
The HIFI Data Reduction Guide
Editor: Sylvie F Beaulieu

co-Editor: Carolyn McCoey

HIFI ICC

Build 15.0.3244

The HIFI Data Reduction Guide
Editor: Sylvie F Beaulieu
co-Editor: Carolyn McCoey
HIFI ICC

Revision History

Revision 0 Prior to 3 May 2011

No revision history.

Revision 1 3 May 2011

Added information about convolution table from doGridding.

Revision 2 5 Aug 2011

Name changed from "HIFI Users' Manual" to "HIFI Data Reduction Guide", updated and clarified text regarding re-pro-
cessing data with new calibration.

Revision 3 8 Oct 2011

Addition of HIFI Launch Pad, Point Mode DBS cookbook, and a chapter about flagging HIFI data.

Revision 4 17 Oct 2011

Updates to pipeline chapters, quality flag section, flagging data chapter, addition of unit conversion chapter.

Revision 5 9 Nov 2011

Updates to deconvolution and standing wave chapters.

Revision 6 14 Nov 2011

Update to the "What was done to my data?" chapter to make clear that lines are at SSB scale while continuum is at DSB scale.

Revision 7 23 Nov 2011

Addition of documentation for new flagging task, FlagTool. Documentation of various small known issues and work arounds
for HIPE 8.

Revision 8 20 Jan 2012

Updates to the "How to make a spectral cube" chapter for updates in HIPE 8 and updates to the fitBaseline chapter for
updates to fitBaseline in 8.1.

Revision 9 21 May 2012

Updates for HIPE 9.0, significant updates to the "Running the HIFI pipeline", "Tour of a HIFI ObservationContext", "View-
ing Spectra" chapters, updates to the "Flags in HIFI data", "How to the add and remove flags" and "How to create a spectral
cube" chapters. Bug-fixes and typo corrections elsewhere.

Revision 10 23 June 2012

Further updates for HIPE 9.0, updates to Baseline Removal and Standing Wave Removal chapters.

Revision 11 10 August 2012

Addition of a chapter describing how to send HIFI spectra to VO tools for HIPE 9.1.

Revision 12 16 October 2012

Addition of a chapter describing how to convert positions in data to offsets, improvements to "How to add and remove flags"
and "Running the HIFI pipeline" chapters, various typos and bug fixes.

Revision 13 24 October 2012

Build 15.0.3244

Major update of "Setting flags interactively for many spectra" section in the "How to add and remove flags" chapter, removal
of references to the old CubeSpectrumAnalysisToolbox, update to mapping browse product description in "Tour of a HIFI
observation context" chapter, improvements to style consistency.

Revision 14 26 November 2012

Updates to "Sideband Deconvolution" chapter explaining how to correct baseline issues in the ssb result and how to export the
ssb result to Class; minor updates to "Running the HIFI pipeline", "Tour of and Observation Context", and "What was done
to my data" chapters to reflect changes in the pipeline, particularly the addition of mkDbsReference; further improvements
to style consistency.

Revision 15 12 December 2012

Fix broken links and missing figures for HIