviation away from the mean. After eliminating these
data points the procedure is repeated iteratively until no more data can be discarded.

The get Power Spect r ummethod has the following variants:

» get Power Spectrumnq(t abl e)

e get Power Spectrun{tabl e, tineColum)

» get Power Spectrun(flimt, table)

e get Power Spectrun(flimt, table, tineColumm)

86

The Numeric library Build 15.0.3262

e get Power Spectrun(flimt, sigm, table)
e get Power Spectrun(flimt, sigma, table, tinmeColum)
e get Power Spectrun(flimt, sigm, deglitch, table)

» get Power Spectrun(flimt, sigm, deglitch, table, tinmeColum)

5.5. Convolution

Convolution is currently supported for Doubl eld arrays. A direct convolution algorithm is used,
although a future release might implement Fourier convolution to improve the speed for large arrays
and large kernels. An example of itsuseis given in Example 5.14.

x = Doubl eld. range(100)

Create array [0.0, 1.0, 2.0 ... 99.0]
kernel = Doubl eld([1,1,1])

#provi de kernel for the convol ution

f = Convol ution(kernel)

#create the convol ution

y = f(x)
#apply it to the array x. The result is in array y

Example 5.14. Example of the use of the convolution algorithm.

This illustrates a general approach with the numeric library i.e. general function objects may be
instantiated using parametersto create a customi sed function which can then be applied to one or more
sets of data.

The constructor of the Convol uti on class allows optiona keyword arguments to be specified, to
further customise the function:

» The'cent er ' parameter allows selection of a causal asymmetric filter for time domain filtering or
asymmetric filter for spatial domain filtering.

» The'edge' parameter controls the handling of edge effects, as well as allowing a choice between
periodic (circular) and aperiodic convolution.

The following examples show construction of filters using these options:

Note
@ Make sure you have input the following import line before trying these out.

from herschel .ia. nuneric.tool box.filter.Convol ution inport *
Example 5.15. Importing the Convolution module.

Use zeroes for data beyond edges, causal:

f = Convol ution(kernel, center=0, edge=ZERCES)
Example 5.16. Create a convolution function with zer oes beyond the edges.

Circular convolution, causal:

f = Convol ution(kernel, center=0, edge=Cl RCULAR)

Example 5.17. Create a convolution function with circular wrapping beyond the edges.

87

The Numeric library Build 15.0.3262

Repeat edge values, causal:

f = Convol uti on(kernel, center=0, edge=REPEAT)
Example 5.18. Create a convolution function with value repetition beyond the edges.

Use zeroes for data beyond edges with centred kernel:

f = Convol ution(kernel, center=1, edge=ZERCES)
Example 5.19. Create a centred convolution function with zer oes beyond the edges.

Circular convolution with centred kerndl:

f = Convol ution(kernel, center=1, edge=Cl RCULAR)
Example 5.20. Create a centred convolution function with circular wrapping beyond the edges.

Repeat edge values with centred kernel:

f = Convol ution(kernel, center=1, edge=REPEAT)

Example 5.21. Create a centred convolution function with value repetition beyond the edges.

5.6. Boxcar and Gaussian filters

Finite Impulse Response (FIR) filters and symmetric spatial domain filters can be defined by instan-
tiating the Convol ut i on classwith appropriate parameters. In addition, special filter functionsare
provided for Gaussian filters and box-car filters:

from herschel .ia. nuneric.tool box.filter.Convolution inport *

f
f

Gaussi anFilter (5, center=1, edge=ZEROCES)
BoxCarFilter(5, center=0, edge=ZERCES)

Example 5.22. Creating different filtering functions using the Convolution module.

These filters are subclasses of Convol uti on and hence inherit the use of similar keyword argu-
ments.

5.7. Interpolation

Interpolation functions are provided for a variety of common interpolation agorithms.

Example 5.23 illustrates the use of the currently available interpolation functions.

Create the array x [0.0, 1.0, 2.0, ..., 9.0]

x = Doubl eld. range(10)

print x #[0.0,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0]

Create an array y which contains the sine of each elenent in x
y = SIN(x)

u contains the values at which to interpol ate

u = Doubl eld.range(80) / 10 + 1

print u #1.0,1.1,1.2,1.3....8.6,8.7,8.8,8.9]

Linear interpolation

This sets up the interpolation, linear x-y fit

Interpol ate at specified val ues

interp = Linearlnterpolator(x,y)

Prints out the values interpolated at each position noted in array u

88

The Numeric library Build 15.0.3262

print interp(u) #[0.8414709848, 0.848253629....0.5275664375, 0. 4698424613]

Near est Nei ghbour and Cubi cSpline interpolation may be performed
in the same way:

Cubi c-spline interpolation
interp = CubicSplinel nterpol ator(x,y)

Near est - nei ghbour interpol ation
interp = Nearest Nei ghbor | nt erpol at or (X, y)

Example 5.23. Inter polation functionsin DP

Theresult of the interpolations used in the above exampleisillustrated in Figure 5.2.

e R R R AR R LR R RN RRRRN LAREN RARE=
LoE .-_[\ -~ =
08 //\ 3
06F \ S
04F \ / L
0 02F =
= 00 m =
02 F =
_04F / 3
06 \. 3
—U.sf— V —f
S1of =
I N N PN R FUETN PR FETTE SR N SRR e
-1 0 1 2 3 4 5 6 7 8 9 10
X axis

W Original values —— Linear — (Cubic spline
Nearest neighbour

Figure5.2. [llustration of various forms of inter polation functions.

5.8. Fitting data

5.8.1.

Here we provide information on the basic linear and non-linear fitting routines available in HIPE.

General approach

Input Data: The fitter package expects your data to be in two datasets that are related to each other.
Typically, these are Doubl eld arrays, e.g.,

a points: each elenment in x and y define a data point
Doubl eld. range(12) # Make x vector (the data positions/channels)
Doubl e1d([1.0,1.2,0.9,2.2,3.3,\

4.5,3.6,2.7,1.8,1.2,1.0,1.1]) # Mike y vector (the data val ues)

Dat

Example 5.24. Defining some X-Y data points.

Model Selection: Fitting means adjusting the parameters of a known function, called model , so that
it best matches the input data. This toolbox provides some pre-defined linear models as well as non-
linear models. Viewing your datawill hopefully give you some hints about what function model would
reflect your input data. For example, if it seemsto be polynomial of acertain degree, you would choose
aPol ynoni al Model .

89

The Numeric library Build 15.0.3262

Note
@ For the case of non-linear fitters (e.g., used with Gaussians) it is also necessary to provide
initial guesses in the form of a parameter set to the model before invoking afitter. The
closer the initial guess for the parameter set to the true values the higher the likelihood
that the minimisation will not find a local minimum with wrong/unrealistic parameter
estimation.

An example of the use of alinear fitter:

Choose a nodel: 4th degree pol ynom al

nmyModel = Pol ynomi al Model (4)

Create a fitter and feed it your positions/channels along the array
(x, a Doubl eld array) and your nodel

nyFitter = Fitter(x, myMdel)

Example 5.25. Fitting data with a polynomial model (linear).

Or for anon-linear fitter applied to our array 'x":

myModel = GaussModel ()

peak = 4.5

channel = 5.5

sigma = 1.0 # Note that sigma is not the FWHM

initial val ues = Doubl eld([peak, channel, sigma])

Apply the initial estimates: peak height, channel position and

sigma of gaussi an

myModel . set Paranet ers(initial val ues)

Choose non-linear fitter to use

nmyFitter = AnpebaFitter(x, nmyMdel) # see |ater section on available fitters

Example 5.26. Fitting data with a gaussian model (non-linear).

Fit Execution (with and without weights):

Now actually fit the data values at each x position (the y array) to the node
fitresults = nyFitter.fit(y)

O with associated wei ghts array

fitresults = nyFitter.fit(y, yWights)

Example 5.27. Executing thefit with or without parameters.

Results Now thefitter has doneitsjob. We can print theresults (f i t r esul t s) to seethe parameters
fitted.

print fitresults # fromusing the polynomal fitter

[1.0993589743591299, - 1. 1096331908843398, 0. 8923489704745665
-0.14688390313399513, 0. 006825466200470528]

provides coefficients of the polynomal fit

print fitresults # fromusing the Gaussian fitter

[3.751009700481534, 5. 353351564022887, 2. 5098951536394383]

Peak of fit, channel of Gaussian peak, sigma of Gaussian

Example 5.28. Printing the results of thefitting.

Thefit parameters model are computed and we can start using that model to e.g. re-sample your model
fit data:

Re-sanple with equally spaced x data points and a finer grid
xs = Doubl eld. range(1200) / 100 # Re-sanpl ed x positions
ys nmyModel (xs) # Conputed y data points
a plot of xs versus ys plots out 1200 points with the fit.

Example 5.29. Re-sampling the fit data according to the model.

90

The Numeric library Build 15.0.3262

Satistical Information The above procedure demonstrates how to use the fit package to fit your data
against a certain model. However, it does not tell you how good the fit actually is. Thefitters provide
ways to extract such information from the fit.

After fitting

print nyFitter.getChi Squared() # CGoodness of the fit
e.g., 2.5765684980727577 for Gaussian fit
print nyFitter.autoScal e() # How wel | does the data fit the nodel.

e.g., 0.5350564350372312 for Gaussian fit

print nyFitter.getStandardDeviation() # Standard deviations for the paraneters.
e.g., [0.30907540430060004, 0. 24531121048289006, 0. 2525757390634412]

for Gaussian fit paraneters

print nyFitter.get Hessian() # Retrieve the Hessian matrix
es = nyFitter.nonteCarl oError (xs) # Errors on the resanpl ed datapoints
es is now an error array with a length the sane as "xs" -- 1200 sanpl es

Example 5.30. Retrieving the statistical indicator s of the goodness of fit.

Warning
o If youuseget St andar dDevi at i on (asin the example above) to obtain the standard
deviation array, please note that the results are scaled by a noise estimation value as stated
in the method description in the URM in HCSS User's Reference Manual . You can use
the method nyFi tt er. get Scal e() to know thisvaue or:

covivat = nyFitter. get Covari anceMatri x()
di mensi on = covMat . get Di nensi on(0) # A square matri X
stdDev = Doubl eld(di mensi on)
for i in range(dinmension):
stdDev[i] = SQRT(covMat[i,i])

Example 5.31. Retrieving the unscaled standard deviation from the fit.

to obtain the unscaled value of the standard deviations from the covariance matrix (the
inverse of the Hessian Matrix).

5.8.2. Available linear models

There are several models that can be used for linear fitting.

In the descriptions below, the models provide parameter fit values pg, p1 ... Pk

Note

@ In the following examples the parameter subscripts match the position of the parameter in
the output array (fit sresul t inthe previous section). So pp will be the first element
of thefitsresult array, p; the second one, and so on.

BinomialM odel in HCSS User's Reference Manual, which allowsfor thefitting of abinomial model
with two variables: f(x,y:p) = Z pix X*y*¥, where d is the degree. Usage: BinomialModel (4) — provides
abinomia model of degree 4.

PolynomialM odel in HCSS User's Reference Manual, which allows for the least squares fitting

of a polynomial to the data: f(x:p) = = px X*. Usage: PolynomialModel(3) — provides a third order
polynomial fitting of the data.

SineAmpModel in HCSS User's Reference Manual, which allows for the fitting of cosine and sine
waves of agiven frequency to get amplitudes—f(x:p) = pp cos(2 1tf X) + p; sin(2 1tf X), where x isthe
data. Usage: SneAmpModel (f) —which provides cosine/sine fits with a frequency, f.

Power M odel in HCSS User's Reference Manual, which allowsfor thefitting of apower law of order
k: f(x:p) = po X‘. Usage: PowerModel(3) — provides a third-order power-law fit.

91

The Numeric library Build 15.0.3262

5.8.3.

SplinesModel in HCSS User's Reference Manual, which allows for the fitting of a cubic splines
with arbitrary knots settings. Usage: SplinesModel (Doubleld([12.5, 15.8, 17.7])) — provides a cubic
splines fit with three knots.

Available non-linear models

There are a number of models that can be used for non-linear fitting. For fitting of these models we
need initial values (guesses) for parameterslabelled pg, p1 and p, (see examplegivenin Section 5.8.1).

ArctanModel in HCSS User's Reference Manual, which alows for the fitting of a general arctan
function —f(x:p) = pg arctan(py (x - p2)). Usage: ArctanModel ()

ExpModel in HCSS User's Reference Manual, which allows for the fitting of a general exponential
function —f(x:p) = po exp(p1 X). Usage: ExpModel ()

LorentzModel in HCSS User's Reference Manual, which alowsfor thefitting of aLorentz function
—f(x:p) = po (P2H((X - p1)* + p2?9)). Usage: LorentzModel ()

Power L awM odel in HCSS User's Reference Manual, which allowsfor the fitting of a general pow-
er-law function —f(x:p) = po (X - p1)™ Usage: Power LawModel ()

SincM odel in HCSS User's Reference Manual, which allowsfor thefitting of asinc function—f(x:p)
= Po sin ((X - p2)/p2)/(x - p1)/p2. Usage: SncModel()

SineM odel in HCSS User's Reference Manual, which allows for the fitting of a general cosine/sine
wave —f(x:p) = p1 cos(2 Tt pg X) + P2 SiN(2 T pg X). Usage: SineModel ()

GaussModéel in HCSS User's Reference Manual, which alows for the fitting of a 1-D gaussian —
f(x:p) = po exp(-0.5 ((X - p1) / p2)?), Where py is the amplitude, p; the x-shift (from zero) and p, the
sigmaof thefit, withinitial valuesof 1.0, 0.0 and 1.0 respectively. Note that Gauss2DModel produces
afit to 2D data. Usage: GaussModel()

SincGaussM odel in HCSS User's Reference Manual, which alows for the fitting of the convolution
of a1-D sinc function with a1-D gaussian —f(x:p) = po exp(-b?) (erf(a- ib) + erf(a+ ib))/ (2 erf(a))
,witha = py/ (2°° p3) and b = (x - p1) / (2°° pa), where py is the amplitude, p; is the x-shift (from
zero), py isthe width of the sinc function (distance between first zero-crossings divided by oyp ' and p3
is the width of the Gaussian function (sigma), with initia values of 1.0, 0.0, 1.0 and 1.0 respectively.
Usage: SncGaussModel()

User supplied non-linear function, which allows for fitting a function (linear or non-linear) con-
structed by the user. This function must be put in a Jython class and optionally the user could provide
an analytical calculation of the partial derivatives with respect to the parameters (otherwise they are
calculated numerically). This is shown in the following example for the following function of four
parameters: f(x:p) = p0/(1+ (x/p1)?)" + p3 (the so called beta-profile):

from herschel .ia.nuneric.tool box.fit inport NonLinear PyMbdel

cl ass Bet aMbdel (NonLi near PyModel) :

the full 4-paraneter beta-nodel with partial derivatives
f(x:p) = pO/(1+(x/pl)**2)**p2 + p3

#

npar = 4

def __init__(self):
Constructor
NonLi near PyModel . __init__(self, self.npar)
sel f. set Par anet er s(Doubl e1d([1, 1, -1, 1]))

#

def pyResult(self,x,p):
nmodel = p[0]/ (1.0 + (x/p[1])**2)**p[2] + p[3]
return nodel

#

92

The Numeric library Build 15.0.3262

5.8.4.

5.8.5.

def pyPartial (self, x, p):
the partial derivatives
argl = 1.0 + (x/p[1])**2
dp = Doubl eld(sel f. npar)

#

dp[0] = 1.0/argl**p[2] # df/dpO

dp[1] = 2.0*p[0] *p[2] *x*x/((p[1] **3)*argl**(p[2] +1.0)) # df/dpl
dp[2] = -p[O] *Math. | og(argl)/argl**p[2] # df/dp2

dp[3] = 1.0 # df/dp3

return dp

def nyNane(self):
Return an explicatory nane (String). Optional.
return "beta-profile: f(x:p) = p[0]*{1 + (x/p[1])2}”*p[2] + p[3]"

Example 5.32. Creating a custom non-linear fitting model.

Once we define the function as shown in the example then we can proceed as before and create a
model and then perform the fitting using either the Lavenberg-Marquardt or Amoeba fitters:

bm = Bet aMbdel ()

bm set Par anet er s(Doubl eld([10.0,1.0,-2.0,5.0]))

nyfit = LevenbergMarquardtFitter(x, bn) # see section on available fitters bel ow
or nyfit = AnpebaFitter(x, bm

result = nmyfit.fit(y)

print result

Example 5.33. Using a custom fitting model.

Compound and mixed models

It is possible to add two models, e.g. if one wants to fit a spectral line (a Gaussian) on a background
(aPolynomial). The resulting model is non-linear.

myModel = GaussModel () # Define a Gaussi an
myModel += Pol ynom al Model (1) # Add a Polynomial to it of order 1. Only with +=
print myModel .toString() # I nformati on about the nodel

Example 5.34. Fitting a line using two models at the sametime.

More models can be added if wished.

Available fitters

All the following fitters are used as follows (the example usesFi t t er):

nyFitter = Fitter(xDataPoints, nodel)

Fitter in HCSS User's Reference Manual. Fitter for linear models. Y ou create afitter by providing
the model assumption and the x points of the data. With that information you compute the parameters
within the model by fitting the y data points. Once the computation of those parametersis done, you
can extract statistical information from the fitter.

L evenbergM ar quar dtFitter in HCSS User's Reference Manual. Fitter for non-linear models. The
L MFitter isagradient fitter, which meansthat it goes downhill from the starting location until it cannot
go down anymore. Thereis no guarantee that the minimum found is an absolute or global minimum.
If the chisg-landscapeis multimodal it endsin thefirst minimum it finds. See also Numerical Recipes,
Ch 15.5.

AmoebaFitter in HCSS User's Reference Manual. Fitter for non-linear models. The AmoebaFitter
implements the Nelder-Mead simplex method. It comesin 2 varieties, one where the smplex simply
goes downhill (temperature = 0) and one which implements an annealing scheme. Depending on the
temperature, the simplex sometimes takes an uphill step, while adownhill steps alwaysistaken. This
way it is able to escape from local minima and it has a better chance of finding the global minimum.

93

The Numeric library Build 15.0.3262

5.8.6.

No guarantee, however. AmoebaFitter is also able to handle limits on the parameter range. Parameters
stay within the limits when they are set. See also Numerical Recipes, Ch. 10.4 and 10.9.

Singular ValueDecompositionFitter in HCSS User's Reference Manual. Linear fitter based on Sin-
gular Value Decomposition (described in the section called “ Singular value decomposition”). Much
more robust in case of (nearly) degenerated models, at the cost of more CPU use. See Numerical
Recipes for more information.

Setting the fitter tolerance

TheiterativefittersLevenber gVar quar dt Fi t t er and AnbebaFi t t er haveatolerancevalue,
set by default to 0.01, against which the chi square value from each iteration is compared. When the
chi square value is lower than the tolerance, the iteration stops.

When the noise level of your datais low compared to the tolerance, iterations stop too early. Thisis
shown in the following example, using mock data with noise of order 0.001.

The data

array = Doubl eld([1.001, 1.004, 1.005,1.002,1.006,1.007,1.007,1.009, 1.01, 1. 011])

time = Doubl eld(range(10))

Fitting data with the LevenbergharquardtFitter

order =1

poly = Pol ynom al Mbdel (order)

pol y. set Par anet er s(Doubl eld(or der +1))

fitter = LevenbergMarquardtFitter(time, poly)

lineFit = fitter.fit(array)

Plotting the results

pl ot = Pl ot XY()

pl ot . addLayer (Layer XY(tine, array, |line=Style. MARKED, synbol =14, \
synbol Si ze=5, col or=j ava. awt . Col or. BLUE))

pl ot . addLayer (Layer XY(tine, poly(time), |ine=Style. MARKED, synbol =14, \
synbol Si ze=5, col or=j ava. awt . Col or. RED))

Fitting data with the Fitter

fitter = Fitter(time, poly)

linefit = fitter.fit(array)

pl ot . addLayer (Layer XY(tine, poly(time), |ine=Style. MARKED, synbol =14, \
synbol Si ze=5, col or=j ava. awt . Col or . GREEN))

plot.xtitle="Time'

plot.ytitle="Array'

Example 5.35. Plotting the results of a polynomial fitting.

1.O15 TI T T[T I T T[T I T T[T T T[T I T[T T T[T AT T[T T T[T T I T [TrrT

1.010

1.005

.\
Lovwn bvv v b b Ly

-
1]
3 1.000
(0.995
0.990]
(].Eagallll||||||||||||||I|||||||||||||||||||||||||||||||||_
- 0 1 2 3 4 5 G 7 8 9 10
Time
—8& Dala &—& LevenbergMargardiFitter

Fitter

Figure 5.3. Fitting data iteratively with tolerance set too high.

94

The Numeric library Build 15.0.3262

5.8.7.

Note how the fit given by Levenber gMar quar dt Fi t t er is offset with respect to the data. You
can improve the fit by setting the tolerance to alower value:

fitter = LevenbergMarquardtFitter(time, poly)
fitter.tol erance = 0.00001

Example 5.36. Setting the tolerance for the L evenbergMarquardt fitter.

However, if you have a linear model like a Pol ynomi aModel , as in the previous example, the
preferred fitter isFi t t er or Si ngul ar Val ueDeconpositionFitter.

1D fit example

The following example shows how a polynomial can be fitted to a set of 1D data.

Doubl e1d([3, 4, 6,7, 8, 10, 11, 13]) # These are the positions of the 1D data
Doubl eld([2,4,5,6,5,6,7,9]) # These are the data val ues at each position
The created arrays are:

print x # [3.0,4.0,6.0,7.0,8.0,10.0,11.0, 13.0]

print y #1[2.0,4.0,5.0,6.0,5.0,6.0,7.0,9.0]

Create sone data
W=
y =

Decide that we will fit it with a pol ynom al

nodel = Pol ynoni al Model (3)

The Fitter class expects the 'x' data point positions and the nodel .
In the binom al case, a Double2d array of x,y values is required.

The Fitter class deals with non-iterative nodels only.

[Note: For non-linear nodels the fitter tool box provides

the AnpebaFitter and the LevenbergMarquardtFitter]

fitter = Fitter(x, nodel)

Now we fit the data values(y); the returned array contains the paraneters
that make up a 3rd degree pol ynomi al .

Note: the nodel that we fed into the fitter is nodified along the

way, such that it contains the conputed paraneters of the pol ynom al .
poly = fitter.fit(y)

Printing the fit results (truncate to 3 decimal places to fit in line)

print poly # [-6.921, 4. 463, -0. 543, 0. 022]

..and al so getting the Chi-squared. The fitter has already been applied
and we can use the get Chi Squared() nethod to determine the fit

print "Chi-Squared = ", fitter.getChi Squared()
Chi-Squared = 0.9933079890409999

The fitted pol ynom al can then be applied as a function to interpol ate
between fitted points. Interpolate at 'n' uniformy spaced x val ues

100
M N(x) + Doubl eld.range(n + 1) * ((MAX(x) - MN(x)) / n)

n
u

Apply the nodel
unodel = nodel (u)

Now we can plot the data (x vs y) and the polynomal fit (u vs unodel)
Set up the plot space

pl ot = Pl ot XY()

Plot x against y in blue.

plot[0] = Layer XY(x, y, nane = "Data")

Overlay a second plot showi ng the polynomial fit in green.

plot[1] = Layer XY(u, unpdel, name = "Fit", color = java.aw. Col or. green)

Thefinal plotted display should look like Figure 5.4:

95

The Numeric library Build 15.0.3262

I[]II

9

-J

-

Ve
/

3 4 3 G 7 8] 10 11 12 13 14
X axis

Yy axis
IIII|IIII|IIII|IIII|IIIlrilllllllllllllllllll

[~

Figure5.4. [llustration of polynomial fit.

5.8.8. 2D fit example

For 2D data we express the positions at which we have data by a Double2d array. Thisis alist of
X, Y positions at which we have known data values that we will fit a 2D Gaussian to. So the x array
in our previous example is now replaced by a 2D array of data positions. The y array has the data
values at those positions.

In the following example, an array with values that provide a Gaussian with random noise added is
fitted by the Gauss2D model.

We start by making a little routine that creates the data for us.

The output contains the 'xy' positions as a Doubl e2d array and the data
values are held in in the Doubl eld array 'y2'.

def makeData():

Define sone constants

N=29 # W will create an array that is NxN
a0 = 10.0 # Anplitude of gaussian

x0 = 0.7 # x position of gaussian

y0 = -0.3 # y position of gaussian

s0O = 0.4 # Wdth

Make data with an underlying gaussi an nodel .
x = Doubl eld.range(N) / 2.0 - 2 # create x val ues

NN = N* N # the nunber of x and y positions (NxN)

xy = Doubl e2d(NN, 2) # Create enpty array of xy positions

ym = Doubl eld(NN) # Create enpty array for anplitude of pure Gaussian
y2 = Doubl eld(NN) # Create enpty array for Gaussian with noise (our

dat a) .
These have anplitude val ues only.
rng = java. util.Random(12345) #provide a random anplitude (noise)
To add to our nodel Gaussian with a seed val ue.
si = 1.0/ sO #just inverse of Gaussian width to be used
for i in Intld.range(NN):
xy[i,0] =x[i / N # Fills x positions for our data array
xy[i,1] = x[i %N # Fills y positions for our data array
xx = (xy[i,0] - x0) * si
yy = (xy[i,1] - y0O) * si
ynfi] = a0 * EXP(-0.5 * xx * xx) * EXP(-0.5 * yy * yy)
Fills 1d array with anplitude val ues...
y2[i] = ynfi] + 0.2 * rng.nextGaussian() # ...and adds noise to it
return xy,y2

Create the array with a 2D gaussian in it using the above routine.
a = makeDat a()

96

The Numeric library Build 15.0.3262

5.8.9.

The first itemin "a" has the xy positions in it
xy=a[0]

The second item has the data val ues

y2=a[1]

Define the nodel to be used in the fit
gaus2d = Gauss2DMbdel ()

Define the fitter: LevenbergMarquardt, a non-linear fitter is needed for
a gaussian fit. W could use an AnpebaFitter here also -- user preference.
fitter = LevenberghMarquardtFitter(xy, gaus2d)

A useful way to make data formats prettier for the printout of our results
F = DataFormatter()

Find the paraneters

param = fitter.fit(y2)

print "Paraneters %" % F. p(param

Paraneters [9.645 0.694 -0.300 0.413]

print "Paraneters are: gaussian height, x position, y position, w dth"
#Parameters are: gaussian height, x position, y position, wdth

Find the standard deviations of the all four paraneters...

stdev = fitter.get StandardDevi ation();

print "Stand Devs %" % F. p(stdev)

#Stand Devs [0.218 0. 009 0. 009 0. 007]

...and the chi-squared for the fit
print "Chi Sq %" % F.p(fitter.getChi Squared())
#Chi Sq 3. 552

Additional documentation

The following additional documentation is available, maintained directly by the developer of the fit
toolbox:

» The Fit Toolbox in Jython.

» Fitter reference documentation. In particular, see the troubleshooting section if you encounter prob-
lems.

» Jython examples for the Fit Toolbox.

5.9. Masks

The Numeric library offers two classes for handling data masks:

» Fi xedMask represents a traditional mask definition, with different masks (up to 64) defined at
different bit offset positions. Note that this class only stores mask definitions, with mask data stored
in different arrays. For moreinformation and several examples, seethe entry inthe User's Reference
Manual: Section 1.150 in HCSS User's Reference Manual.

» PackedMask instead stores the mask data itself. There is in principle no limit on the number
of masks that can be stored in a single PackedMask object. For more information and several
examples, see the entry in the User's Reference Manual: Section 1.292 in HCSS User's Reference
Manual.

5.10. Matrices

Most of the utilities for dealing with matrices are provided by the numeric.toolbox.matrix package.
However, we must not forget that simple vectors are just matrices with just one row (or one column),
so even vector classes like Doubl eld provide tools like adot Pr oduct method for scalar multi-
plication of vectors:

x = Doubl e1d([1, 2, 3, 4])

97

../../hcss_drm/ia/numeric/toolbox/fit/doc/fit.html
../../hcss_drm/ia/numeric/toolbox/fit/doc/reference.html
../../hcss_drm/ia/numeric/toolbox/fit/doc/reference.html#trouble
../../hcss_drm/ia/numeric/toolbox/fit/demo/jython.html

The Numeric library Build 15.0.3262

y = Doubl eld([1, 3,5,7])
print x.dotProduct(y) # 50.0

Example 5.37. How to get the dot product of two vectors or matrices.

We now take a closer look at the numeric.toolbox.matrix package and its classes and function objects

for matrix manipulation.

Transpose

To transpose a matrix do the following:

A=1Int2d([[1,2],[3,4],[5,6]])
print TRANSPOSE(A) # [[1,3,5],[2,4,6]]

Example 5.38. Transposing a matrix.

Determinant

Use this function to find the determinant of a square matrix given by aDoubl e2d array.

A = Doubl e2d([[1,2],[3,4]])
print DETERM NANT(A) # -2.0

Example 5.39. Finding the determinant of a matrix.

Note: This currently does not work for complex matrices.

Inverse

Y ou can find the inverse of a square matrix as follows:

A = Float2d([[1,2],[3,4]])
print | NVERSE(A) # [[-2.0,1.0],[1.5,-0.5]]

Example 5.40. Inverting a matrix.

Note: This currently does not work for complex matrices.

Matrix multiplication

UseMat ri xMul ti ply for matrix multiplication:

X Doubl e2d([[2,4,6],[1,3,5]])

y = TRANSPOSE(x)
z = MatrixMiltiply(y)(x)
print z

Example 5.41. Multiplying matricesthisway returnsa matrix.

It is important not to use the Jython * operator for matrix multiplication. However, the + operator

performs el ement-wise addition as expected.

Itisalso possible to multiply amatrix by avector asfollows (since, aswe already pointed out, avector

is nothing more than a matrix with just one row or column):

a = Doubl e2d([[1,2,3],[7,5 4],[7 4 9]])
b = Doubl eld([4, 1, 7])
print MatrixMltiply(b)(a) # [27.0,61.0,95.0]

Example 5.42. Multiplying a matrix by a vector with matrix multiplication.

98

The Numeric library Build 15.0.3262

Warning
O The correct syntax to multiply matrix a by matrix b isMat ri xMul ti pl y(b) (a).

LU decomposition

For an mx n matrix A, LU decomposition returns matrices P, L and U so that PA= LU:

e P isapermutation matrix, so that the product PA results in a permutation of A'srows. In the class
described below, P isreplaced by an equivalent permutation vector p.

e Lisaunit lower triangular matrix.
» U isan upper triangular matrix.

The LUDeconposi ti on class provides this functionality. The following example shows how it is

used:

A = Double2d([[1,1,1],[1,2,3],[1,3,6]])
print A

[

#[1.0,1.0,1.0]
#[1.0,2.0,3.0]
#[1.0,3.0,6.0]

]

d = LUDeconposition(A)
print d.| # Getting L
[

#[1.0,0.0,0.0]
#[1.0,1.0,0.0]
#[1.0,0.5,1.0]

]

print d.u # Getting U
[

#[1.0,1.0,1.0],
#[0.0,2.0,5.0],
#[0.0,0.0,-0.5]

]

print d.pivot # Getting the pernutation vector
#[0,2,1]

Example 5.43. Decomposing a matrix to lower and upper matrices.
You can easily verify that the result is correct:

rint MatrixMiltiply(d.u)(d.l)

R
cooo
N W
ocooo
w o =
288

i
[
[
[
[
]

*HHEHEHRD

Example 5.44. Verifying the results of a LU decomposition.

LU gives A with the row order changed as described by the permutation vector: row 0, then row 2,
then row 1.

Eigenvalue decomposition

The Ei genval ueDeconposi ti on class provides eigenvalues and eigenvectors of areal matrix.
The following examples shows how it can be used:

A = Double2d([[1,1,1],[2,2,3],[1,3,6]]) # Creating matrix

99

The Numeric library Build 15.0.3262

evd = A appl y(Ei genval ueDeconposi tion()) # Perform ng deconposition

D = evd.d # Obtaining the bl ock di agonal eigenvalue matrix

V = evd.v # Obtaining the eigenvector nmatrix

print evd.inmagE genvalues # Printing the inmaginary parts of the ei genval ues

print evd.real Eigenvalues # Printing the real parts of the eigenval ues

print evd.vcond # Printing the condition (2-norm) of the matrix, defined as
the ratio of the highest and snmallest singular val ue

Example 5.45. Getting the eigenvalues of a matrix after decomposing it.

If Aissymmetric, then A=V D VT, where the eigenvalue matrix D is diagonal and the eigenvector
matrix V is orthogonal.

If A'isnot symmetric, then the eigenvalue matrix D is block diagonal with the real eigenvaluesin 1-

by-1 blocks and any complex eigenvalues, A + i |, in 2-by-2 blocks, [A, Y; -u, A]. The columns of V
represent the eigenvectors in the sense that AV = V D. The matrix V may be badly conditioned, or
even singular, so the validity of the equation A=V D V * depends upon vcond.

Singular value decomposition

For an mx n matrix A with m>= n, the singular value decomposition is an m x n orthogonal matrix
U, an n x n diagonal matrix S, and an n x n orthogonal matrix V sothat A= U SV..

The singular values, oy = S, are ordered so that 0g >= 01 >= ... >= Op.1.

The singular value decomposition always exists, so the constructor will never fail. The matrix condi-
tion number and the effective numerical rank can be computed from this decomposition.

The Si ngul ar Val ueDeconposi ti on class provides this functionality. For more information
see the User's Reference Manual in HCSS User's Reference Manual.

Matrix equations

Use Mat ri xSol ve to solve matrix equations. For example, if you wanted to solve the matrix equa-
tion: A. X = B:

X = MatrixSol ve(b) (a)
print x # [-0.9838709677419352, 0. 5322580645161287, 1. 3064516129032258]

A note on naming conventions

Y ou might find a bit confusing that some names, like dot Pr oduct , start with alowercase letter and
have all the other initials capitalised, while other names, like Mat ri xMul ti pl y, have all initials
capitalised, and yet other names like TRANSPOSE are al in upper case. You can find more about
naming conventionsin Section 1.31.

5.11. Random numbers

To create pseudorandom numbers you first have to instantiate a generator. Three generators are avail-
able:

* Randonlni f or m generates random numbersin the range 0 <= x < 1 if invoked without param-
eters, likethis:

myGener at or = Randonni f or m()

It is also possible to give a maximum value different from 1 to have random numbers created in
the range 0 <= X < max:

100

The Numeric library Build 15.0.3262

nmyGener at or = Randonlni f or m(max)

* Randonfzauss: generates random numbers following a Gaussian distribution.

* RandonPoi sson: generates random numbers following a Poisson distribution of specified mean
value greater than zero. It isinstantiated like this:

nyGener at or = RandonPoi sson(nmean)

It can only produce integer-type random numbers (i nt , short and| ong).

Inall caseswhat isbeing used under the hood isthe Donald Knuth generator (see The Art of Computer
Programming, Volume 2, Section 3.2.1) asimplemented in thej ava. ut i | . Randomclass.

Once we have a generator in place, how do we create random numbers? The handy featureis that we
can create a single scalar random number or an array of any size and dimension we like (aslong as it
fitsin memory). Just put the type of numeric value you want as input, and the output will be the same
thing, but populated with random numbers. A few examples:

myGener at or = Randonlni f or m()
print myGenerator(0.0)
0.8754230073094597

Generating random nunbers between 0 and 1

We want a floating point random nunber...

...and there it is (don't expect to get the

sane nunber)

Now for an array of ten doubles...

We leave it to you to see the result

O course you can create the input on the fly
What's the result of this one? Does it nake sense?

x = Doubl eld(10)

print myGenerat or (x)

print myGener at or (Doubl e1d(10))
print myGenerator(Ilntld(100))

#
#
#
#
#
#
#
#
Example 5.46. Generating random number s with this utility class.

Y ou might have been puzzled to see a hundred zeroes scroll on your screen after executing the last
command of the example. It's not so surprising if we think that we asked the computer to produce
integer random numbers between zero and one, excluding one. The choice of possible values was
pretty limited.

If wewant to change the seed of the random number generator we can do so by theset Seed method,
which takes along parameter as an input:

myCener at or . set Seed(54653856L)

Example 5.47. Setting a seed for arandom number generator.

5.12. Numeric integration

In HIPE you can integrate a function defined analytically or a set of (x, y) values sampling afunction.

5.12.1. Integrating functions

The function to be integrated has to be declared as a class of a Real Funct i on type, containing a
method called calc which takes one argument, the independent variable.

The following integrators for a standard integration interval [a,b] are available:
 Rectangularintegrator

» Romberglntegrator

» Simpsonlintegrator

» TrapezoidalIntegrator

101

The Numeric library Build 15.0.3262

 GaussianQuad4l ntegrator
» GaussianQuad5I ntegrator
* Gaussl egendrel ntegrator

All these integrators have two arguments for initialisation: the lower limit of integration (a) and the
upper limit (b). Once the integrator isinitialised and the user function is defined then to perform the
integration amethod called integrate() is executed with an argument the user function. Thisis shown
in the following example:

from herschel .ia. nuneric.tool box inport Real Functi on

cl ass MyFuncti on(Real Functi on):
def cal c(self, x):
return x*x

f = MyFunction()

a=-3.0

b =30

i = Ronmberglntegrator(a, b)
print i.integrate(f) # 18.0

print "Analytical answer: ",(b**3 - a**3)/3.0
Example 5.48. Integrating numerically using the Romber g method.
The following special cases of numeric integration are also implemented:

» GaussHermitel ntegrator: for integration with limits (-Inf,+Inf) of aspecial class of functions

j‘”x e fx)dx

o0

» GaussLaguerrelntegrator: for integration with limits [0,+Inf) of aspecial class of functions
J" - S
X e X)dx
. f(x)

Theinput for the integrator initialisationis a.

» GaussJacobilntegrator: for integration with limits [-1,1] for aspecial class of functions
1 VX S .I!? ¢ .
f l{1—x_} (1+x)" flx)dx

The input for the integrator initialisation are a and [3.

5.12.2. Integrating discrete values

If you want to integrate a set of (X, y) values, you have two choices.

Interpolate first and then apply a suitableintegrator. Y ou useinterpolation to create afunction
based on your data set, and then apply one of the integrators described in the previous section. This
is shown in the following example:

from herschel .ia. nuneric.tool box inport Real Functi on

x = 0.1 + 1.9*Doubl eld. range(11)/10.0 # 11 points between 0.1 and 2.0

102

The Numeric library Build 15.0.3262

5.13

y = 1.0/x

f = CubicSplinelnterpolator(x,y) # interpolate first.
a=201

b =20

integrator = Sinpsonlntegrator(a, b) # use Sinpson's rule
res = integrator.integrate(f) #

print "Result: ",res

print "Analytical result: ",LO3b) - LOH a)
Example 5.49. Integrating numerically using the Simpson method.
For more information on interpolating discrete values see Section 5.13.

Usethel nt Tabul at ed function. This function integrates a tabulated set of (x, y) data using a
five-point Newton-Cotes integration formula:

x
1

Fl oat 1d([0.0, .12, .22, .32, .36, \
.40, .44, .54, .64, .70, .80])

Fl oat 1d([0. 200000, 1.30973, 1.30524, 1.74339, 2.07490, \
2.45600, 2.84299, 3.50730, 3.18194, 2.36302, 0.231964])
print |ntTabul ated(x) (y)

1.62323157271

Example 5.50. Integrating tabular data using Newton-Cotes method.

Thisfunctionisequivaenttothel NT_TABULATED functionin IDL. For moreinformationon | nt -
Tabul at ed, seethe User's Reference Manual: Section 1.226 in HCSS User's Reference Manual.

Interpolating discrete data

If the objectiveistointegrate discrete data, thiscan bedone by meansof aFi t t er Funct i on, which
isafunction that interpolates the given data, with a specific model. For example:

from herschel .ia.toolbox.fit inmport FitterFunction

y are Doubl eld that represent the absci ssas and val ues of our data
FitterFunction(x, y, Polynon al Model (3)) # Uses a Fitter
FitterFunction(x, y, Polynonm al Mbdel (2), FitterFunction. AMOEBA)

Uses an AnpebaFitter

nonox

HQ ™ H

Example 5.51. Creating a fitter function with different fitters and models.

If more precise fitting is needed, you can do it by yourself, and then pass the aready built fitter (or
the model) to the FitterFunction:

x, y are Doubl eld that represent the abscissas and val ues of the data
nodel = Pol ynoni al Model (x)

fitter = AnpebaFitter(x, nodel)

fitter.setSinpl ex(parans, range) # custom ze the fitter as you want
fitter.fit(y)

f = FitterFunction(fitter) # or f = FitterFunction(nodel)

Example 5.52. Customising thefitter even setting the simplex.

If one of the defined interpolators suits your needs, it can be used directly, instead of aFi tt er -
Funct i on. For example:

are Doubl eld that represent the abscissas and val ues of the data

X, Y
f = CubicSplinelnterpol ator(x, y)

Example 5.53. Creating a cubic spline interpolator.

103

The Numeric library Build 15.0.3262

5.14. Statistics

The following statistics functions are available. Follow the links to go to the corresponding entriesin
the User's Reference Manual.

5.15

ChiSguared in HCSS User's Reference Manual: Performs the chi-square statistical test.

Correlate in HCSS User's Reference Manual: Returns the linear Pearson correlation coefficient
between two arrays.

CorrelateMatrix in HCSS User's Reference Manual: Returns the linear Pearson correlation coeffi-
cientsof an M x N matrix.

Covariance in HCSS User's Reference Manual: Returns the covariance between two arrays.

CovarianceMatrix in HCSS User's Reference Manual: Returns the covariance matrix of an M x N
matrix.

Erfcin HCSS User's Reference Manual: Returns the complementary error function of an array.
Erf in HCSS User's Reference Manual: Returns the error function of an array.

GAMMALN in HCSSUser's Reference Manual: Computes the natural 1og of the Gamma function.
GammaP in HCSS User's Reference Manual: Computes the incomplete Gamma function P(a,x).

GammaQ in HCSSUser's Reference Manual : Computes the complement of the incomplete Gamma
function Q(a,x).

GEOMEAN in HCSS User's Reference Manual: Returns the geometric mean value of an array.
KURTOSIS in HCSS User's Reference Manual: Returns the kurtosis excess of an array.
MEAN in HCSS User's Reference Manual: Returns the mean of an array.

M edianAbsoluteDeviation in HCSS User's Reference Manual; Returns the median standard devia-
tion of an array.

MEDIAN in HCSS User's Reference Manual: Returns the median of an array.
MODE in HCSS User's Reference Manual: Returns the mode of an array.

Sigclip in HCSS User's Reference Manual: Returns array values more than n sigma from a com-
parator.

SKEWNESS in HCSS User's Reference Manual: Returns the skewness of an array.

StatWithNaN in HCSSUser's Reference Manual: Removes NaN valuesfrom arraysfor some statis-
tics functions.

STDDEV in HCSS User's Reference Manual: Returns the standard deviation of an array.
VARIANCE in HCSS User's Reference Manual: Returns the variance of an array.

WeightedMean in HCSS User's Reference Manual: Returns the quadratically weighted mean of an
array.

Wavelet transforms

Fourier transforms offer a convenient way to convert any signal to frequencies. The signal is decom-
posed on asinusoidal function. Unfortunately, it isdifficult to locate in time the frequencies. To avoid

104

The Numeric library Build 15.0.3262

this problem, the signal can be decomposed inside a window of length L, this window being moved
along the time axis. If we replace this window by a function converging (rapidly) to zero and select
this function so that it forms a base, we have defined awavelet. We can dilate the wavelet and build a
family of wavelets. Each of them catches a band of frequencies. The frequency and time resolutions
are linked by the Heisenberg uncertainty principle, which means that we cannot have an infinite res-
olution in time and frequency, but only a compromise.

This wavelet toolbox implements signal decomposition and synthesis. Y ou can analyse your signa
and filter the coefficients, then rebuild your signal.

5.15.1. Continuous wavelet transform

Thisdecomposition isaredundant decomposition useful to visualise how the signal energy isdistribut-
ed and evolvesin atime-scale scalogram. Elementary steps of decomposition are fixed by the number
of voices per octave. Performing a decomposition consists of decomposing the signal on octave num-
ber + voices/number of voices per octave. Here arethe formulae used for synthesis and decomposition.

Formula of an individual wavelet, derived from a "mother wavelet" by scaling and trangd ation, with
a being the scaling factor and b the trandlation factor:

W (1)= IT W t-b
a

)

a
Formula of continuous wavelet transform of afunction f(x):

Wf(a b)= %f j'(x)‘{»'()]dx
va,

a

Formula of inverse wavelet transform:

1= 1 1-b\, da
(x)= — Wf(a.b)— 1b—
fx) C ff fla)\/;u’()‘ a’

et a

Formula of the admissibility condition, that must be satisfied for a successful inverse transform:

|:|"'Il' = 405

5.15.2. Example
Worked Jython example:

from herschel . i a. nuneric. tool box. wavel et i nmport Conti nuous\Wavel et
from herschel .ia. nuneric. tool box. wavel et.wutil inport \WBorder

Create dummy signal

from herschel .ia. nuneric. tool box. wavel et. wdeno i nport W5i gGener at or
si gGen = WSi gGener at or ()

sig = sigGen. get Predefi nedReal Functi onl()

Conti nuous wavel et transform

al go = Conti nuousWavel et (" Mexi canHat ")

coefs = al go. deconpose(si g, WBorder. SYMVETRI C)

Change data found in octave 2 and voice 10

octave = 2

voice = 10

data = coefs. get NodeFor Cct aveAndVoi ce(oct ave, Vvoice)

data. mul ti ply(0. 25)

Many functions can be called: add, subtract, multiply, divide, reset
Rebuil d the signal

res = al go. synt hesi s(coefs)

Plot the difference

res. subtract (sig)

print MN(res), MAX(res), STDDEV(res), MEAN(res)

105

The Numeric library Build 15.0.3262

pl ot = Pl ot XY(res)

Example 5.54. Transforming a signal with a continuous wavelet.

5.15.3. Modulo Maxima Line

Signal irregularities can be identified with the modulo maximaline or how the irregularitiesis propa-
gated in the time - scale scalogram. Thisfunctionality is available in the wavel et package. First of all,
you should activate this functionality, then decompose the signal.

from herschel.ia.numeric.toolbox.wavelet import ContinuousWavelet STEP 1
algo = ContinuousWavelet("MexicanHat")
coef = algo.decompose(signalld) STEP 2
Display (coef.data) \

A

algo.activatesWTMML()
coefs = algo.decompose(signalld)
Display(coefs.getWTMML())

Figure 5.5. Effects of modulo maxima line.

Note
@ After al go. acti vat esWIMML() , you cannot run al go. synt hesi s() . Instead,
you should run al go. deacti vat esWIMM_() andrerunal go. deconpose().

5.15.4. The wavelet library

With the exception of the wavel ets used with the CWT a gorithm, all wavelets are defined in an XML
file stored in herschel .ia.numeric.toolbox.wavel et.wibrary . wavelets.xml. Y ou can define another lo-
cation viathe user property file.

The following examples show how to obtain information on the wavel ets used in the transformations:

Continuous wavel et

from herschel .ia. nuneric. tool box. wavel et.w i brary inport \Wavel et Loader
w oader = \Wavel et Loader ()

w oader . set Cwt Pr ef er ence()

wavel et = wl oader. get (" Mexi canHat ")

real Part = wavel et. get Dat a(10.).real

pl ot = Pl ot XY(real Part)

pl ot.set SubtitleText("Mexican Hat wavel et at scale 10")

pl ot . get Xaxi s().setTitl eText (" Support")

pl ot. get Yaxi s().setTitleText("")

Example 5.55. Selecting one continuous wavelet.

Discrete wavelet

from herschel .ia. nuneric. tool box. wavel et.wibrary inport \Wavel et Loader
w oader = \Wavel et Loader ()

w oader . set Dwt Pr ef er ence()

wavel et = wl oader. get ("db2")

106

The Numeric library Build 15.0.3262

print wavel et
Example 5.56. Transforming a signal using a discrete wavelet.

db2 # \Wavel et nane
daubechie # Famly nanme
2 # Wavel et order
4 # \Wavelet length
false # Applicability of the wavel et: no continuous transform
true # Applicability of the wavelet: discrete yes
-1 # Vanish nmonent of the scaling function, -1 neans undefined
2 # Vani sh nonents of the wavel et
orthogonal # The wavel et is orthogonal
asymretric # The wavelet is asymretric
Last four lines: filter coefficients of the wavel et
Synthesis | ow pass filter (LoR)=
[0.48296291314469025, 0. 836516303737469, 0. 22414386804185735, - 0. 12940952255092145]
Synt hesi s high pass filter (HR)=
[-0.12940952255092145, - 0. 22414386804185735, 0. 836516303737469, - 0. 48296291314469025]
Deconposition | ow pass filter (LoD)=
[-0.12940952255092145, 0. 22414386804185735, 0. 836516303737469, 0. 48296291314469025]
Deconposi tion high pass filter (H D)=
[-0.48296291314469025, 0. 836516303737469, - 0. 22414386804185735, - 0. 12940952255092145]

5.15.5. Discrete wavelet transform

A continuous wavel et transform produces redundant information and too much data. We can perform
an efficiency decomposition if we halve the signal according to the size of the wavelet. Thanksto this
dyadic decomposition, the Nyquist condition is respected and the signal can be reconstructed. Two
filterswill be convolved with our signal:

A high passfilter, our wavelet catching the detail of the signal.

» A low passfilter, ascaling function getting the approximation of the signal.

Decomposition step
High pass filtering creates 'Detail’ coefficients at level j+1
Low pass filtering creates "Approximation’ coefficients at level j-1
Signal bandwidth is halved
-> sub-sampling (decimates even data)
-> the size of the 'Detail’ coefficients is reduced

AT AT Dyadic
| wp > %2)— decomposition
N

(LEDENY o [RNER) e fe---ceee-- -
"/
Synthesis step

Synthesis starts to up-sample the coefficients

—— () —(

A ~ |I’ Very fast

AT VY and efficient
__/ __/ algorithm

Figure 5.6. Principles of discrete wavelet transform.

Dealing with a one-dimensional image:

from herschel . i a. nuneric. tool box. wavel et i nmport Di screteWavel et

al go = DiscreteWavel et ("db3") # Sel ect db3 as wavel et .

Create dummy signal

from herschel . i a. nuneric. tool box. wavel et. wdeno i nport WS gGener at or
si gGen = WSi gGener at or ()

si gnal 1d = si gGen. get Predefi nedReal Functi onl()

coefs = al go. deconpose(si gnal 1d) # Perforns wavel et deconposition.

107

The Numeric library Build 15.0.3262

Di spl ay(coefs.data) # display details at each |evel

Pl ot XY(coef s. get Approxi mation().data) # Get and pl ot approxi mation.

data = coefs. getDetail ForLevel (2) # Get detail for |evel 2.

dat a. add(0. 25) # Add val ue 0.25. Other functions: multiply, divide, subtract and
reset

res = al go.synthesis(coefs) # Rebuilt signal taking into account user changes.

Example 5.57. Discrete wavelet transformation of a one dimensional signal.

Dealing with two-dimensional data:

from herschel . i a. nuneri c. tool box. wavel et i nport Di screteWavel et

al go = Di screteWavel et ("db3") # Sel ect discrete wavel et al gorithm and db3 wavel et.
Load the standard test inage included with the package

from herschel . i a. nuneric. tool box. wavel et . wdeno i nport WReadl nage

si gnal 2d = WReadl mage. | oadl mage(" Lena. png")

coefs = al go. deconpose(si gnal 2d) # Perform wavel et deconposition.

res = al go.synthesis(coefs) # Rebuild signal from coefficients.

Di spl ay(coefs. conpose()) # Show coefficients as Russian dolls.

Example 5.58. Discrete wavelet transfor mation of a bidimensional signal.

Figure5.7. Signal decomposed: Russian dollsview.

At the top, right hand corner, there are horizontal details.

At the bottom, right hand corner, there are diagona details.

At the bottom, left hand corner there are vertical details.

The previous figure shows only two scales of decomposition. The signal is halved at each scale.
At the top, left hand corner we found the approximation.

The following example shows how to obtain and change the coefficients:

from herschel .ia. nuneric.tool box. wavel et i nmport Di screteWavel et
al go = Di screteWavel et ("db5") # Sel ect db5 as wavel et

108

The Numeric library Build 15.0.3262

Load the standard test inmage included with the package

from herschel . i a. nuneric.tool box. wavel et. wdeno i nport WReadl nage

si gnal 2d = WReadl mage. | oadl mage(" Lena. png")

coefs = al go. deconpose(si gnal 2d) # Deconpose two-di mensi onal signal

level = 2 # Selects |level 2

hori zontal = coefs.getHorizontal ForLevel (|1 evel) # Get horizontal detail for level 2
horizontal .nultiply(4.0) # Multiply horizontal detail by 0.25

Di spl ay(hori zont al . dat a)

vertical = coefs.getVertical ForLevel (I evel) # Get vertical detail for |level 2
vertical .add(-0.25) # Subtract 0.25 fromvertical detail

Di spl ay(vertical . dat a)

di agonal = coefs. get Di agonal For Level (1 evel) # Get diagonal detail for level 2
di agonal . mul tiply(0.25) # Multiply diagonal detail by 0.25

Di spl ay(di agonal . dat a)

Level has no sense here unlike the Stationary Wavel et transform

approxi mati on = coefs. get Approxi mati on()

Di spl ay(approxi mati on. dat a)

res = al go.synthesis(coefs) # Rebuild the signal

Example 5.59. Discrete Wavelet transfor mation manually handling the coefficients.

5.15.6. Stationary wavelet transform

DWT does not perform a signal trandation-invariant transform. SWT resolves that. When the signal
is decimated, we can decimate either the even data, or the odd data. DWT decimates even data, while
the SWT agorithm will decimate in each side. We add some redundant data and keep an efficient
decomposition. Unlike the continuous wavelet transform, only a dyadic decomposition is performed.

Dealing with a one-dimensional image:

from herschel . i a. nuneric. t ool box. wavel et i nport StationaryWavel et

al go = StationaryWavel et ("db3") # Sel ect stationary wavel et al gorithm and db3 as
wavel et

Create dummy signal

from herschel . i a. nuneric. t ool box. wavel et . wdeno i nport W5 gGener at or

si gGen = W5i gGenerator ()

signal 1d = si gGen. get Predefi nedReal Functi onl()

Perform a wavel et deconposition till the level 3 and use ZERO border nanagenent

from herschel .ia. nuneric. t ool box. wavel et.wutil inport \WBorder

coefs = al go. deconpose(si gnal 1d, \WBorder.ZERO 3)

Di spl ay(coefs.data) # Display details at each |evel

Pl ot XY(coef s. get Approxi mation().data) # Get and pl ot approxi mati on

data = coefs.getDetail ForLevel (2) # Get detail for level 2

dat a. add(0. 25) # Add value 0.25. O her functions: multiply, divide, subtract and
reset

res = al go.synthesis(coefs) # Rebuild signal taking into account user changes

Example 5.60. Stationary wavelet transfor mation of a one-dimensional signal.
Dealing with atwo-dimensional image:

from herschel . i a. nuneric. tool box. wavel et i nport StationaryWavel et

al go = StationaryWavel et ("db5") # Sel ect stationary wavel et al gorithm and db5
wavel et

Load the standard test inage included with the package

from herschel . i a. nuneric. t ool box. wavel et . wdeno i nport WReadl nage

si gnal 2d = WReadl mage. | oadl mage(" Lena. png")

coefs = al go. deconpose(si gnal 2d) # Deconpose two-di mensi onal signal

level = 2 # Selects |level 2

hori zontal = coefs.getHorizontal ForLevel (|l evel) # Get horizontal detail for level 2
horizontal .nul tiply(4.0) # Multiply horizontal detail by 0.25

Di spl ay(hori zont al . dat a)

vertical = coefs.getVertical ForLevel (I evel) # Get vertical detail for |level 2

vertical .add(-0.25) # Subtract 0.25 fromvertical detail

Di spl ay(vertical . dat a)

di agonal = coefs. get Di agonal For Level (1 evel) # Get diagonal detail for |evel 2

di agonal . nul tiply(0.25) # Multiply diagonal detail by 0.25

Di spl ay(di agonal . dat a)

Get approximation for |evel 2

109

The Numeric library Build 15.0.3262

approxi mati on = coefs. get Appr oxi mat i onFor Level (| evel)
Di spl ay(approxi mati on. dat a)
res = al go.synthesis(coefs) # Rebuild the signa

Example 5.61. Stationary wavelet transfor mation of a bidimensional signal.

5.15.7. Tools

Once your signal is decomposed, you have three tools to threshold your coefficients or to evaluate the
noise of your data. These tools are described in the following subsections.

Gaussian noise estimator

This tool evaluates the noise contained in the coefficients. It computes : nedi -
an(|dcl(i)|)/0.675,dclfor detall coefficient at first level

Thresholding tool
Thistool cuts (sets to zero) the coefficients below the threshold.
Example:

Load the standard test inmge included with the package

from herschel .ia. nuneric. t ool box. wavel et . wdeno i nport WReadl nage

si gnal 2d = WReadl mage. | oadl mage("Lena. png")

from herschel .ia. nuneric. t ool box. wavel et inport StationaryWavel et

al go = StationaryWavel et ("db5") # Sel ect stationary wavel et al gorithm and db5

wavel et
from herschel .ia. nuneric. tool box. wavel et. wutil inport WZaussi anNoi seVi si tor
from herschel .ia. nuneric. t ool box. wavel et. wutil|l inport Whreshol di ngVi si tor

coefs = al go. deconpose(si gnal 2d) # Deconpose two-di nensi onal signa

estimator = WGaussi anNoi seVisitor() # Create the gaussi an noise visitor

threshol ding = Wrhreshol dingVisitor() # Create the threshol ding visitor

coefs.accept(estimator) # Apply the visitor to the coefficients

print "noise=", estimator.noiseEstimted # Now the visitor contains the esti mated
noi se

Initialise the 'thresholding’ visitor with the gaussian noise |evel conputed
previ ously

threshol di ng. threshol d = esti nat or. noi seEst i nat ed

Apply the visitor. Al coefficients below the threshold will be considered as
noi se and renpved

coefs. accept (t hreshol di ng)

res = al go.synthesis(coefs) # Rebuild the signa

Example 5.62. Use of the wavelet thresholding tool.

Universal threshold

This threshold has been defined by Donoho and Johstone. In the figure below, nisthe signal length.

Universal threshold (Donoho & Johnstone)

threshold = o+/210g(n)

Figure 5.8. Formula of universal threshold.

Load the standard test inage included with the package
from herschel . i a. nuneric. tool box. wavel et . wdeno i nport WReadl nage
si gnal 2d = WReadl mage. | oadl mage(" Lena. png")

110

The Numeric library Build 15.0.3262

from herschel . i a. nuneric. tool box. wavel et i nmport StationaryWvel et
al go = StationaryWavel et ("db5") # Sel ect stationary wavel et al gorithm and db5

wavel et
from herschel . i a. nuneric. tool box. wavel et.wutil inport Wi versal Threshol dVi si t or
from herschel . i a. nuneric.tool box. wavel et.wutil inport WGaussi anNoi seVi si tor

coefs = al go. deconpose(si gnal 2d) # Deconpose two-di mensi onal signal

estimator = WGaussi anNoi seVisitor() # Create the gaussi an noi se visitor

t hreshol di ng = Wuni ver sal Threshol dVisitor() # Create the threshol ding visitor
coefs. accept(estimator) # Apply the visitor to the coefficients

print "noise=", estimator.noiseEstimated # Now the visitor contains the estinated
noi se

Initialise the '"thresholding' visitor with the gaussi an noi se | evel conputed
previously

t hreshol di ng. sigma = esti mat or. noi seEsti nat ed

Apply the visitor. All coefficients below the threshold will be considered as
noi se and renoved

coefs. accept (t hreshol di ng)

res = al go.synthesis(coefs) # Rebuild the signa

Example 5.63. Applying a threshold for wavelets using the visitor mechanism.

5.15.8. Wavelet toolbox overview

The following tables give an overview of the features supported by the wavelet package.

Table5.4. Algorithms

CWT Continuous Wavelet Transform
DWT Discrete Wavelet Transform
SWT Stationary Wavelet Transform
Table5.5. Tools
Algorithm//T ool Gaussian noise estima- Thresholding Universal
tor thresholding
CWT no no no
DWT yes yes yes
SWT yes yes yes
Table5.6. Signal dimensions
Algorithm/signal One-dimensional Two-dimensional
CWT yes -
DWT yes yes
SWT yes yes

Table5.7. Border management

Algo- Zero Symmetric Constant Periodic
rithm/padding

CWT no yes no no

DWT yes yes yes no

SWT yes yes yes no

Table 5.8. Supported signal types

Algorithm/Sig- Doubleld Double2d Complex1d Complex2d
nal type
CWT yes - yes -

111

The Numeric library

Build 15.0.3262

Algorithm/Sig- Doubleld Double2d Complexld Complex2d
nal type
DWT yes yes - -
SWT yes yes - -
Table5.9. Available wavelets
Algo- Daubechie Symlet Coiflet M exicanHat Mor et
rithm/Wavelet
CWT 1 - - yes no
DWT 1-10 1-10 1-5 - -
SWT 1-10 1-10 1-5 - -

For more information on functions for wavelet transforms, follow the links to go to the corresponding
entries in the User's Reference Manual.

» DiscreteWavelet in HCSS User's Reference Manual: Performs a discrete wavel et transform.

» Continuous Wavelet in HCSS User's Reference Manual: Performs a continuous wavel et transform.

* CWavelet in HCSSUser's Reference Manual: A continuous wavel et (along with an example of the
creation of custom continuous wavel ets using only Jython).

112

Build 15.0.3262

Chapter 6. Running tasks

Tasks are a standardised format for data reduction routines. A task provides consistent conventions
for input and output parameters, processing history and help information. Tasks can be executed from
the command line or via a standard graphical interface in HIPE.

With tasks you can create modular and reusable code for data reduction and analysis, easier to use
and to distribute.

This chapter shows how to execute tasks from the command line. For information on executing tasks
viathe HIPE graphical interface, see the HIPE Owner's Guide in HIPE Owner's Guide.

For information on how to develop tasksin Jython or Java, see the HIPE Community website.

6.1. Running a task

This section describes how to run atask from the Console view of HIPE.
Imagine you want to run thecl ear task, which deletes one or more variablesin the HIPE session.

Printing task parameters. You can print alist of parameters, with all their properties such astype
and default value, by printing the name of the task:

print clear

Printing task help. Y ou can print a short help text about atask as follows:

print clear.__doc__
Example 6.1. Printing the documentation of a task.
Note that there are two underscore characters before and after doc.

Executing thetask. Execute the task by passing parameter values within brackets:

cl ear (vari abl e="nyVar")
Example 6.2. Executing the clear task with one parameter.

The cl ear task has no output parameter. For tasks with an output parameter, assign its value to a
variable when executing the task. In the following example, the task ny Task is executed and the
value of the output parameter is passed to the myResul t variable:

nmyResul t = nyTask(paranet er="val ue")
Example 6.3. Retrieving the output value from atask.

See Section 6.2 for more information on task parameters.

Tip

@ If you have doubts about the syntax of a task command, try executing the task via its
dialogue window. Y ou can open the dial ogue window by double clicking on thetask name
in the Tasks view. When you execute the task, the corresponding command appears in
the Console view.

Checking execution result. To make sure that the task executed successfully, you can look at the
st at usMessage:

113

http://wiki.cosmos.esa.int/herschel/index.php?title=Contributing_to_HIPE

Running tasks Build 15.0.3262

print clear.statusMessage

Example 6.4. Printing the status message of a task.

6.2. Task parameters

6.2.1.

Tasks can have input, output and input/output parameters. | nput/output parameters are passed asinput
and their values are modified by the task.

Y ou can identify parameters by their position or by their name. Look at the following code:

Positional arguments

result = nyTask(paraml, paran®)

Named argunents

result = nyTask(first=paraml, second=paran®)

Example 6.5. Naming the parameter sto omit optional onesor passthem in any order.
Here thetask ny Task hastwo parameterscalledf i r st and second.

Y ou can mix positional and named modes, but only if al positional arguments comefirst. For example:

result = nyTask() (paranml, second=parani)
Example 6.6. Mixing named and positional parameters.

The following line would cause an error instead:

result = nmyTask() (first=paraml, paran®)

Example 6.7. Wrong mix of mixed and named parameters.

Note
@ | dentifying parameters by their name, rather than their position, is strongly recommended.
This will make your scripts much more maintainable.

Once atask is executed, parameters are reset to their default values.

Output parameters
When atask has multiple output parameters, you can call it in the following ways:
®* nmyVar = nmyTask(...)

In this case (in HIPE 12 and later), myVar becomesalist and all outputs are returned as elements
of thelist.

Jython/Python lists are very powerful and allow advanced functionality like:
« List dicing: Reference and retrieve specific ranges of values using the list indices. Example of

assigning the output parameters from the third to the fifth position after running task my Task()
(remember that indices start at zero):

out Par2, outPar3, outPar4 = nyTask(...)[2:4]

Example 6.8. Assigning output valuesto variables using list slicing.

114

Running tasks Build 15.0.3262

« Listfiltering: Use an anonymous function (alambda function, see below) to include only values
that match a condition. Example of excluding from the list myVar all the values |esser than zero
using list comprehension syntax:

nyVar = [x for x in myVar if x >= 0]

Example 6.9. Assigning output valuesto variablesfiltering using list compr ehension syntax.

< Lambda functions. They are anonymous constructions that take any input (including other func-
tions) and apply afunction to them. Lambdas are often used with iterators or the map() function.
The previous example is actually a lambda function in shorthand notation. Example of getting
the sgquares of each item of the list myVar using alambda definition:

nyVar = map (|l anbda x: x**2, myVar)

Example 6.10. Assigning output valuesto variablesfiltering with lambda expression.

 List comprehension: These are expressions that make applying lambdas to lists easier. Example
of getting the squares of each item of the list myVar using list comprehension syntax:

nyVar = [x**2 for x in nyVar]

Example 6.11. Assigning output valuesto variablesfiltering using list comprehension syntax (11).

Another option to deal with named output parametersis using the utility method out Tol ndex() ,
that returns the index of the parameters which names are passed as a list. For example (with the
help, again, of the list comprehension syntax):

nyVar = nyTask(...)

print myVar

outPar2, outParl = [nmyVar[i] for i in nmyTask.out Tol ndex(["parnanme2", "parnanmel"])]
del (myVar)

Example 6.12. Assigning output valuesto variables using the utility method out T ol ndex.

The parameter names (par nanel and par nane?2 in the example) have to be clearly described
in the task documentation.

nyVarl, nyVar2, ..., nyVarN = nyTask(...)

In this case, each output is returned to a different variable. If the number of variables is different
from the number of outputs, HIPE gives an error.

An introductory guide of working with lists in Jython can be found beginning in Section 1.10 of this
manual. For the more advanced topics outlined above you should refer to the Jython book chapter on
Data Types or the Python tutorial chapter on Data Structures.

Tip

@ To view more information on the parameters of atask, click on the task namein the Tasks
view. A table appears in the Outline listing the task parameters and their properties. In
particular, you can see at a glance which parameters are input (IN), output (OUT) and
input/output (INOUT).

115

http://www.jython.org/jythonbook/en/1.0/DataTypes.html
http://www.jython.org/jythonbook/en/1.0/DataTypes.html
http://docs.python.org/2/tutorial/datastructures.html

Build 15.0.3262

Chapter 7. Storing and accessing
data products

This chapter describes how to store, retrieve and search for data products, either on your local system
or on remote locations such as the Herschel Science Archive.

Before reading this chapter you should be familiar with the basic concepts explained in the Data
Analysis Guide: Section 1.3 in Data Analysis Guide.

7.1. Pools and storages

7.1.1.

A product storage is the front-end interface that allows you to communicate with products stored in
pooals.

By registering a pool to your storage, you can access the products in that pool.

A product storage provides mechanismsto load, save and query productsin theregistered pools. When
doing so you receive areference to a product (returned by thel oad() andsave() commands) or a
set of product references (when querying). Thisfunctionality of aproduct referenceis provided by the
Pr oduct Ref class; it allowsto fetch information of the product, such as metadata, without loading
the product in memory.

A urn or URN is part of the product reference and stands for Uniform Resource Name. It represents
the address of the product. A typical urn lookslike this:

ur n: nyPool : herschel . i a. dat aset. Product: 5

A urn consists of four fields separated by colons:

1. Afixed stringurn.

2. The name of the pool.

3. The name of the Java class representing the product.

4. A count of the number of products that have been created of that class. Do not think of it as a
version — it is not.

Creating a storage and registering pools

Since a storage without registered pools is useless, you usually create a storage and register a pool
at the same time. You can pass a string with the name of the pool to be registered, or a variable
representing the pool itself:

st or ageNane
st or ageNane

Pr oduct St or age(" pool Nane")
Pr oduct St or age(pool)

Y ou can also register many pools at once, by passing an array of names or pools:

st or ageNamne
st or ageNamne

Product St orage([" pool Nanel", "pool Name2", ...])
Product St orage([pool 1, pool 2, ...])

Example 7.1. Registering many pools at once during stor age definition.

If a name does not correspond to an existing pool, a new pool is created.

Usether egi st er method to register pools after you have created the storage:

116

Storing and accessing data products Build 15.0.3262

7.1.2.

7.1.3.

7.1.4.

st or ageNane. r egi st er (pool)

Example 7.2. Registering pools after storage creation.

To get alist of the currently registered pools:
print Pool Manager . get Pool Map()

Example 7.3. Printing a map of all registered pools.

Saving and loading products

Usethesave and | oad methodsto save and load products:
HI PE> nyRef erence = nySt orage. save(nmyProduct)

HI PE> print nyReference.urn
urn: sinpl e. defaul t: herschel . i a. dat aset. Product: 0

HI PE> nyRef er ence
= nyStorage. | oad("urn: si npl e. def aul t: herschel . i a. dat aset . Product: 0")

In both cases you obtain a Pr oduct Ref object. A reference provides access to parts of the product
aswell as access to the product itself:

HI PE> print nyReference.urn
urn: sinpl e. defaul t: herschel . i a. dat aset. Product: 0

HI PE> print nyReference.type
herschel . i a. dat aset . Product

H PE> nyMeta = nyReference.neta # Getting netadata

HI PE> nyProduct = nyReference. product # Getting the product

Note that, if you have multiple pools registered to a storage, only the first registered pool is write-
enabled. In other words, all save operations write productsto thefirst pool only. If you want to write
products to another pool, you have to register it asfirst pool to another storage.

Deleting products

To remove a product from a storage, use the r enove method:
nmy St or age. r enopve(urn)

Example 7.4. Removing products from a storage.

note that you need to know the urn of a product to delete it.

Remember that you have write permission only on the first pool registered to a storage. If you try to
remove a product from another pool, which is read-only, you get an error. Y ou must first register the
pooal asfirst pool to another storage.

In the case of alocal pool, you can delete a product by deleting the corresponding FITS file from the
local pool directory. Then you need to rebuild the pool index (see Section 7.2.2).

Tagging products

Tags are keywords or phrases you can associate to a product, to better describe and remember its
contents. For example, you could assign to aproduct thetag "t o be conpl et ed" to remember
that you have not finished processing it. When defining tags, you are free to use the keywords and
phrases that work best for you.

117

Storing and accessing data products Build 15.0.3262

To save a product with a given tag:

my St or age. saveAs(nyProduct, "nyTag")

Example 7.5. Tagging a product and adding it to a storage.

Y ou can then use the tag to load a reference to the product:
myProduct Ref = nySt orage. | oad("nyTag")

Example 7.6. Loading a tagged product as a product refer ence.
To load the product itself, instead of areference, add a. pr oduct to the previous command:
nyProduct Ref = nyStorage. | oad("nyTag") . product
Example 7.7. Loading a tagged product.

To assign atag to an existing product already in the storage:
nmy St or age. set Tag(" nyTag", product Urn)

Example 7.8. Tagging an existing product.

You can assign multiple tags to the same product by invoking the set Tag method multiple times.
However, a given tag can only be assigned to a single product. In the following example, assigning
nmy Tag to the product identified by ur n2 removes the same tag from the product identified by ur n1:

nmy St or age. set Tag("nyTag", urnl)
nmy St or age. set Tag("nyTag", urn2)

Example 7.9. Tagging a product with several tags.

Toremove atag:
ny St or age. r enoveTag(" nyTag")

Example 7.10. Removing tags from a product.

To check if agiven tag exists:

print nyStorage.tagExi sts("nmyTag")
Returns 1 if the tag exists, 0O otherw se

Example 7.11. Checking tag existence (in a storage) befor e tagging.

7.2. Local pools

7.2.1.

The local pool, also known as local store for historical reasons, is the most commonly used type of
pooal.

The local pool directory

By default, datais stored in a directory with the user-supplied store name in the following directory:

home/ . hcss/ | store/

To change the local pool directory, follow these steps:
1. InHIPE, choose Edit - Preferences. The Preferences dialogue window opens.

2. Click Local Store under Data Accessin theleft-hand list. The Local Store panel opensin theright-
hand area.

118

Storing and accessing data products Build 15.0.3262

7.2.2.

7.2.3.
pool

7.2.4.

3. Changethedirectory in the Local Sore directory field.
4. Click Apply.

Tip
@ Thelocal store directory can also be alink to another directory. Thisis useful if you want
to store your productsin a different hard disk with more space.

Y ou can rename alocal pool by renaming the corresponding directory, but only if the pool
was created with HCSS 4.0 or newer.

Repairing a local pool

A local pool index can become inconsistent, for example if you add or delete files manually in the
pool directory. In this case, you must rebuild the pool index as follows:

nmyPool . rebui | dl ndex()
Example 7.12. Rebuilding the index of a pool.

Do not access the pool during the operation, which can take awhile depending on pool size.

Importing a directory of FITS files into a local

To place all FITSfilesfrom adirectory into alocal pool, use the following commands:

myPool . ingest(java.io.File("path_to_directory"), 0)

If the second parameter is set to zero, the FITS files are copied into the local pool directory. If the
parameter is set to one, only referencesto the original files are created in the local pool directory.

Troubleshooting

Y ou may experience problems with local poolsin the following cases:

» When saving data to NFS-mounted disks (you may get an | | | egal Moni t or St at eExcep-
tion).

» When saving data to a FAT32 filesystem from a Mac (you may get an Over | appi ngFi | e-
LockExcepti on).

 Inany caseinvolving large observations or the use of the bg command (you may get an or g. a-
pache. | ucene. st ore. LockObt ai nFai | edExcepti on).

Both problems are solved by setting the following property:

hcss. i a. pal . pool .| store.lock = sinple

See the HIPE Owner's Guide in HIPE Owner's Guide for information on how to set properties. See
the Known Issues page for information on other issues affecting HIPE.

If this solution does not work, please try removing the lock files(wri t e. | ock) present in the local
storedirectory. Thisbash one-liner script can speed up the process on UNIX-based systems (including
OS X):

find <pool > -name 'wite.lock' -exec rm{} \;

7.3. Querying

119

http://herschel.esac.esa.int/twiki/bin/view/Public/HipeKnownIssues

Storing and accessing data products Build 15.0.3262

7.3.1.

To find out the contents of a storage, you execute a query on it. This sections introduces the syntax
for command line queries.

Note
@ The syntax for querying the Herschel Science Archive differs dightly from what is ex-
plained in this section. See Section 7.7.1 for more information.

The following example looks for products with ThatsMe as creator:

queryl = Query("creator == 'ThatsMe'")
res = nyStorage. sel ect (queryl)
print res

Example 7.13. Using keyword queriesto retrieve products from a storage.

Y ou can query any metadata and combine more keywords (note that == and = are equivalent):

queryl = Query("creator == 'ThatsMe' and instrunent = 'SPIRE ")
res = nyStorage. sel ect (queryl)
print res

Example 7.14. Querying a storage with several keywords.

Now r es contains alist of references to the products that satisfy the query. Printing r es will give
alist of URN values:

HI PE> print res

[urn:defaul t:herschel.ia.dataset.Product:0,
urn: defaul t: herschel . i a. dat aset. Product: 1,
urn:test:herschel .ia. dat aset. Product : 0]

If you want to execute an unconditional query to find all products in a storage, you can use the fol-
lowing:

query2 = Query(1)
res2 = nyStorage. sel ect (query?2)
print res2

Example 7.15. Retrieving referencesto all productsin a storage.

To find al the products of agiven class (here Gbser vat i onCont ext):
res3 = nyStorage. sel ect (Query(Cbservati onCont ext))

Example 7.16. Finding all products matching a class.

Note that the above example puts query and selection on the same line.

Y ou can query metadata and limit the query to a given class at the sametime. Thisis usualy agood
idea, because it speeds up the query:

res3 = nyStorage. sel ect (Query(Observati onContext, "creator == 'ThatsMe'"))
Example 7.17. Querying by class and keywords at the same time.

For information on how to query pools via the Product Browser perspective in HIPE, see the Data
Analysis Guide: Section 1.7 in Data Analysis Guide.

Inspecting query results

The results of a query come as a list of product references. You can inspect the results as follows,
assuming they areheldin avariablecaledr es:

120

Storing and accessing data products Build 15.0.3262

Printing the nunber of results.

print res.size()

Checking whether the list of results is enpty.
print res.isEnmpty() # Returns True or Fal se.

Assigning the first result to variable nyProduct.
nmyProduct = res[0].product

Example 7.18. Inspecting the results of a query.

7.4. Product versioning

To save a set of versions of a particular product:

nmy St or age. save(nmyProduct) # Version 0 of myProduct saved
After nodifying nyProduct. ..
nmy St or age. save(nmyProduct) # Version 1 of nmyProduct saved

Example 7.19. Versioning products within a stor age.

To get thelatest version of aproduct, or thelist of versionsfor that product, you need to have available
at least one, arbitrary, version. With this, you can recover the latest version of the product, and the list
of all versions of the product in the storage:

| at est = nmyStorage. get Head(pr oduct Ref OF AnyVer si on)
versi ons = nmyStorage. get Ver si ons(product Ref Of AnyVer si on)

Example 7.20. Retrieving the latest version of a product.

Y ou can get information on the current version of each product, aswell astag information, asfollows:
print nyStorage. versioninglnfo

Example 7.21. Printing version and tag information for each product.

Note that versioning is a property of a pool, not of a storage.

7.4.1. Querying product versions

Querying by default searches for just the latest version of a product:

query = Query(Product, "p", "1")
storage. sel ect (query) # Just the |l atest version

Example 7.22. Using a default query returnsthe latest version.
If you want to get all versions of products that match a query, add a fourth argument set to 1:

query = Query(Product, "p", "1", 1)
storage. sel ect (query) # All versions of matching products

Example 7.23. Returning all versions of a product in a query.

(Note that with this extended query, the special products containing versioning information, Version-
TrackProduct and TagsProduct, are al so returned if they match the query.)

7.5. Advanced querying

There are three types of queries:

« Attribute query isa(fast) query on metadatathat all products contain: creator, creationDate, start-
Date, endDate, instrument, modelName. This is akin to querying a standard set of FITS header
keywords.

121

Storing and accessing data products Build 15.0.3262

Meta data query is a (semi fast) query on meta data that can be different from product to product.
Thisis akin to doing aquery on any FITS keywords (if present).

Full query is adata mining query that allows querying on all data elementsin products.

All guery types have the same syntax, but a different purpose as described above. Setting up a query
isasfollows:

Sinmple query
query = Query(expression)
More advanced queries

query = AttribQuery(product-class, variable, expression)
query = MetaQuery(product-class, variable, expression)
query = Ful | Query(product-class, variable, expression)

Example 7.24. Creating simple, attribute, metadata and full (or data mining) queries.

The parameters are explained below:

product - cl ass: restricts the query to a family of products. All product classes have her -
schel . i a. dat aset . Product asthe base class. You can restrict the query to a sub-family of
products. For example, if al HIFI Calibration Product classes stem from Hi f i Cal Pr oduct , you
can limit your search by specifying that class.

var i abl e: astring denoting the variable name of the product that will be used in the expression.
expr essi on: astring holding the query expression, which is limited to the query type.
Query Example

query = Query("instrument == H FI and band == 1a")
A sinple query should be enough in nbst cases.

Example 7.25. Creating a simple query.
AttribQuery Example

query = AttribQuery(Product, 'product', \
' product. creator=="M" and product.instrument="H Fl"")

Example 7.26. Creating an attribute query.
MetaQuery Example

This type of query allows to inspect any part of the meta data of the product specified in the first
argument.

query = MetaQuery(HifiCal Product, 'h', 'h.neta["keyl"].value < 123 and \
h. meta["key2"].value == "Hello world"")

Example 7.27. Creating a metadata query.
Note
@ To obtain anumerical value (rather than, for instance, the string equivalent) it is neces-
sary to stipulate that the metakey "value" isrequired, hence the need for the stipulation
of query on 'h.meta["key1"].value' rather than 'h.meta]"key1"]'
FullQuery Example

A datamining query exploitsthefull interface of the product in question. Numeric functionsdefined
in the basic toolbox are allowed:

query = Full Query(Product, 'p', 'p.creator=="M" and (ANY(p.spectrumdata < 2) \

122

Storing and accessing data products Build 15.0.3262

7.5.1.

7.5.2.

or ALL(p["nyTable"]["myColum"].data > 5)")
Example 7.28. Creating a full query.

The ANY function used above is one of the standard numerical function provided in HIPE, and
checks whether the expression provided in its argument is true for any of the elements in that ar-
gument.

Querying for parts of a string

Use the %character when you want to query for parts of astring. For example, the following command
looks for al products of type Gbser vat i onCont ext in which the aor Label metadata value
beginsby CbsCal :

query = MetaQuery(Observati onContext,'p','p.neta["aorlLabel"].value == "CbhsCal %"')
Example 7.29. Creating a metadata query with SQL -like wildcardsfor values.

To look for CbsCal anywhere within the string, rather than just at the beginning, put a %character
at either end: %bsCal %

Querying for metadata in products

One thing you need to watch out when performing a meta or full query, is when you try to query for
ametadata that does not exist in one or more products that you are applying the query to.

For example, consider the following Met aQuer y:

query = MetaQuery(Product, 'p', 'p.neta["tenperature"].val ue==10)
resul tset = storage. sel ect (query)

Example 7.30. Querying by metadata requiresthe keyword to exist in all filtered products.

The query first starts creating a shortlist of all products in the storage matching type Pr oduct . It
then runs the query string on each product in that shortlist. If any of those products don't contain the
information referenced in the query string, an error is raised.

There are two waysto avoid this:

» Beas specific as you can when it comes to specifying the product type in aquery. If you know the
product type you want to query is of type Cal Hr sQDCFul | , then specify that. Running queries
using the most general product type of Pr oduct is not recommended, unless the products you
have saved are of thistype only.

* Runatwo-stage query, usingthecont ai nsKey() operator to check whether a component exists
first. For example, first get a sub-set of products that contain the metadata ‘temperature’:

queryOne = MetaQuery(Product, 'p', 'p.nmeta.containsKey("tenperature")"')
resul tset One = storage. sel ect (queryOne)

Example 7.31. Fir st step filtering the products containing the keyword.
Then run the original query on this subset:

queryTwo = MetaQuery(Product, 'p', 'p.nmeta["tenperature"].val ue==10)
resul tset Two = storage. sel ect (queryTwo, result SetOne)

Example 7.32. Second step filtering by keyword value.

7.6. Tips and pitfalls

123

Storing and accessing data products Build 15.0.3262

7.6.1. Changes to a product in a pool disappear

7.6.2.

7.6.3.

While product contexts saved in a pool are cached in memory, leaf products are not cached for per-
formance reasons. This can lead to problems asiillustrated by the following example:

ref = Product Ref (Product (creator="ne", instrument="SPIRE"))
print ref.product.instrunent

SPI RE

ref = nyStorage.save (ref.product)

ref.product.instrunent = "PACS"

print ref.product.instrunent

SPI RE

Example 7.33. Changes to products should be donein memory befor e saving them to a pool.

The change does not have any effect because the product has been saved to a pool and is no longer
cached in memory.

The correct behaviour is obtained by dereferencing the product, that is, by creating a variable that
represents the product itself, not areferenceto it:

p = ref.product # Load from pool
p.instrument = "PACS" # Mdify

print p.instrunent

PACS

ref = nyStorage.save (p) # Save back to pool
print ref.product.instrunent

PACS

Example 7.34. L oading the product back from the pool, changing and saving to persist the change.
After saving the product back to the pool, even the reference correctly showsthe modified information.

To check whether the product corresponding to areferenceisloaded into memory, usethei sLoaded
method:

print ref.isLoaded()
0 # Product not | oaded
1 # Product |oaded

Example 7.35. Checking if areferenceisloaded in memory.
Minimising memory usage
You can look at a product's metadata without loading the product into memory:

ref = nyStorage. save(nyProduct)
ref = nyStorage.|oad(ref.urn)
print ref.nmeta

Example 7.36. L oading specific parts of a product.

The following example saves a context to a pool without having more than one product in memory at
any time. Thisisvital to avoid running out of memory with large contexts:

myCont ext = Li st Cont ext(description = "A very big context")
for i in range(10): # Saving ten products
p = Product (description = "Dumy product no. " + str(i))
myCont ext . ref s. add(nySt or age. save(p))

Example 7.37. Saving a context to a pool without the leaf productsin memory.

Testing if two products are equal

124

Storing and accessing data products Build 15.0.3262

7.6.4.
age

7.6.5.

If you have two productsin memory, you can use the equal s method:

print product 1. equal s(product 2)

Example 7.38. Comparing productsin memory.

This method returns 1 if the two products are equal, O otherwise.

If you just have areference to a product, you can compare hash values as shown in this example:

from herschel .ia.pal.util inport HashCoder
hashl = HashCoder (). get Hash(myProduct)
hash2 = nyProduct Ref. get Hash()

print hashl == hash2

Example 7.39. Comparing product references with hash codes.
Theresultis1if myPr oduct and the product referenced by myPr oduct Ref areequal, O otherwise.

If you have a product urn, represented by a variable of type Ur n, you can retrieve the product hash
code from the pool where the product is saved, like this:

hash3 = myPool . | oadDescri pt ors(nyUrn). get ("hash")
Example 7.40. Comparing product URNs using hash codes.

Y ou can then compare the hash values with the == operator as before.

Copying a product or context to a different stor-

Use the save method to copy a product or an entire context from a storage to another:
nmy St or age. save(myCont ext)
Example 7.41. Saving a context.

If a product within the data tree already exists in the destination product storage, it is not copied.
A product can exist in the destination storage if it belongs to a pool shared between the origin and
destination storage.

Note that a storage may contain multiple versions of a context. A new version of a context is created
when acontext is saved, modified, then saved again. The older versions of the context are also copied.
However, if that context has any descendants that are contexts, the local versions of those descendant
contexts are not copied.

Tags may point to wrong product after renaming

a pool

A tag may end up pointing to thewrong product, or to anon-existing product, in thefollowing scenario:

1. A storage hastwo pools, a and b, of which a iswritable. Remember that only one pool in astorage
iswritable.

2. Youtag aproduct in pool b. Thisiswritten to pool a, since b is read-only.

3. You delete pool b and rename pool a to b. The tag you created now points to a wrong or non-
existing product.

Note that this situation can only arise when managing pools and storages from the command line. The
graphical tools provided with HIPE work with storages connected to a single pool.

125

Storing and accessing data products Build 15.0.3262

7.6.6. IndexError or lllegalArgumentException when
querying

When running aquery on astorage, you may getanl ndexError orl | | egal Ar gunent Excep-
tion: <query> could not be evaluated correctly message This can be dueto
one of the following reasons:

1. Your query string (the third argument of aquery, for instance' p. cr eat or ==. . ') issimply not
consistent with the Jython syntax and could not be correctly interpreted. Check your query string
by evaluating it on the Jython command line. If your query uses a handle to a product (for example
thep inaquery p. net a[. .] isahandle), then create adummy product of the type you want to
guery on the command line to test the query against.

2. It could be possible that the query references some data that does not exist in any of the products
that match the product type you have passed in that query. If you see in the details of the error
message something along the lines of '<something> does not exist', then this may be the case.

For example, consider the following MetaQuery:

query =MetaQuery(Product, 'p', 'p.neta["tenperature"].val ue==10)
resul t set =st or age. sel ect (query)

Example 7.42. Filtering directly on metadata values.

The query first starts creating a shortlist of all products in the storage matching type Pr oduct . It
then runs the query string on each product in that shortlist. If any of those products don't contain
the information referenced in the query string, an error is raised.

There are two waysto avoid this:

a. Beasspecific asyou canwhenit comesto specifying the product typein aquery. If you know the
product type you want to query isof type Cal Hr sQDCFul | , then specify that. Running queries
using the most general product type of Pr oduct isnot recommended, unless the products you
have saved are of thistype only.

b. Run atwo-stage query, using the containsKey() operator to check whether a component exists
first, for example:

i. Get asub-set of products that contain the metadata 'temperature':

queryOne = MetaQuery(Product, 'p', 'p.neta.containsKey("tenperature")")
resul t set One = storage. sel ect (queryOne)

Example 7.43. Filtering productsin the archive that contain a specific metadata.
ii. Run the original query on this subset:

queryTwo = MetaQuery(Product, 'p', 'p.nmeta["tenperature"].val ue==10)
resul tset Two = storage. sel ect (queryTwo, result Set One)

Example 7.44. Filtering by value a set of productsthat contain the metadata.

7.6.7. A query takes a long time to execute

One of the possible reasons is that you are executing a Ful | Quer y, and full queries by their very
nature are the most intense of queries and are therefore the slowest.

Ful | Query executions should be run asthe last stage of a multi-stage query operation. Below isan
example of how to search a storage for products of type MyPr oduct that are created by a developer
called 'tima', but contain a specific value in the product data itself.

126

Storing and accessing data products Build 15.0.3262

1. Find all products of type MyPr oduct with creator 'timo'":

attquery = AttQuery(MProduct, 'p', p.creator=="tim')
resul tset = storage. sel ect (attquery)

2. Find all productsin selection generated from previous queries, # that has avalue 10 in the column
'mycolumn’ in dataset 'mydataset”:

full query = Full Query(Product, 'p', 'p["nydataset"]["nycolum"].data[5]==10")
storage. sel ect (ful l query, resultset)

Example 7.45. Using a full query tofilter by data values.

There can be intermediate queries between the two stepsinvolving At t ri bQuer y or Met aQuery,
but Ful | Query should be l€eft to last.

7.7. Pools for remote data

7.7.1.

In addition to local pools, you may find these other pool types useful:
» With the HSA pool you can connect to the Herschel Science Archive viathe command line.
e With the HTTP client pool you can access products on aremote server.

» With the cached pool you can cache everything retrieved from a pool. It is useful if the pool you
are working with is aremote online pool, and you want to work offline.

All the content of the previous sections (except that specific to local pools) also appliesto these pools.

The HSA pool

With the HSA pool you can connect to the Herschel Science Archive, query its contents and retrieve
products and observations, all from the command line. The HSA pool is used behind the scenes by
tasks such asget Chser vat i on (seethe Data Analysis Guide: Data Analysis Guide).

Y ou can create an HSA pool asfollows:
hsa = HsaReadPool ()

Example 7.46. Creating a read-only pool connected to the archive.

You can use the HSA pool together with a cached pool, so that retrieved data are cached (see Sec-
tion 7.7.3):
hsa = CachedPool (HsaReadPool ())

Example 7.47. Adding cache behaviour to the HSA read pool.

Y ou can now use this pool to query the Herschel Science Archive using the query syntax described in
Section 7.3 and Section 7.5. Y ou need to be logged into the HSA to retrieve products. See the Data
Analysis Guide for details: Section 1.4.1 in Data Analysis Guide.

Querying the HSA pool differs slightly from what is explained in Section 7.3:

» Youcanusethe== operator but notthe=one: " cr eat or == ' That sMe' " isvalid," cr eat or
= 'That sMe' " isnot.

» You can only query asubset of metadata, shown in Section 7.7.4.

Why would | want to usethispool? Thispool isuseful if you want to write scripts that automat-
ically connect to the HSA and perform queries and other operations for which the syntax of get O

127

Storing and accessing data products Build 15.0.3262

7.7.2.

7.7.3.

bservati on isnot enough. You do not need to use this pool directly if you only access the HSA
through its graphical interface.

The HTTP pool

With the HTTP pool you can query and retrieve data hosted on a remote server pool that can be
accessed viaa URL.

To access aremote HTTP pool, create an HTTP client pool as follows:

pool = HtpdientPool ("http://url.of.renote.pool”, "renotePool Nane")

Example 7.48. Creatingan HTTP client pool.

Y ou must specify the URL and name of the remote pool. Ask the remote pool administrator for them.

You can use the HTTP pool together with a cached pool, so that retrieved data are cached (see Sec-
tion 7.7.3):

pool = CachedPool (Httpd ientPool (“http://url.of.renote.pool"”, "renotePool Nane"))

Example 7.49. Creating a cached pool from a URL.

The previous examples only describe how to set up a client pool to access remote data. Setting up a
server pool to host the data is beyond the scope of this manual, but you can find instructions on the
public Herschel TWiki: http://herschel.esac.esa.int/twiki/bin/view/Public/HttpPool .

If you encounter problems while setting up an HTTP server pool, please ask the Herschel Helpdesk
(please open thislink in a new tab or window) for assistance.

Why would | want to usethispool? Y ou should use this pool to access remote data products made
available on a server. If you only access products on the Herschel Science Archive and on your local
disk, you do not need this pool.

The cached pool

The cached pool allowsyou to cache everything that isretrieved from any remote pool. Y ou can cache
any remote pool as follows:

pool = CachedPool (renot ePool)
Example 7.50. Creating a cached pool from an already created remote pool.
Using a cached pool allows you to work offline once you have retrieved the data you need.

The cached pool set-up consists of aremote pool and apool to storethelocally cached products (which
we call the delegated pooal), held inside a directory with administrative data. We refer to the whole
asjust "the cached pool".

The delegated pool can be accessed independently as well. However, the cached pool viewsthisas a
private storage area, and explicitly assumesthat nothing will be added or removed, unlessit isthrough
its own interface (by acall to cl ear Cache() , for example). Do not modify the delegated pool by
accessing it directly if you do not want to risk that the cached pool becomes corrupted and must be
cleaned and restarted.

A cacheis kept between HIPE sessions, and the cached pool identifies pools by their ID. If you create
anew pool in the next HIPE session with the same ID, then it is assumed that thisis the same pool as
before and the cache will be reused. It is up to you to explicitly clear the cache if thisis required (if
it isadifferent pool than the one that the cached data corresponds to). Also, you should be aware of
potential name conflicts between poals: if two HTTP client pools are created, connecting to different

128

http://herschel.esac.esa.int/twiki/bin/view/Public/HttpPool
https://support.cosmos.esa.int/herschel/

Storing and accessing data products Build 15.0.3262

7.7.4.

hosts, but with the same ID, then if they are both cached in the same HIPE session (or in different
HIPE sessions but simultaneously) a name conflict will arise.

For more information see the CachedPool entry in the User's Reference Manual: Section 1.51 in
HCSS User's Reference Manual.

Why would | want to use thispool? Y ou should use the pool with the HSA and HTTP pools, if
you use them with any regularity, so that you can minimise network transfers and work offline.

Metadata used in the HSA pool

Name Type Description

acmsMode String ACMS mode

activeStrid String identification of the active STR

aorL abel String AOR label as entered in HSpot

aot String AQT ldentifier

aperture String Instrument aperture in use

apid long Application Programme | dentifi-
er

arrayName String Name of Detector Array

author String Author of the data

averaging String Averaging operator

band String Band

baselineM odel String Baseline Model

baselineParams String Parameters of Baseline model

bbCount long Building Block Count

bbid long Building Block Identifier

bbType long Building Block Type

bbTypeName String Building Block Type Name

biasFreq double Bias frequency

biasMode double Bias mode

biasVoltage double Bias voltage factor

bitPos long Bit position of this mask

caFileld String Calibration file ID

caFileVersion int Cdlibration file version

cal Threshold double Specified position accuracy
threshold for a plateaux in cali-
bration

camera String Name Cameral detector array

cameraM odel String Model of the camera(CQM, FM,
Sixpack,...)

cd1l1 double CD_1 1 element of CD matrix

cd 12?2 double CD_1 2 element of CD matrix

cd 13 double CD_1 3 element of CD matrix

cd21 double CD_2 1 element of CD matrix

cd 22 double CD_2 2 element of CD matrix

cd 23 double CD_2 3 element of CD matrix

129

Storing and accessing data products

Build 15.0.3262

cd 31

cd 32

cd 33

cdeltl

cdelt2
changelog
chopperPlateau

constVelFlag
conversionFactor

creationDate
creator

crota2
crpix1
Crpix2
crval
crval2
ctypel

ctype2

cusMode
dataAnalyst
dec
decNominal
decObject
deltaPix

description
endDate
endWavelength
epoch

equinox

error
fileName
filter

fineTime
formatVersion
gyroPropQualldx
instMode

double
double
double
double
double
String
long

boolean
double

FineTime
String

double
double
double
double
double
String

String

String
String
double
double
double
double

String
FineTime
double
double

double

double
String
String

long
String
double
String

CD_3 1 element of CD matrix
CD_3 2 element of CD matrix
CD_3 3 element of CD matrix
pixel sizein axis 1

pixel sizein axis 2

Logging of changes

Indicatesthe chop plateau within
sequence

Constant velocity flag

conversion factor from chopper
deflection (degrees) to angle on
sky

Date of product creation

The name of the software that
created the product

rotation angle

CRPIX1 reference pixel of axis1
CRPIX2reference pixel of axis2
axis 1 coordinate at tangency
axis 2 coordinate at tangency

type of coordinate axis eg RA---
TAN

type of coordinate axis eg DEC
—TAN

CUS observation mode

Name of data analyst

Actual Declination of pointing
reguested declination of pointing
Declination of target object

Correction of output angle per
pixel unit offset to central pixel

Full name of product
End date of observation
End of wavelength interval

equinox of celestial coordinate
system

equinox of celestial coordinate
system

Error on signal
name of exported file

Filter name [SHORT/LONG/
nonej

Time of signal sampling
Version of product format
Gyro-propagated quality index

Instrument mode

130

Storing and accessing data products

Build 15.0.3262

instrument
interpMethod

jiggleld
keyWavelength
level
maxWavelength
minWavelength
missionConfig
modelName
naifld
nodCycleNum

numChopCyc
numHifiSaa

numJigglePos
numNodCyc
numPacsSaa

numRasterCol
numRasterLines
numScanL ines
numSpectra
numSpireSaa

object
objectType
observer
obsid
obsMode
odNumber
off PosFlag
onTargetFlag
origin
outOfFieldFlag
pcl 1

pcl 2

pcl 3

pc2_1

pc2_2

pc2_3

pc3 1

pc3 2

String
String

long
double
String
double
double
String
String
String
long

long
long

long
long
long

long
long
long
long
long

String
String
String
long
String
long
boolean
boolean
String
boolean
double
double
double
double
double
double
double
double

Instrument name

Recommended interpolation
method to be applied

Jiggle Identifier

Key Wavelength
Product Level

Maximum wavelength
Minimum wavelength
Mission configuration
Instrument Model Name
SSO NAIF identifier

Switching/nodding cycle num-
ber

Number of chopping cycles

Number of HIFI reference Solar
Aspect Angles

Number of jiggle positions
Number of nodding cycles

Number of PACS reference So-
lar Aspect Angles

Number of raster columns
Number of raster lines
Number of scan lines
Number of Spectra

Number of SPIRE reference So-
lar Aspect Angles

target name

astronomical object type
name of observer
Observation Identifier
Observation mode name'
operational day number
Off-position flag

On-target flag

site that created the product
Out-of-field flag

PC1 1 element of PC matrix
PC1 2 element of PC matrix
PC1_3 element of PC matrix
PC2_1 element of PC matrix
PC2_2 element of PC matrix
PC2_3 element of PC matrix
PC3_1 element of PC matrix
PC3_2 element of PC matrix

131

Storing and accessing data products

Build 15.0.3262

pc3_3
pixelRow
plwBiasAmpl
pmwBiasAmpl
pointingMode
posAngle
proposal
pswBiasAmpl
ptcBiasAmpl
qualityFlag

ra

raDeSys
rakErr

raNominal
raObject
rasterColumnNum
rasterLineNum
readouts
references
refPixel

roll

saa

saturation
satVauesSigned
satVauesUnsigned

scanLineNum
scope
sedVersion
serendipityFlag
siamid

skyResolution
slewFlag
slwBiasAmpl
sswBiasAmpl
source
sourceDetector
sourceSmec
specNum
spectralResolution

double
long
double
double
String
double
String
double
double
int
double

String
double

double
double
long
long
double
String
long
double
double

double
long
long

long
string
String
boolean
String

double
boolean
double
double
String
String
String
long
double

PC3_3 element of PC matrix
Pixel row index

PLW bias amplitude

PMW bias amplitude
Pointing mode identifier
Position Angle of pointing
proposal name

PSW bias amplitude

PTC bias amplitude

Quality flag

Actual Right Ascension of point-
ing

Coordinate reference frame for
the RA and DEC

Error on Right Ascension of ac-
tual pointin

reguested RA of pointing

RA of target object

Raster column number

Raster line number

sample readouts for one ramp
References

Reference Pixel

Spacecraft roll angle

Reference SAA vaue in the
range 0-180 degrees

Fraction of saturated samples
Saturation values signed modes

Saturation values unsigned
modes

Scan line number

Scope

Version of the SED

SPIRE serendipity mode flag

Reference to the applicable
SIAM

Spatial resolution

Slew flag

SLW bias amplitude

SSW bias amplitude
Source packet

Detector Source Packet
SMEC Source Packet
Spectrum Number
Spectral resolution of data

132

Storing and accessing data products

Build 15.0.3262

startDate
startWavelength
status
strinterlacingStatus
strQual ldx
subinstrumentld
subsystem
telescope
temperature
type

variability
version
wavelengthld
wcsReference
wcesType

wheel Pos
zeroPointOffset

FineTime
double
String
boolean
double
String
String
String
double
String
String
String
long
String
String
long
double

Start date of observation
Begin of wavelength interval
Pixel status or channel status
STRinterlacing status

STR quality index
Sub-instrument identifier
Instrument Subsystem

Name of telescope

Product type identification
Information on object variability
version of product

Key Wavelength ID

Reference of Coordinate System
Type of Coordinate System
Wheel position

Zero point offset

133

Build 15.0.3262

Chapter 8. Overview of data
processing packages

Software in the HCSS is organized into atree or hierarchy of packages. Each package contains one
or more classes. Java development automatically leads to documentation of packages, classes, and
their methods in the Javadoc, known in the HCSS help system as the Devel oper's Reference Manual
(DRM). This chapter explains when, why and how to use the DRM, and provides an overview of the
main DP packages only. A full listing of packages and classes available in your HCSS installation
is given in the API documentation, which you can access by selecting HCSS Devel oper's Reference
Manual (API) from the HIPE Help System table of contents.

When tousethe DRM. Javadeveloperswill already be familiar with the DRM or Javadoc. Users
of HIPE will need it only in certain specialised cases:

* When aclassis not documented in the User's Reference Manual.

* When you want to view the exhaustive list of methods for a class.

* When you want to browse through all the classes in a given package.

» When you want to browse all the packages in your installation of HIPE.

Definitions. These Java development terms will be encountered in the following sections.

 Class. The (Java) class of aproduct definesthe type of object it is. In object-oriented programming
aclassisaconstruct that is used as a blueprint to create objects, so all objects of a particular class
will have the same organisation and definition.

» Method . In object-oriented programming amethod isagroup of (software) instructionsthat isgiven
aunigue name and can be called up at any point by simply quoting the name. In other languages a
method is called afunction, subroutine or procedure. Example: > nmyTask. get Sonet hi ng() ;
the getSomething() is a method for myTask and it returns an answer that depends on what is (or
isnot) in the ().

 Constructor. Constructors are methods that create objects of a particular class.

 Attribute. An attribute is a field that denotes a particular characteristic of the class, much like a
property of aclass. For example, an important attribute of an observation context isthe observation
ID.

* Interface. Aninterface is anamed collection of method definitions (without implementations). An
interface can also include constant declarations. A class that implements the interface agrees to
implement all of the methods defined in the interface, thereby agreeing to certain behaviour.

» Package. Multiple classes of larger programs are usually grouped together into a package. Packages
correspond to directoriesin the file system, and may be nested just as directories are nested.

Packages discussed in this chapter. A number of DP packages are discussed elsewhere in some
detail. The Numeric package was discussed in Chapter 5, while the Plot and Display packages are
discussed inthe Data Analysis Guide. Illustrations of how to use parts of several other HCSS packages
are also shown in other chapters.

To accessfunctionality within HCSS packages you haveto import it into your HIPE session. For many
packages this is done automatically by default; if not you can do it manually via commands like the
following:

from herschel .ia. nuneric inport *

Example 8.1. Importing a complete package.

134

Overview of data processing packages Build 15.0.3262

8.1. Browsing the list of packages

The Javadoc is normally started up as three frames in aweb browser as illustrated in Figure 8.2 The
upper left frame contains the packages index which is a clickable list of all packages in the system.
Thettitle in that frame represents the HCSS build number for which this documentation is valid. The
lower |eft frame contains the classes index which is a clickable list of al classes. The selection of
classes shown in this frame depends on the package that was selected in the packages index frame.
The Main frame contains overview information on the system and packages or shows the page for

a selected class.

Davakipar Refrancs (o o Lsa)
1 HEGES Devalapers Relersnce Manual (AP
= HIFI Dawakpars Ralarsrcs Manual [AF]
- ™71 PACE Deneloper's Referance Marust (AP1)
1 SPRE Cevelopers Referere Manual (AP
=1 haeschel apins com
- datal

= " herschel spire egue
=1 hacechel 2pire Bgae pacal
= harnchal spine argsim
+ =7 herschelspire ool
1 berschel spire in.datas=t
= hasmzhal apire ia dutaess ot

[T Package Class Tree Deprecated Index Help Build 1755
L EEANES MO PRAVES
Build 1755
N
= =
el The originl purpose of this peckige contin wis 0 @ parinl implamentalion of e cons sliss

model independent of the Versant database.

herschel spire.com.datalrames

herschel spire spse

u [

+ ™ herschal spine iagul herschel spire.
< 7 hermchel spire dapinelne comman.sm herschel spire engsim
1 hecechel spife da.pioelns common dealiEh [porqcnel apire ja.cal ‘Ihis package defines the SPLRE calibration acoess AFL be used by SPIRE dars processing.
helpire.iad This package contains the SPIRE axtentions of Hemschel TA datasel classes, a5 Be clisaes

= "7 hersohel spire in.pioelne comman. deglach

defining the SPIRE specific data and calibration products,

1 s el g iapi d
=1 hasschal 2pin e pipalna camman daglieh
-

herschel spire.in datsed contest

‘This package comtaing the SPIRE extentions of Hesscbel LA contexs classes, as e classes
defining the SPIRE specific confexts.

< " hevschel spire . pipelre common slscone
=1 hacechel 2pine ia.pinalne common angdais
| hargchal 2pins B pipalns comman sl

< ™ heszchel spire da.pipelre comman. paimtrg
1 berschel spireia.pi i

This package containg the Graphical User Interface to visnalize the SFIRE product.
SpecExplorer The Spectrometer Desecior Eaplomer, sla known s SpecBaplorer, is a GUT
based visuali

=1 haemhil 2pire o pinalna camman. rawias
I siglump

herschel spire.da.gui ion tool thar allows efficient i of of the rwo SPIRE
prducts: Spectmometer Detecior Interferogrum (SDT) and Spectmmeter Detecior Spectnum
(SDS).

hesschel spire i b This package containg the pipeline rwo modules which deal with te beam sieering mimre

BSM datn.

+ ™ hevschel spire.iu.pipelne cumman tempdsil
1 heeszhel 2pire in.pinelne comman imecorm
= i

herschel spire fapipeline common deglitch

The package comtains ks that deects and remove pliches.

herschel spire japipeline common.deglilch detection

This sub package defines chzases which perfom detzction of glitches: he lass Butact ion.

< "7 herschel spireda.pioelne hipe
= baeszhel spine ia.pipeline pg
=1 raepchal pins i pinaling pa snandad

herschelspire o pipeli deglitch

"

This sub puckange defines classes which perform reconstruction of signal whene gitches an:
deszcted.

herschel spire. i pipeline comemon deglitch util

This sub package defines ehzases used as wol for deglitching calcalation.

Figure8.1. View of SPIRE packagesafter opening up and clicking on SPIRE Developer'sReferenceManual
(API) in the HIPE help window.

If you are comfortable with Javadoc documentation, you can access it from the HIPE Help System
by clicking on any of the developer reference manuals listed in the Developer Reference section at
the bottom of the table of contents. To obtain the traditional frame-based Javadoc layout, click on the
FRAMES ink on any Javadoc page. To get back to the HIPE Help System layout, use the Back button
of your browser (clicking on the NO FRAMES link will not work). To have both layouts available,
open the Javadoc layout in a new tab or window of your browser, by right-clicking on the FRAMES
link.

Then you will seethe Javadoc asthree framesasillustrated in Figure 8.2 The upper |eft frame contains
the packages index which is a clickable list of all packages in the system. The title in that frame
representsthe HCSS build number for which thisdocumentation isvalid. Thelower |eft frame contains
the classes index which is a clickable list of all classes. The selection of classes shown in this frame
depends on the package that was selected in the packages index frame. The Main frame contains
overview information on the system and packages or shows the javadoc for a selected class.

135

Overview of data processing packages Build 15.0.3262

Packages index Main frame

d) rvarview (HESS :g?'.-alnpnm R| -_— -

. = | =
Bunld 1015 || IR Packane Cass Tras Denrecated indes Help ruid Jois ||
Al Gitees R Mor hepos riaeiz
Packages . = Build 1015

I —
All Classas JI Packages
Abscradion This package contains the user interface
Abs herschelacoess laver of the data access package and
AbsiracihciionMaker represents the main AL
npfimneba hersehelaconssdb This access snb-package contains all the

AbsiractArroatable e classes that interact with the database.

Absiractdrroeatian This access subpackage containg Khe

Abstracéray diate herschelaccess net netwarking lever of the telemetry and data
AbstractAravd e frame intarface.

s s bipaclange conlaing

AbsiracirayEdiate
snls Lo Delp bl applica liens sing
{ SR

AL tractAr ey

i — h" | & : o

Classes index

Figure 8.2. Web browser page of JavaDocstop level frame.

Click in the Packages index frame to select a package and update the Classes index frame to show
those classesfor the selected package. Click the Classesindex frameto show thejavadoc of aparticular
classin the Main frame.

The Main frame contains akind of navigation bar at the top where the view in thisframe can be select-
ed. The figure above shows the overview of al the packages. Other views are: Package, Class, Tree,
Deprecated, Index, and Help. These views will be explained in more detail below. In the overview
the Package and Class views are disabled, they become avail able when a package or classis selected.
Figure 8.3 shows the slightly expanded navigation bar for the Class view.

overview Package |[JEEXJTree Deprecated Index Help

PREV CLASS MNEXT CLASS FRAMES MO FRAMES
SUMMARY: NESTED | FIELD | COMSTR | METHOD DETAIL: FIELD | COMETR | METHOD

Figure 8.3. Navigation bar on the class view of JavaDocs.

Note that the navigation bar provides the possibility to browse through packages and classes with
NEXT and PREVIOUS and provides direct access to the specific parts of the class documentation e.g.
constructors (start class/program) or methods (which can be thought of as sub-routine components of
programsthat can be applied). It isa so possibleto switch between FRAMES and NO FRAMES. With
NO FRAMES only the Main frame of thejavadoc will be shown and index framesbecome unavailable.

8.2. Browsing the contents of a package

Each package has a page that contains a list of its classes and interfaces, with a summary for each.
This page can contain four categories: Interfaces summary, Classes summary, Exceptions and Error
summary. Not all categoriesare aways present. At the end thereisthe package description and possible
links to specific and/or related documentation.

Figure 8.4 showsthe her schel . i a. dat aset package which contains a number of interface and
classes such as Col umm and Tabl eDat aset . The Classes index frame provides a clear separation
of interfaces and classes and the Main frame shows the interface and class summaries and provides a
brief package description with links to package specific info at the bottom. Y ou can navigate to the
interface and class detailed documentation by clicking the names in the summary tables or in the left
sidebar.

136

Overview of data processing packages Build 15.0.3262

TG Scarch | Gioasary i T# % 2O hss-10.0.1758
T herache.ia damsel
AoV plEta e Overview FTEETT] Class Tres Deprecated Indsx Help Hnltd 1715
AssirciGomposite FREY PACKANE HEKT RACHAGE CRAMER HO FRAMES
AnEIR TEAWAR AT
AnsimriaiselincOaEvibir s
[—— Package herschel.ia.dataset
AssirciumericPammeler . . X . .
re— For 3 pood overview, plese rean fe Datases Framework documentasion.
Annataabla See:
Ay Dnlazet Dhescriplion
Amibitahla
BooleanFarameer
— Interface Summary
CelumnLisicner Annaatable An Annotobsble obfect is on object that con give o buman readoble description of ftself,
E"""'""‘: s Antributahle An Atmribumhle object is on object that has the notion of nacs dats,
cmpos - R
T | ColumnListener Listener for events ocouring in & Zolann.
Dataweanpar ColumnVisitor A ColumnVisitor allows you w0 add functionality o the Column class withour ltering it.
Datnzes Compasite A conmminer of named Diatnsess.
Dammesod iankaser - — -
e — Dataset Amribarzble and anmotatable information data contaiver that can be be pat of 2 Froduct.
DaesEveriSuppon Diataserl istener Listener for events occuring in s faessel.
DamsetinkadHasidap DiataserVisitor Drasser smacnare crawler that allows extending the fanctionality of the peneric dakzae vg withour aliering their classes.
Datsediswrer - - — -
DataWrapper L i £ dats, .
R A Ds.i.na.\-\ ‘rapper Is a composit: of dars, wnit and deseription.
Dains=ishar History Fublic interface w the history dataser.
DatPamAmaaT istenr | Listener fof events nocusing in Metabas
e] T A MesaDataVisitor extends Passretery lsiior s that it may be sulzble for extending fonetonality on Mesalaa as well s on the dats
EvaniTyps MetallataVidtor |G, o osin, that i, on o
! LA parATEETS,
Hismry NumericParsmeter | A quantifinhle Parmeer.
LangParameler —_
MtaData Parameier Pummeter is the mterface for a1l numed attributes in the gocaDats container.
MetaDulalsizner ParamcterListener | Listener for events oocuring in & fazaneter.
(AR AT ¥ A Parameser Visitor allows you to add functionolity o the concrete Paramesers avadloble in this packape without altering the clnsses
Numencearameter BarameterVisitor |, oo
Farametar " -
Pammelerisinor FProductlistener Listener for events oocusing in 2 Product.
Paramelerdaicr FProductOwner This inserface 15 meant for adding to a product ransient infeemation about other objects that are managing it
R Quantilialile A Quantifizble ohject 5 & numere object it has 2 uni.

Produ: Datas=Procucl rkedHasakle:

Figure 8.4. Package description page in Developer's Reference Manual.

8.3. Viewing the details for a class or inter-

face

Each class and interface has its own separate page in the DRM. There are at least two ways to reach
a class description page. From within HIPE, right-clicking on a variable and choosing will bring up
the page for the corresponding class in the HIPE help system in your web browser. When viewing the
contents of a package as described in Section 8.2, clicking on a class name in the sidebar or the main
frame brings up the class description page.

Each of these pages has three sections consisting of a class/interface description, summary tables for
constructors and methods, and detailed descriptions of constructors, methods and attributes. The in-
formation showninthe classview isrestricted to the public API (Application Programming Interface).

Each summary entry contains the first sentence from the detailed description for that item. The sum-
mary entries are alphabetical, while the detail ed descriptions are in the order they appear in the source
code. This preserves the logical groupings established by the programmer.

Figure 8.5 is taken from the Main frame of the TableDataset class and shows the class description
together with its hierarchy. You can see that the TableDataset implements a number of interfaces
and also has many subclasses. The second part of the figure shows a more detailed description of the
class usage.

137

Overview of data processing packages Build 15.0.3262

herschelia.dataset

Class TableDataset

il .
L herschel.iz.dataset.Abstractnnotatable<Datasets
L herschel . ia dataset. TableDataset

All Tmplementad Interfaces:
Annotatable, Attributable, Datasct, MetaDataListener, TableModel

Direct Known Subclasses:

BitPatternDataset, CalAccumDataset, CalAcquisitionDataset, CommandsDataset, DeltaVDataset, DemoDataset, EvantsLogDataset,
GschpDatasct HaorizonsDataset, MonitorCCUADatasct, MonitorCCUBDataset, ObservationBlockExecutionDatasct, ClbsTahIc

Qrbitkphembalasel, ParameterDatasel, ParamelerDalasel, PoinlingDalasel, PointingRequestsDatasel, D
RawaccumDataseL RawAcquisitionDataset, RwlDataset, SourceFittingProduct, SourcelistDataset, StrictTableDataset, Tac[sDataset
TeTable

public class TableDataset
extends i

=
implevents Dmtases, Tablefodel, Metalstalisterer

A TableDataset is a tabular collection of calumes. Tt is optimized to work on array data as specifiad in the herschelia. numeric package.

The column-wise approach is convenient in many cases. For example, one has an event list, and each algorithm is adding a new field to the events
(i.e. & new column, for example a quality mask).

Although mechanisms are provided Lo grow Lthe Lable row-wise, one should use these with care especially in performance driven environments as
this orthogonal approach (adding rows rather than adding columns) is expensive.

Examples of actual arraviata objects can be fonnd in the herschel ia nneric packadge, and therefore they will not be discussad here.

Figure 8.5. The class view of TableDataset showing a brief description and a short example of its usage.

Scrolling down in the Main frame brings you to the summary section which is shown in Figure 8.6.
The constructor summary shows all public constructors for this class with their specific argument
list. To see detailed information on the constructor click the name of the constructor that you need.
Constructors are methods that create objects of a particular type. The code example in the description
section above shows you how to create a TableDataset on the jython command line.

|Field Summary '
|Fle]ds inherited from class herschel.ia.dataset. AbstractAnnotatable
_SVENTSLpROrT

Constructor Summary

0
Constructs an empty table.

Tablabatasat(s dseriplie
Comnst a Tahlenarawl: with a description.

Method Summary
Colwan B:.:a fint index)
Jython only(!) wrapper for abbroviated access to a column by index.
Colan (__getitem (String keyl
Jvthon only(!) wrapper for abbreviated access Lo a column by name.
woed | setitem [int index, C(aluwan value}
Jython enly(!) wrapper for abbroviated replacement of a column by index.
woud | setitem _ (String key. Colunn valuel
Jyvthon only (1) wrapper for abbreviated addition/replacement of a column by name.
wod | accept|fatssatiVisibar wisitor)
Accepts a visitor of this Dataset.

woid | addColumn (Colunn celusn)

Adds the specifiad column to this table, and creates a dumgov name for this column, sugh that it can be accessed
St g

Figure 8.6. Page showing the constructor mechanism (how to createa TableDataset) and the associated set
of methods (what you can do with the TableDataset you created).

The method summary shows al public methods for this class in alphabetical order. For detailed in-
formation on a specific method, click its name. The return values of the methods are in the l€eft col-
umn while the method signature and a summary lineisin the right column. The summary line can be
preceded with a deprecation note. Deprecation means that this method should not be used anymore
becauseit is marked to be removed from future releases. The deprecation comment normally provides
the alternate method to be used instead. An overview of all deprecated methods in the whole system
is available from the navigation bar at the top of the Main frame.

Sometimes method names can start and end with two underscore characterslikein __getitem
above. These methods are specia constructs which allow you to use the specific Jython syntax to
access and manipulate objects from this class.

138

Overview of data processing packages Build 15.0.3262

8.4. Displaying alternative views of the Devel-
oper's Reference Manual

Treeview

There is a Class Hierarchy page for al packages, plus a hierarchy for each package. Each hierar-
chy page contains alist of classes and alist of interfaces. The classes are organised by inheritance
structure starting with java.lang.Object. The interfaces do not inherit from java.lang.Object. When
viewing the Overview page, clicking on"Tree" displaysthe hierarchy for all packages. When view-
ing a particular package, class or interface page, clicking "Tree" displays the hierarchy for only
that package.

Deprecated view

The Deprecated API page lists everything that has been deprecated. A deprecated item is not rec-
ommended for use, and a replacement is usually suggested.

Deprecated items may be removed in future versions.
Index view

The Index contains an alphabetic list of al classes, interfaces, constructors, methods, and fields.

8.5. DP packages

The following short paragraphs outline the packages currently available within the Herschel DP sys-
tem. For full details please see the Javadoc.

8.5.1. herschel.ia.dataflow

8.5.2.

Handles processing threads. Particularly useful for Quick Look Analysis (QLA) and Standard Product
Generation (SPG). It can be used in interactive sessions too. Allows the user to connect scripts from
process modules asistypically required for aset of datareduction steps. Dataflow al so supports event-
based processing as well as threads.

Main subpackages:

her schel.ia.dataflow.data.process. Classes for handling the processes used in a dataflow session.

her schel.ia.dataflow.example.indicator _control.monothread: Classes used to illustrate the con-
trol of adataflow.

her schel.ia.dataflow.example.indicator _control.multithread: Same as above, but for multiple
threads.

her schel.ia.dataflow.template: Classto allow template dataflow to be created.

her schel.ia.dataflow.util: Class for identifying dataflows.

herschel.ia.dataset

Contains Table Datasets, Array Datasets, Composite Datasets, Products and all auxiliary components
such as columns, parameters and metadata. Datasets and products are described in Chapter 2.

Main subpackages:

her schel.ia.dataset.demo: Contains classes that demonstrate the use of datasets.

139

Overview of data processing packages Build 15.0.3262

8.5.3.

8.5.4.

8.5.5.

8.5.6.

 herschel.ia.dataset.gui: Contains the Dataset Inspector graphical interface.

» herschel.ia.dataset.history: Defines the History Dataset, which records the complete history of
the tasks which were executed to produce a Product.

» herschel.ia.dataset.image: Provides aframework for defining images, cubes of images and stacks
of images. Includes tools for adding World Coordinate System information.

* herschel.ia.dataset.spectrum: Contains tools for defining one- and two-dimensional spectra, and
spectral cubes.

herschel.la.document

Providestoolsto generate documentation of dynamic aswell as static DocBook documentsin different
formats.

herschel.ia.gui

Contains several subpackages related to graphical applications.

Main subpackages:

» herschel.ia.gui.apps: Contains the classes used to build graphical applications such as HIPE.
* herschel.ia.gui.cube: Graphical interfaces to analyse data cubes.

* herschel.ia.gui.explorer: Graphical interfaces to analyse datasets, such as TablePlotter and Over-
Plotter.

* herschel.ia.gui.image: Classesfor handling images. The display capabilities from this package are
discussed in the Data Analysis Guide.

» herschel.ia.gui.plot: Plotting utilities. For more details see the Data Analysis Guide.

herschel.ia.io

Provides a means of accessing local archives where Products can be saved or loaded from. Products
are combinations of data and information and can be likened to the contents of asingle FITSfile.

Main subpackages:
* herschel.ia.io.ascii: Allowsinput and output of datato and from ASCII files.

» herschel.ia.io.dbase: Allows data/products to be put into objects that can be stored in databases
(Versant databases are currently available for use with the HCSS).

» herschel.ia.io.fits: A FITS implementation that can write Products to a FITS file and read such
FITSfiles back into the system. Allows the production of aFITS archive.

herschel.la.numeric

Contains numeric and mathematical tools described in Chapter 2 and Chapter 5.

Main subpackages:

* herschel.ia.numeric.toolbox: Providesalarge set of numeric classes. These include mathematical
functions (trigonometric functions, polynomials), Fourier transforms, fitter functions, interpolation
and matrix functions. Note that these classes are automatically loaded when starting HIPE.

This package contains the following subpackages:

140

Overview of data processing packages Build 15.0.3262

her schel.ia.numeric.toolbox.basic: Provides classes that allow basic mathematical manipula-
tion of numeric arrays. trigonometric functions, mathematical product, variance and so on.

her schel.ia.numeric.toolbox.filter: Provides the classes BoxCar Fi | t er, Convol uti on
and Gaussi anFi l ter.

her schel.ia.numeric.toolbox.fit: Provides classes that alow the fitting of data with numerous
models (iterative fitters, sine mode fitters, polynomia model fitters and so on).

her schel.ia.numeric.toolbox.integr: Provides integrator functions for several integral models
(Gauss-Jacobi, Gauss-Laguerre and so on).

her schel.ia.numeric.toolbox.interp: Provides classes that allow the interpolation of data
These include | nt er pol at or (ageneral interpolator), Li near | nt er pol at or, Cubi c-
Spl i nel nt er pol at or and Near est Nei ghbor I nt er pol at or.

her schel.ia.numeric.toolbox.mask: Providestools for creating and managing masks, in partic-
ular thetwo classes Fi xedMask and PackedMask.

her schel.ia.numeric.toolbox.matrix: Provides classes that allow the manipulation of Dou-
bl e2d arrays holding matrices. It includes the classes Mat r i xDet er mi nant , Mat ri xI n-
verse and Mat ri xSol ve.

her schel.ia.numeric.toolbox.random: Provides tools for generating pseudo-random numbers
with uniform (Randomnni f or n), Gaussian (RandomGauss) and Poisson (RandonPoi s-
son) distributions.

herschel.ia.numeric.toolbox.stat: Provides statistical tools for arrays, to compute covariance
(Covari ance and Covari anceMat ri x), geometric mean (GeoMean) and mode (Mbde).

her schel.ia.numeric.toolbox.util: Provides the classes Mor eMat h, which has methods for
mathematical manipulation of single numerical elements (integers, doubles, bytes and so on), and
Uti |, which has utilities for converting arrays.

her schel.ia.numeric.toolbox.wavelet: Provides algorithms to perform continuous, discrete and
stationary wavelet transforms.

her schel.ia.numeric.toolbox.xform: Provides the classes FFT, FFT_PACK, Real Dou-
bl eFFT, FFT_PACK_EVEN, FFT_PACK_ODD, Hanmi ng and Hanni ng for Fourier trans-
forms and Hanning/Hamming smoothing of data.

8.5.7. herschel.ia.obs

8.5.8.

Defines the Observation Context, a container for Products applicable to a specific obervation, and
related classes.

Main subpackages:

» herschel.ia.obs.auxiliary: Defines the auxiliary Products related to an observation, and their con-
tainer, the Auxiliary Context.

» herschel.ia.obs.cal: Calibration-related classes.

» herschel.ia.obs.quality: Definesthe Quality Context and the flags used for quality control.

herschel.ia.pal

Defines the Product Access Layer, which allows storage and retrieval of Products both locally and
remotely. The Product Access Layer istreated in detail in Chapter 7.

141

Overview of data processing packages Build 15.0.3262

Main subpackages:

 herschel.ia.pal.browser: Defines the Product Browser graphical application.

* herschel.ia.pal.io: Defines classes for importing and exporting Productsto FITS format.

* herschel.ia.pal.pool: Defines, in various subpackages, the available types of Product Pools.

» herschel.ia.pal.query: Defines the types of query that can be applied to a Product Storage.

8.5.9. herschel.ia.pg

Describes the Product Generation Framework, on which running of instrument pipelinesis based.
Main subpackages:

» herschel.ia.pg.od: Defines the Operational Day Plugin, used to process an entire OD before pro-
cessing its observations.

» herschel.ia.pg.plugins: Defines basic versions of other plugins that are applied during pipeline
processing, such asBasi cLevel OPl ugi n andBasi cQual i t yPl ugi n.

8.5.10. herschel.ia.qcp

Defines components and utilities to handle Quality Control messages.

Main subpackages:

 herschel.ia.qcp.example: Provides an example Task for using the facilities of this package.

» herschel.ia.qcp.flags: Provides ahierarchica structure of Quality Control flags.

» herschel.ia.qcp.gui: Provides graphical components for displaying Quality Control messages.

» herschel.ia.qcp.plugin: Provides pluginsfor logging Quality Control messages during Operational
Day and pipeline processing.

 herschel.ia.qcp.tools. Provides a standalone application for displaying Quality Control informa-
tion.

8.5.11. herschel.ia.spg

Manages the execution of the data reduction process for all the instrument in the Herschel satellite. It
is built upon the framework defined in the herschel.ia.pg package (see Section 8.5.9).

Main subpackages:

» herschel.ia.spg.gui: Contains the Pipeline Manager graphical interface.

» herschel.ia.spg.kayako: Contains a helper class for creating aticket in the kayako system.
* herschel.ia.spg.od: Toolsfor scheduling and executing Operational Day processing.
 herschel.ia.spg.ops:. Miscellaneoustools for configuring pipeline processing.

 herschel.ia.spg.tools: Classes for memory monitoring and the remote management of processing
queues.

8.5.12. herschel.ia.task

142

Overview of data processing packages Build 15.0.3262

Provides the tools needed to create a data processing task which you can then incorporate into your
scripts. For more information on tasks please see Chapter 6.

Main subpackages:

» herschel.ia.task.example: Provides example Tasksthat demonstrate some features of the package.
 herschel.ia.task.gui: Provides components used to build graphical interfaces for Tasks.

» herschel.ia.task.history: Provides aclass for managing the history of a Task.

» herschel.ia.task.mode: Provides different execution modes for a Task (interactive, on demand,
systematic and test).

» herschel.ia.task.util: Miscellaneous utility functions for Task devel opment.

8.5.13. herschel.ia.toolbox

Providestools for awide range of data analysis needs. Tools are organized in thematic subpackages.
Main subpackages:

* herschel.iatoolbox.astro: Astronomical utilities.

 herschel.ia.toolbox.cube: Tasks for importing and analysing data cubes.

» herschel.iatoolbox fit: Tasks for function fitting.

» herschel.iatoolbox.hsa: Provides an interface for accessing the Herschel Science Archive.

» herschel.ia.toolbox.image: Tasks for image processing (cropping, smoothing and so on).
 herschel.ia.toolbox.mapper: Tasks for mapmaking.

 herschel.iatoolbox.pointing: Provides atask for plotting pointing information.

» herschel.ia.toolbox.spectrum: Tasksfor analysing spectra. Thispackage contains several subpack-
ages, among which are the following:

 herschel.ia.toolbox.spectrum.fit: Tools for fitting spectra.

 herschel.ia.toolbox.spectrum.operations. Tools for performing mathematical operations on
spectra (divide, average, resample and so on).

« herschel.ia.toolbox.spectrum.projection: Tools for projecting spectral data on the sky.

« herschel.ia.toolbox.spectrum.selections: Toolsfor selecting and managing ranges and discrete
values within spectra.

 herschel.ia.toolbox.spectrum.standingwaves: Tools for fitting and removing fringes.

» herschel.ia.toolbox.spectrum.utils: Other utilities, for example to integrate and interpolate
spectra.

 herschel.ia.toolbox.srcext: Toolsfor point source extraction.

» herschel.ia.toolbox.util: Miscellaneous tools, among which are tasks for importing from and ex-
porting to ASCII tablesand FITSfiles.

8.5.14. herschel.ia.vo

Contains tools that implement the interface to the Virtual Observatory.

143

http://www.euro-vo.org/pub/index.html

Overview of data processing packages Build 15.0.3262

8.5.15.

herschel.share.fltdyn

Containsclasses and interfacesrelated to flight dynamics, such astime measurement and ephemerides.

Main subpackages:

her schel.sharefltdyn.constraint: Classes to define time intervals and time constraints.

her schel .share.fltdyn.ephem: Classes to define planetary ephemerides and spacecraft orbital
ephemerides.

her schel .shar e.fltdyn.math: Mathematical classes for handling spacecraft attitudes, rotations and
coordinates.

her schel.sharefltdyn.time: Time classes with microsecond resolution and handling of leap-sec-
onds. For more information see Chapter 9.

144

Build 15.0.3262

Chapter 9. Time and astronomical
measurements

The first part of this chapter describes how time is defined within HCSS and how to deal with it.
Unfortunately, there are several waysin which time can be represented. The standard for the HCSS/DP
isaFi neTi nme - which is the number of microseconds since the beginning of 1 January 1958. This
provides the kind of accuracy needed to represent time on a space mission.

However, there are several other time representations and it is often the case that conversions between
times/dates is necessary. In particular, it is noted that the standard Java commands lead to date mea-
surements with respect to 1 January 1970. This chapter indicates how to deal with times within DP
and converting between the various times, particularly between datesand Fi neTi ne's.

The last section of this chapter explains how to carry out great circle and position angle calculations.

9.1. Time Definitions
9.1.1. System time in HIPE

There are many ways to access the system time in HIPE. See also the description of the Java class
"Date" for adiscussion of slight discrepanciesthat may arise between " computer time" and coordinated
universal time (UTC).

The Java Dat e classis deprecated and is being replaced by a more flexible Si npl eDat eFor nmat
capability within Javathat allows the user to express dates more conveniently. A Dat e object is still
obtained and can be turned into aFi neTi e (see below) once created.

Two possibilities for creating a"Date" object are:

To get the current tine in nmilliseconds:

The difference, neasured in nmilliseconds, between the current

time and mdni ght, January 1, 1970 UTC

print java.lang.SystemcurrentTimeM I Ilis()

To get the nunber of mlliseconds since

January 1, 1970, 00:00: 00 GMI represented by a Date object.

d = java.util.Date()

#printing this gives the current tine and date at the | ocation of the
#system on which the java is being run.

print d

#We can al so get the nunber of nmilliseconds since Jan 1, 1970 using
#t his Java Date

print d.getTinme()

Example 9.1. How to obtain the current time by various methods.

Notethat whilethe unit of time of the return valueisamillisecond, the granularity of the value depends
on the underlying operating system and may be larger.

If we want to get the number of milliseconds since 1 January 1970 for any other date then we can use
a non-default form of the Java Date capability where the year, month, day, hour, minute and second
are provided.

* Year format -- year (A.D.) - 1900. So the year 2006 = 2006 - 1900 = 106

* Month format -- number of the month, beginning from January = 0. E.g. March = 2.

e Day -- just day number in the month.

145

Time and astronomical measurements Build 15.0.3262

9.1.2.

9.1.3.

9.1.4.

» Hours, minutes, seconds -- on the 24-hour clock.

NOTE: Thisisthetime on our computer system.

#Format of date is year (in units of true year - 1900), nonth (nunber O0...11),
#day, hour, minute, second. So the follow ng gives us the nunber of mlliseconds
#bet ween t he begi nning of 1 January 1970 and 3: 15: 00 pm on 23 COctober 2004.

d = java.util.Date(104, 9, 23, 15, 15, 0)

print d # shoul d i ndeed show we have 3: 15pm on 23 Cct ober 2004

print d.getTime() # provides the nunber of nmilliseconds between this

#date and 1 Jan 1970.

Example 9.2. Different ways of formatting time variables.

The following sample code shows how to use Si npl eDat eFor nat to create a"Date" object.

si npl eDate = java.text.Si npl eDat eFor mat ("yyyy. MM dd HH: nm ss z")

#set up how you want to set up your input Date format. In this

#case we could input "2006.01.14 01:00: 00 CST" for la.m on 14

#January 2006. z -- indicates the time zone (default is the zone for the
#conput er system bei ng used).

si npl eDat e. appl yPattern("dd/ M yy HH: i)
#change the pattern to a different format

startTime = sinpl eDate. parse("13/01/06 14:06")
#create the data object "startTi ne"

print startTime
#...and see what this |ooks |ike

Example 9.3. Creating a date object.

Allowed choices for the dataformat are available from Java documentation of the SimpleDateFormat
capability.

International Atomic Time (TAI) and Fi neTi nme

TAI isaninternational standard measurement of time based on the comparison of many atomic clocks.
TAI isthe basis for Coordinated Universal Time (UTC). Fi net i ne is based on TAI as measured
from 00:00:00 1 January 1958.

Coordinated Universal Time (UTC)

UTC, World Time, is the standard time common to every place in the world. UTC is derived from
International Atomic Time (TAI) by the addition of awhole number of "leap seconds' to synchronise
itwith Universal Time 1 (UT1), thusallowing for the eccentricity of the Earth’'s orbit and the rotational
axistilt (23.5 degrees), but still showing the Earth'sirregular rotation, on which UT1 is based.

DecMec Time [PACS only]

The commands DPUSelectTime and DPUW riteTime are selecting and setting a start time which is
written to the TMP1 and TMP2 fields of the Dec/Mec headers. Thisis used in coordinating the activ-
ities of the mechanical devices on board PACS. It is possible to construct an absolute time by adding
counters (CRDC) to the start time considering an offset between setting and writing the start time.

This offset is expected to be a number with an uncertainty depending on the system load. It might
require acalibration file. Currently this offset is not considered.

In case the commands and are not given the TMP1 and TMP2 fields are zero. To avoid software
confusions the time will be related to afixed date (1.Jan 1970, 0:00).

146

Time and astronomical measurements Build 15.0.3262

During construction of the SpuBuffer the timeis computed from the TMP1, TMP2 entriesin the Dec/
Mec header and the CRDC counter. Thistime is used during construction of the DataFrameSequence
and the associated Tables holding the SPU science data.

Between the Dec/Mec time and the packet time (seethe Pus TnBi nSt r uct classinthe herschel.bin-
struct package) we have an offset. Therefore the association between HK and science data will be
within an accuracy of 2 seconds.

9.2. Time in Instrument House-Keeping (HK)
Data

The most convenient method of obtaining time stamped HK information isthe use of the herschel .bin-
struct package.

When dealingwith HK timeinformation directly, it isimportant to know that telemetry packets contain
the time as defined within the "PUS Data Field Header". The field represents the on-board reference
time of the packet, referenced to TAI, expressed in spacecraft time units - CCSDS Unsegmented Time
Code (CUC) units. CUC units are multiples of 1/65536 sec from 1 January 1958 in TAI time. CUC
units cannot be expressed in whole microseconds but can be converted to the FineTime standard (see
below).

CUC time iswritten for HK by the data processing unit (DPU).
Current PusTBi nSt r uct methods related to time:

long getTime()

Returns the packet time of the Pus telemetry packet.

boolean isTimeSynchronized()

Returnstrue if the telemetry packet is synchronized, false otherwise.
java.util.Date getTimeAsDate()

Returns the packet time as a Date object.

FineTime getTimeAsFineTime()

Returns the packet time of the Pustelemetry packet as FineTime.

9.3. Time conversion

9.3.1. Time conversion in HIPE

It can often be the case that we need to convert between FineTime (TAI) and Date (UTC). Coordinated
Universal Timeis expressed using a 24-hour clock and uses the Gregorian calendar. FineTime repre-
sents a TAI time (epoch 1958), whereas the Java Date class is used to represent UTC, by resetting
the system clock whenever aleap second occurs and don't need to handle leap seconds. Converting
between Java dates and the FineTime standard requires the use of the DateConverter() class. Long
integers can also be directly converted to FineTimes and are interpreted as representing the number of
microseconds since 00:00:00 1 January 1958. In Example 9.4 we illustrate how to create a FineTime
from along integer and convert back and forth between FineTime and Java Dates.

FineTine to Date

Enter a tinme in seconds (a long integer - put letter "I"
at the end of the nunber)

¢ = FineTine(14360944497154001) # convert to a FineTine

147

Time and astronomical measurements Build 15.0.3262

Prints corresponding date and tine

print DateConverter.fineTi meToDat e(c)

Date to a FineTine

d = java.util.Date() # gets today's date and tine
Prints correspondi ng Fi neTi me

print DateConverter.dateToFi neTi ne(d)

Example 9.4. Time conversion between Dat e and Fi neTi me

9.3.2. CucConverter

Converts between Spacecraft Elapsed Time, in CCSDS Unsegmented Time Code (CUC) format and
FineTime (TAI). This implementation is for the Herschel CUC format, which is corrected on-board
the spacecraft to TAI (epoch 1 Jan 1958). This representation uses 32-bits for seconds and 16 bits
for fractional seconds. CUC times are multiples of 1/65536 sec and cannot be expressed as an exact
multiple of 1 microsecond (the resolution of FineTime). However, the following relations hold for
‘coarse’ and 'fine' valuesin the allowed range:

long coar se(FineTimet)

Return the number of whole seconds since the epoch 1 Jan 1958.

long cucValue(FineTimet)

Return the number of 1/65536 fractional seconds since the epoch 1 Jan 1958.

int fine(FineTimet)

Return the fractional part of the number of 1/65536 seconds since the epoch 1 Jan 1958.
FineTime toFineTime(long cuc)

Return anew FineTime constructed from a 48-bit CUC time.

FineTime toFineTime(long coar se, int fine)

Return a new FineTime constructed from CUC coarse & fine fields.

from herschel . share.fltdyn.tine inport *

d=CucConverter.toFi neTi me(50000000000000L)

#Converts the long integer - representative of a CUC tine -
#into a FineTime. The FineTinme is stored in d

e = CucConverter. coarse(d)

#provi des the nunber of whole seconds since 1 Jan 1958
#and stores it in e.

print e

Example 9.5. Creating FineTime variables from other time formats.

9.4. Great circle and position angle calcula-
tions

This functionality is available within the herschel.share.fltdyn package. This package is alow level
library written for the mission planning system. It uses radians throughout, except where indicated in
the method names (for instance, Di r ect i on. f ronmDegr ees(r a, dec) andDi r ecti on. ge-
t RaDegr ees()). Please see the following example:

H PE> from herschel . share. fltdyn. math inport *
H PE> x = Direction(125./180*Math. PI, 80./180*Math. PI')
H PE> y = Direction(125./180*Math. Pl, 70./180*Math.Pl)

148

Time and astronomical measurements Build 15.0.3262

HI PE> print x.distanceTo(y)

0. 17453292519943298

HI PE> print x.distanceTo(y)/Math. Pl *180

10. 000000000000002

H PE> z = Direction(100./180*Math. PlI, 80./180*Mat h. PI)
HI PE> print x.distanceTo(z)/Math. Pl*180
4.307863243850451

Note the manual conversions between radians and degrees throughout the example. However, the
Di r ect i on classhasfactory methodsthat accept degrees. Conversion of theresult to degreesis most
elegantly achieved using the MVat h. t oDegr ees() method. So, the previous example simplifiesto
the following:

H PE> x = Direction. fronDegrees(125, 80)

H PE> y = Direction. fronDegrees(125, 70)

HI PE> print Math.toDegrees(x.distanceTo(y))
10. 000000000000002

The position angle is given by the following command:
pos = X. positionAngl eTo(y)
Example 9.6. Calculating the angle between vectors.

The Di r ecti on class is recommended for calculations of any complexity. It does al the internal
calculations using the Vect or 3 and Quat er ni on classes, which are fast and avoid problems with
singularities at the poles.

149

Build 15.0.3262

Appendix A. Jython operators

The following tables shows all the various operators you can use in Jython. HCSS and HIPE use

Jython version 2.5.2.

Thislist and the associated operator descriptions have been largely taken from the Python Reference
Manual, which you can find online at http://docs.python.org/reference/.

Table A.1. Jython unary arithmetic operators

Operator

Operator description

Example

+

Unary plus: yields its numeric pri nt
argument unchanged.

+5
#5

Unary minus: yields the neg&'pri nt -

tion of itsnumeric argument. #-5

Invert: yields the bitwise invert!
of its plain or long integer argu-
ment. |

print
#- 6

Table A.2. Jython binary arithmetic operators

Operator

Operator description

Example

+

Sum: yields the sum of itsargu- pri nt
ments. # 4

2 + 2

Subtraction: yields the differ- print
ence of its arguments. # -1

Multiplication: yields the pl‘Od-lpri nt
uct of isarguments. # 6

o) . print
Division: yields the quotient of # 2

its arguments. print
2.5

/1

Floor division (Jython 2.2 al-' ;¢
pha only): yields the result of # 2
the f1 oor () function applied print
to the quotient of its arguments. i

5.0// 2

%

Modulo: yields the remainder!
from the division of its argu-
ments. |

print
#1

5 %2

Power: yields its left argument !
raised to the power of itsright ar-
gument. |

print
25

5%*2

Table A.3. Jython shifting operators

Operator

Operator description

Example

<<

Left shift: a << b shiftsplain print
or long integer a by b hits. # 10

5<<1

>>

Right shift:a >> b shiftsplain pri nt
or long integer a by b bits. # 2

5>>1

150

http://docs.python.org/reference/

Jython operators

Build 15.0.3262

Table A.4. Jython binary bitwise operators

Operator

Operator description

Example

&

Bitwise AND: yields the bitwise
AND of its plain or long integer
arguments.

print 5 &6
4

Bitwise XOR: yields the bitwise
exclusive OR of itsplain or long
integer arguments.

| |
print
3

Bitwise OR: yields the bitwise
inclusive OR of its plain or long
integer arguments.

| |
print 5| 6
#7

Table A.5. Jython comparison operators

Operator

Operator description

Example

<

Lessthan:a < b yiddstrueif
aislessthanb.

print 5 <6
1

Greater than: a > b yieldstrue
if a isgreater than b.

print 5> 6
#0

Equal to: a == byiedstrueif
a andb areequal.

print 5 ==26
#0

Greater or equal to:a >= b
yieldstrueif a is greater than or
equal to b.

!
print 5 >= 6
#0

Lessor equal to:a <= byields
trueif a islessthan or equal tob.

print 5 <=6
1

I = (preferred) or <>

Not equal to: a !'= b yidds
trueif a isnot equal to b.

print 5!=6
#1
print 5 <>5
#0

Table A.6. Jython boolean operators

Operator Operator description Example
print 1 and O
Boolean AND: yields True if # o
and both arguments are true, Fal se
otherwise. Example A.1. Boolean and opera-
tion between integersisalso valid.
print 1 or O
Boolean OR: yields True if # 1
or at least one argument is true,
Fal se otherwise. Example A.2. Boolean or opera-
tion between integersisalso valid.
print not 1
Boolean NOT: yields True if # o
not the argument is fase, Fal se
otherwise. Example A.3. Boolean not opera-
tion between integersisalso valid.

151

Build 15.0.3262

Appendix B. Naming conventions

B.1. Naming Conventions

for Java and Jython users and developers. Version 0.3, 6th December 2006

Element

Description

Naming convention

Class

Defines the state and behaviour
of something. Classes are de-
fined as declaring variables
(fields) and functions (methods)
associated with the objects of
that class.

Names should be nouns and
written in mixed case starting
with an upper case letter. Do
not use underscores to separate
words.

Dat aFr aneGener at or,
Fi t sArchi ve

Interface

Defines a collection of method
definitions and constant values.
It can later be implemented by
classes that define this interface
with the i npl ements key-
word.

Names have the same conven-
tion as class names but are
preferably adjectives. Try to end
the names with -able or -ible:

Sortabl e, Accessible,

Savabl e

Variable

An item of data named by an
identifier. Each variable has a
type, suchasi nt or Fr ane, and
ascope.

Names should be mixed case
starting with a lower case letter.
Do not use underscores to sepa-
rate words.

f rameBuf f er Count er,
nSanpl es, |ine, detec-
t or No

Instance Variable

A variable that is part of an ob-
ject.

Names should start with an un-
derscore, otherwise follow the
general conventions for vari-
ables (see above).

_packet Type,
bl e

_isVisi-

Loca Variable

A variable that is part of afunc-
tion or method.

Names follow the naming con-
vention of normal variables.

counter,
el Nane

 engt h, pix-

Constant

A variable whose value can not
be changed during execution.

Names should be all uppercase
using an underscore to separate
words:

MAX_| TERATI ONS

Boolean variable and method

A logical typeffunction that can
only have or return the values
true’ or ‘false. Methods have
parentheses () while variables
haven't.

Namesshould start withis-, has-,
can-, or should-.

i sVisible,
hasChanged(), canHan-
dl e(), shoul dAbort

Parameter

An argument to a function or a
method.

Names follow the naming con-
vention of normal variables.

152

Naming conventions

Build 15.0.3262

Element Description Naming convention
nane, packet
Property A platform independent imple- | Names should be al lower case
mentation of environment vari-|and start with 'hcss. The hierar-
ables and settings. chical parts should be separated
with a dot.
hcss. binstruct. ser-
Vi ces
Method A function definedinaclass. | Names should be verbs and writ-
ten in mixed case starting with a
lower case letter. Do not use un-
derscores to separate words.
get Name(), | oad()
Function A jython function is a collection| Names follow the same conven-
_ of code lines to perform a spe- |tion as method names in classes.
Section 1.27 cific task under one name. Func-

tionstake argumentsand provide
one output. They are like meth-
ods, except they are not inside a
class. A function can also be an
instance of the Task class.

resanpl e(), readTn()

Numeric function

Section 5.1

Parameterless Java functions
provided by the herschel.ia.nu-
meric toolboxes. For these func-
tions only one instance is need-
ed. Other numeric functions fol-
low the same convention as
classes.

Names are in al uppercase with
an underscore to separate words.

UNIQ MEDIAN, IS FI-
NI TE

Task

Chapter 6

A Task is a class which can be
called as a function. Tasks do
input and output parameter type
checking and provide history to
Products.

Names follow the same conven-
tions as for classes. Task names
should end with the word "Task'.

Di spl aybDat aFr anmeTask,
Resanpl eTask

Package

Defines a collection of related
classes and interfaces in Java
Packages provide the namespace
in Java and Jython.

Names should be in lower-case
letters and digits, don't use un-
derscores.

her schel . i a. nuneric

Package names should be short
so that the fully quaified pack-
age hame doesn't become exces-
sively long.

Abbreviations and acronyms should not be all uppercase when used as a name:

GOOD BAD

export AsHt m () export AsHTM.()
saveAsJpeg() saveAsJPEQX)
ol Packet OCLPacket

153

Naming conventions Build 15.0.3262

B.1.1.

Using all uppercase for the abbreviations in base names will give conflicts with the naming conven-
tions given above. A variable of thistype would have to be named hTM.,] PEGetc. which obviously
isnot very readable. Another problem isillustrated in the exampl es above: when the nameis connected
to another, the readability is seriously reduced, since the word following the acronym does not stand
out as it should.

The term compute can be used in methods where something is computed and might take considerable
time to execute.

conput eAver age(), matrix.conputel nverse()

Give the reader the immediate clue that this is a potential time consuming operation, and if used
repeatedly, he might consider caching the result. Consistent use of the term enhances readability.

The 'n' prefix should be used for variables representing a number of objects, note that the names are
plural.

nPoi nts, nLines, nSanples

The notation is taken from mathematics whereit is an established convention for indicating a number
of objects. Note that Sun uses the numprefix in the core Java packages for such variables. Thisis
probably meant as an abbreviation of number of, but asit looks more like number it makesthe variable
name strange and misleading. If "number of" is the preferred phrase, nunmber O prefix can be used
instead of just n. The numprefix must not be used.

The 'No' suffix should be used for variables representing an entity number.
t abl eNo, enpl oyeeNo

The notation is taken from mathematics where it is an established convention for indicating an entity
number.

Reserved words: the following words are reserved by Java as |anguage keywords and can not be used
for variables, methods or class namesin Java.

abstract, continue, for, new, synchronized, assert, default, goto,
package, this, bool ean, double, if, private, throws, break, do, inple-
ments, protected, throw, byte, else, inmport, public, transient, case,
enum instanceof, return, try, catch, extends, interface, short,
void, char, finally, int, static, volatile, class, final, long, su-
per, while, const, float, native, swtch.

Jython code example

herschel . i a. dat aset.gui = PACKAGE; Datasetlnspector = CLASS
from herschel . i a. dataset. gui inport Datasetlnspector

Pl = CONSTANT

fromjava.lang. Math inport PI

testName = VARI ABLE

testNanme = "chop_freq_test_2909_1832_1902_"

| oad = METHCD

t2 = fits. | oad(nyDir+test nanme+" PHOTF. fits"). defaul t

MAX = NUMERI C FUNCTI ON

maxSt ep = MAX(step[step. where(step < Oxffff)])

start EndTi mes = FUNCTI ON, step, nmaxStep, tine... = FUNCTI ON PARAMETERS
def startEndTi mes(step, maxStep, tinme, startTime, endTine):
for i in range(0, maxStep): # i = LOCAL VARI ABLE
tenp=(step. where(step == i +1))
endTinme[i] = time[MAX(tenp.tolntld())

return endTi ne
| en = FUNCTI ON

154

Naming conventions Build 15.0.3262

upper = len(startarr)

B.1.2. Java code example

package herschel .ia.nunmeric; // herschel.ia.nuneric: PACKAGE
public final class Conplexld // Conplexld: CLASS

{

impl enents Serializable // Serializable: | NTERFACE

private transient double[][] _internal; // _internal: |NSTANCE VARl ABLE
/Il writeObject: METHOD
private void witeObject(ObjectQutputStreamos) { // os = METHOD PARAMETER
os. defaul tWiteObject();
os.witelnt(length());
if (length()==0) return;
for (int i=0,n=length();i<n;i++) { // i = LOCAL VARI ABLE
os.witeDouble(_re[i]); os.witeDouble(_infi]);
}

155

Build 15.0.3262

Index

Symbols

& (Jython bitwise operator), 46
A (Jython bitwise operator), 46
doc,7

| (Jython bitwise operator), 46

A

ABS, 80
Aliases, 25
Amoebafitter, 93
and (Numeric arrays method), 47
and logical operator, 16, 46
ARCCOS, 80
ARCSIN, 80
ARCTAN, 80
Arctan fitting model, 92
Arithmetic operators, 44
Array datasets, 49
creating, 49
inspecting, 50
modifying, 50
Arrays
rectangular and jagged, 41
removing NaN and infinite values from, 47
Astrometry, 74
correcting, 77
astrometryFix, 78
AttribQuery, 121

B

Backslashes

in filenames, 19
Binomial fitting model, 91
Bitwise operators, 46
bool (Jython variable type), 5
Booll...5d, 40
Boxcar filters, 88
break (Jython keyword), 17
Bytel...5d, 40

C

Cached pool, 128
using with an HSA pool, 127
using with an HTTP pool, 128
CEIL, 80
Character (Java variable type), 9
ChiSquared, 104
class (Jython keyword), 23
Classes, 23
aliases, 25
creating, 23
Naming conventions, 25
Code blocks, 15
Columns (of table datasets), 50

complex (Jython variable type), 5
Complex numbers, 5
Complex1...5d, 40

inspecting, 42

real and imaginary parts, 41
Composite datasets, 52

creating, 52

inspecting, 53

modifying, 53
Compound fitting models, 93
Console view, 3
Constants, 57

Naming conventions, 25
Contexts (see Product contexts)
continue (Jython keyword), 18
Convolution, 87
Coordinated Universal Time, 146
Correlate, 104
CorrelateMatrix, 104
COsS, 80
Covariance, 104
CovarianceMatrix, 104
CPython, 2
creationDate (product metadata), 59
Cubic splines fitting model, 92
CUC, 147
CucConverter, 148

D

Datafitting

tolerance, 94
Date (Java class), 145
DecMec time, 146
def (Jython keyword), 20
Determinant of amatrix, 98
Dialogue windows, adding, 30
Dictionaries, 12

accessing, 14

creating, 14

modifying, 14

nesting, 15
Direction (HIPE class), 148
Directory

finding current, 29

listing files, 29
Doublel...5d, 40

E

Eigenvalue decomposition, 99
dif (Jython keyword), 16
else (Jython keyword), 16
in for loops, 16
endDate (product metadata), 59
Erf, 104
Erfc, 104
EXP, 80
Exponential fitting model, 92

156

Index Build 15.0.3262

External software, interoperating with, 33 H
hcss.interpreter.imports property, 27
F Help, 7
FFT (discrete Fourier transform), 82 herschel.ia.dataflow, 139
FFT_PACK, 82 herschel .ia.dataset, 139
Filenames herschel .ia.document, 140
backslashesin, 19 herschel.ia.gui, 140
Files herschel.ia.io, 140
reading numeric values from, 20 herschel.ia.numeric, 140
reading strings from, 19 herschel.ia.obs, 141
writing numeric values to, 20 herschel.ia.pal, 141
writing strings to, 19 herschel.ia.pg, 142
FineTime, 146 herschel.ia.qcp, 142
FITSfiles herschel.ia.spg, 142
importing into a pool, 119 herschel.iatask, 142
FitterFunction, 103 herschel .ia.toolbox, 143
Fitters, 93 herschel.ia.vo, 143
tolerance, 94 herschel .share.unit package, 53
Fitting data, 89 HifiSpectrumDataset, 72
additional documentation, 97 History (of products), 60
fit execution, 90 HrsSpectrumDataset, 72
model selection, 89 HSA pool, 127
one-dimensional example, 95 metadata, 129
statistical information, 90 HTTP pooal, 128
two-dimensional example, 96 HttpClientPool, 128
FIX, 80
FixedMask, 97 |
float (Jython variable type), 5 DL 3
loatl...5d, 40 o
F ’ IDL equivalents
FL (IDOR’ 80 arithmetics commands, 38
for” 0ops, 16 basic commands, 36
Eﬁngité)erg’ 2151 data import/export commands, 37
. ' plot commands, 36
aliases, 25

if (Jython keyword), 16

I1legal ArgumentException, 126
Imaginary numbers, 5

import (Jython keyword), 25

as function arguments, 22
without input arguments, 22

G IndexError, 126

GAMMALN, 104 Infinite values

GammaP, 104 removing from arrays, 47
GammaQ, 104 Input arguments of a function, 20
GaussHermitel ntegrator, 102 default values, 22

Gaussian filters, 88 int (Jython variable type), 5
Gaussian model, 92 Intl...5d, 40
GaussianQuad4integrator, 101 INT_TABULATED (IDL function), 103
GaussianQuad5I ntegrator, 101 Integral transforms, 81
GaussJacobil ntegrator, 102 Integration, 101

GaussL aguerrel ntegrator, 102 discrete values, 102

GaussL egendrel ntegrator, 101 functions, 101

GEOMEAN, 104 Interactive prompt, 3

get (Numeric array method), 45 International Atomic Time, 146
getcwd (Jython function), 29 Interpolation, 88

glob (Jython module and function), 29 of discrete data, 103

Global variables, 21 IntTabulated, 103

Great circle, 148 Inverse Fourier transforms, 84

Inverse of amatrix, 98

157

Index Build 15.0.3262

J
Java, 2
ranges of numeric types, 5
variable types, 5
Javadoc, 134
classview, 137
constructor summary, 138
deprecated view, 139
method summary, 138
overview, 135
package view, 136
tree view, 139
JOptionPane, 30, 31, 32
Jython, 2
operators, 150
binary arithmetic, 150
bitwise, 150
boolean, 151
comparison, 151
shifting, 150
unary arithmetic, 150
ranges of numeric types, 6
variable types, 5

K
KURTOSIS, 104

L

Lambda expressions, 79
Levenberg Marquardt fitter, 93
Linear fitting models, 91
List contexts, 60
listdir (Jython function), 29
Lists, 12
accessing, 13
appending values, 13
concatenating, 13
creating, 12
Local poals, 118
directory, 118
changing, 118
importing FITSfiles, 119
repairing, 119
Local stores (see Local pools)
LOG, 80
LOG10, 80
Logica operators, 46
long (Jython variable type), 5
Longl...5d, 40
Loops
breaking, 18
for, 16
in the Console view, 18
while, 17
Lorentz fitting model, 92
LU decomposition, 99

M

Map contexts, 60
Masks, 97
Matrices, 97
Matrix equations, 100
MAX, 80
MEAN, 80, 104
Measurement units (see Units of measurement)
MEDIAN, 80, 104
MedianAbsoluteDeviation, 104
Metadata, 57
inspecting, 58
modifying, 57
querying, 120
MetaQuery, 121
Methods, 23
caling, 24
MIN, 80
Mixed fitting models, 93
MODE, 104
Modules
importing, 25
your own, 27
reloading, 28
unimporting, 28
Modulo maximaline, 106
Multiple line commands, 3
Multiplying matrices, 98

N

Naming conventions, 25, 152
Java example, 155
Jython example, 154
NaN
removing from arrays, 47
Non-ASCII charactersin scripts, 4
Non-linear fitting models, 92
user-supplied, 92
Normalization (Fourier transform), 85
not logical operator, 46
Numeric arrays, 40
creating, 41
differences from Jython arrays, 42
differences with Jython arrays, 40
element-by-element operations, 44
improving performance, 47
inspecting, 41
modifying, 42
ordering of elements, 43
selecting and filtering values, 44
type conversions, 48
explicit, 48
implicit, 49
Numeric library, 79
basic functions, 80
lower case equivaents, 81
using functions, 79

158

Index Build 15.0.3262

numpy, 3 creating, 58
deleting from apool, 117
O history, 60
, inspecting, 60
Objects, 23 loading from a pool, 117

Naming conventions, 25

printing contents, 24
Observation contexts, 60
open (Jython keyword), 19
Operators, 150
or (Numeric arrays method), 47
or logical operator, 16, 46
os (Jython module), 29, 34 Q

Query (HIPE class), 119

modifying, 59
saving to apool, 117
setting date and time in metadata, 59
tagging in apool, 117
Python, 2

P
PackedMask, 97 R
PacsCube, 72 Random numbers, 100
PacsRebinnedCube, 72 RandomGauss, 100
pause(), 33 RandomPoisson, 100
Photometer Astrometry Correction, 78 RandomUniform, 100
pickle (Jython module), 20, 20 range function, 16
Pipeline scripts, 29 read(), 19
Plug-ins, sharing scripts with, 35 readling(), 19
PointSpectrum, 62 readlines(), 19
Polynomial fitting model, 91 Rectangularintegrator, 101
Pools, 116 Relational operators, 44
creating, 116 reload (Jython function), 28
for remote data, 127 REPEAT, 80
local (see Local poals) resume(), 33
minimising memory usage, 124 Return parameter of afunction, 20
product versioning, 121 REVERSE, 80
guerying, 119 Rombergl ntegrator, 101
advanced, 121 ROUND, 80
inspecting results, 120
part of astring, 123 S
product metadata, 120, 123 Scripting
product versions, 121 getting started, 1
registering to a storage, 116 Scripts
testing if two products are equal, 124 debugging, 33
tips and pitfalls, 123 maximum length, 4
troubleshooting, 119 menu in HIPE, 2
wrong tag after renaming, 125 pausing, 33
Position angle, 148 resuming, 33
Power law fitting model, 91, 92 running, 2
Power spectrum, 86 sharing, 35
pri_nt_(Jython keyword), 18 third-party, 29
Printing writing, 4
formatting printouts, 18 Selection (Javadlass), 45
numeric valuesto file, 20 Short1...5d, 40
stringstofile, 19 showConfirmDialog, 32
to the screen, 18 showlnputDialog, 31
PRODUCT, 80 showMessageDialog, 30
Product contexts, 60 Sigclip, 104
copying from a storage to another, 125 SIGNUM, 80
ProductRef, 117 SimpleDateFormat (Java class), 146
Products, 58 SimpleSpectrum, 69
automatic metadata, 58 Simpsonintegrator, 101
copying from a storage to another, 125 SIN, 80

159

Index Build 15.0.3262

Sinc fitting model, 92
Sinc function convolved with Gaussian model, 92
Sine wave fitting model
linear, 91
non-linear, 92
Singular value decomposition, 100
Singular value decomposition fitter, 94
SKEWNESS, 104
Slices, 42
Spectral datasets and products, 62
instrument-specific, 72
Spectral Segment, 62
Spectral SimpleCube, 70, 72
creating, 70
dimensions, 72
inspecting, 70
SpectrometerDetectorSpectrum, 72
SpectrometerPointSourceSpectrum, 72
Spectrumld, 62
creating, 63
inspecting, 64
Spectrum2d, 66
creating, 67
inspecting, 68
SpectrumContainer, 62
SpirePreprocessedCube, 72
SQRT, 80
SQUARE, 80
startDate (product metadata), 59
Statistics functions, 104
StatWithNaN, 104
STDDEV, 80, 104
Storages, 116
copying products and contexts, 125
creating, 116
listing registered pool, 117
wrong tag after renaming pool, 125
Stringld, 40
Strings, 8
converting to numeric values, 10
formatting, 9
Javatypes, 9
printing to file, 19
printing to screen, 18
reading from file, 19
SUM, 80
Swing (Java GUI library), 30
system() (Jython function), 34

T

Table datasets, 50
copying, 52
creating, 50
inspecting, 52
modifying, 51

Tags (for productsin pools), 117
checking if atag exists, 118
pointing to wrong product, 125

removing, 118
TAI, 146
TAN, 80
Tasks, 113
calling from a script, 22
parameters, 114
multiple outputs, 114
printing help, 113
printing parameters, 113
running, 113
Time
conversions, 147
between CUC and TAI, 148
between TAl and UTC, 147
measurement, 145
Tolerance (data fitting), 94
Transposing a matrix, 98
Trapezoidallntegrator, 101
Tuples, 12
accessing, 13
concatenating, 13

U

Units of measurement, 53
comparing for compatibility, 56
converting

to and from strings, 55
to other units, 56
creating and assigning, 54
derived units, 55
multiples and fractions, 55
URN, 116
UTC, 146

\Y

Value, passing by, 21

Variables, 4
converting between Java and Jython types, 11
converting between Jython types, 10
deleting, 4
getting help, 7
Javatypes, 5
ranges of Java numeric types, 5
ranges of Jython numeric types, 6
types, 7

VARIANCE, 104

Version
Developer builds, 34

wW

Wavelet transforms, 104
continuous, 105
example, 105
discrete, 107
library, 106
stationary, 109
toolbox overview, 111

160

Index

Build 15.0.3262

tools, 110

Gaussian noise estimator, 110
thresholding tool, 110
universal threshold, 110

WhbsSpectrumDataset, 72

WCS (see World Coordinate System)

WeightedMean, 104

WHERE (IDL function), 46

where (Numeric array method), 44

while loops, 17

World Coordinate System, 74

X

xor (Numeric arrays method), 47

161

	Scripting Guide
	Table of Contents
	Preface
	Chapter 1. Scripting and Jython basics
	1.1. Getting started
	1.1.1. Why scripting with HIPE?
	1.1.2. Testing commands
	1.1.3. Writing your first script
	1.1.4. Running your first script
	1.1.5. Where to go from here?

	1.2. Jython, Python and Java
	1.3. Writing commands interactively
	1.4. Writing a script
	1.5. Variables and variable types
	1.5.1. More on complex numbers
	1.5.2. Java variable types
	1.5.3. The range of Jython numeric types
	1.5.4. Other variable types

	1.6. Getting help on variables
	1.7. Defining and modifying strings
	1.7.1. Java string types

	1.8. Formatting strings
	1.9. Converting between variable types
	1.9.1. Converting between Java and Jython types

	1.10. Lists, dictionaries and tuples
	1.11. Creating and modifying lists
	1.12. Concatenating lists and tuples
	1.13. Accessing lists and tuples
	1.14. Creating and modifying dictionaries
	1.15. Accessing dictionaries
	1.16. Nesting dictionaries
	1.17. Code blocks
	1.18. Writing branching code: if/elif/else
	1.19. Writing loops: for and while
	1.20. Controlling loops: break and continue
	1.21. Writing loops in the Console view
	1.22. Printing to the screen
	1.23. Writing strings to file
	1.24. Reading strings from file
	1.25. Writing numeric values to file
	1.26. Reading numeric values from file
	1.27. Functions
	1.28. Executing HIPE tasks from your scripts
	1.29. Classes
	1.30. Creating and using classes
	1.30.1. Printing objects

	1.31. Naming conventions for classes and variables
	1.32. Creating aliases for class and function names
	1.33. Importing modules
	1.33.1. Importing, reloading and unimporting your own modules

	1.34. Understanding pipeline scripts
	1.35. Accessing files and directories
	1.36. Adding simple dialogue windows
	1.36.1. Dialogue box with message
	1.36.2. Dialogue box with text input field
	1.36.3. Dialogue box asking yes/no question

	1.37. Pausing and debugging scripts
	1.38. Interoperating with external software
	1.39. Developing version-aware scripts
	1.40. Sharing scripts
	1.41. IDL to HIPE command mapping
	1.41.1. Idl to Jython mapping

	Chapter 2. Arrays, datasets and products
	2.1. HIPE-specific data structures
	2.2. Numeric arrays
	2.2.1. Creating an array
	2.2.2. Inspecting an array
	2.2.3. Inspecting a complex array
	2.2.4. Modifying an array
	2.2.5. Ordering of array elements
	2.2.6. Numeric array arithmetic
	2.2.7. Selecting and filtering array values
	2.2.8. Using logical operators with arrays
	2.2.9. Removing infinite and NaN values from arrays
	2.2.10. Advanced tips for improved performance
	2.2.11. Type conversions
	2.2.11.1. Explicit conversion
	2.2.11.2. Implicit conversion

	2.3. Array datasets
	2.3.1. Creating an array dataset
	2.3.2. Modifying an array dataset
	2.3.3. Inspecting an array dataset

	2.4. Table datasets
	2.4.1. Creating a table dataset
	2.4.2. Modifying a table dataset
	2.4.3. Copying a table dataset into another
	2.4.4. Inspecting a table dataset

	2.5. Composite datasets
	2.5.1. Creating a composite dataset
	2.5.2. Modifying a composite dataset
	2.5.3. Inspecting a composite dataset

	2.6. Measurement units
	2.6.1. Creating and assigning units
	2.6.2. Obtaining derived units
	2.6.3. Converting units to and from strings
	2.6.4. Converting units to other units
	2.6.5. Comparing units for compatibility
	2.6.6. Comparing units for equivalence
	2.6.7. Obtaining physical and mathematical constants

	2.7. Metadata
	2.7.1. Modifying metadata
	2.7.2. Inspecting metadata

	2.8. Products
	2.8.1. Creating a product
	2.8.2. Modifying a product
	2.8.3. Setting date and time in product metadata
	2.8.4. Inspecting a product
	2.8.5. Product contexts
	2.8.6. Observation contexts
	2.8.7. Product history

	Chapter 3. Spectra and spectral cubes
	3.1. Spectrum containers and segments
	3.2. Spectrum1d
	3.2.1. Creating a Spectrum1d
	3.2.2. Accessing data from a Spectrum1d

	3.3. Spectrum2d
	3.3.1. Creating a Spectrum2d
	3.3.2. Accessing data from a Spectrum2d

	3.4. SimpleSpectrum
	3.5. SpectralSimpleCube
	3.5.1. Creating a SpectralSimpleCube
	3.5.2. Accessing data from a SpectralSimpleCube

	3.6. Instrument-specific spectral products

	Chapter 4. The World Coordinate System
	4.1. Assigning a World Coordinate System to images and cubes
	4.2. Correcting the astrometry of your data

	Chapter 5. The Numeric library
	5.1. Numeric functions and lambda expressions
	5.2. Basic functions
	5.3. Integral transforms
	5.3.1. FFT
	5.3.2. FFT_PACK
	5.3.3. Selecting the right Fourier transform
	5.3.4. Inverse Fourier transforms
	5.3.5. Normalization

	5.4. Power spectrum
	5.5. Convolution
	5.6. Boxcar and Gaussian filters
	5.7. Interpolation
	5.8. Fitting data
	5.8.1. General approach
	5.8.2. Available linear models
	5.8.3. Available non-linear models
	5.8.4. Compound and mixed models
	5.8.5. Available fitters
	5.8.6. Setting the fitter tolerance
	5.8.7. 1D fit example
	5.8.8. 2D fit example
	5.8.9. Additional documentation

	5.9. Masks
	5.10. Matrices
	5.11. Random numbers
	5.12. Numeric integration
	5.12.1. Integrating functions
	5.12.2. Integrating discrete values

	5.13. Interpolating discrete data
	5.14. Statistics
	5.15. Wavelet transforms
	5.15.1. Continuous wavelet transform
	5.15.2. Example
	5.15.3. Modulo Maxima Line
	5.15.4. The wavelet library
	5.15.5. Discrete wavelet transform
	5.15.6. Stationary wavelet transform
	5.15.7. Tools
	5.15.8. Wavelet toolbox overview

	Chapter 6. Running tasks
	6.1. Running a task
	6.2. Task parameters
	6.2.1. Output parameters

	Chapter 7. Storing and accessing data products
	7.1. Pools and storages
	7.1.1. Creating a storage and registering pools
	7.1.2. Saving and loading products
	7.1.3. Deleting products
	7.1.4. Tagging products

	7.2. Local pools
	7.2.1. The local pool directory
	7.2.2. Repairing a local pool
	7.2.3. Importing a directory of FITS files into a local pool
	7.2.4. Troubleshooting

	7.3. Querying
	7.3.1. Inspecting query results

	7.4. Product versioning
	7.4.1. Querying product versions

	7.5. Advanced querying
	7.5.1. Querying for parts of a string
	7.5.2. Querying for metadata in products

	7.6. Tips and pitfalls
	7.6.1. Changes to a product in a pool disappear
	7.6.2. Minimising memory usage
	7.6.3. Testing if two products are equal
	7.6.4. Copying a product or context to a different storage
	7.6.5. Tags may point to wrong product after renaming a pool
	7.6.6. IndexError or IllegalArgumentException when querying
	7.6.7. A query takes a long time to execute

	7.7. Pools for remote data
	7.7.1. The HSA pool
	7.7.2. The HTTP pool
	7.7.3. The cached pool
	7.7.4. Metadata used in the HSA pool

	Chapter 8. Overview of data processing packages
	8.1. Browsing the list of packages
	8.2. Browsing the contents of a package
	8.3. Viewing the details for a class or interface
	8.4. Displaying alternative views of the Developer's Reference Manual
	8.5. DP packages
	8.5.1. herschel.ia.dataflow
	8.5.2. herschel.ia.dataset
	8.5.3. herschel.ia.document
	8.5.4. herschel.ia.gui
	8.5.5. herschel.ia.io
	8.5.6. herschel.ia.numeric
	8.5.7. herschel.ia.obs
	8.5.8. herschel.ia.pal
	8.5.9. herschel.ia.pg
	8.5.10. herschel.ia.qcp
	8.5.11. herschel.ia.spg
	8.5.12. herschel.ia.task
	8.5.13. herschel.ia.toolbox
	8.5.14. herschel.ia.vo
	8.5.15. herschel.share.fltdyn

	Chapter 9. Time and astronomical measurements
	9.1. Time Definitions
	9.1.1. System time in HIPE
	9.1.2. International Atomic Time (TAI) and FineTime
	9.1.3. Coordinated Universal Time (UTC)
	9.1.4. DecMec Time [PACS only]

	9.2. Time in Instrument House-Keeping (HK) Data
	9.3. Time conversion
	9.3.1. Time conversion in HIPE
	9.3.2. CucConverter

	9.4. Great circle and position angle calculations

	Appendix A. Jython operators
	Appendix B. Naming conventions
	B.1. Naming Conventions
	B.1.1. Jython code example
	B.1.2. Java code example

	Index

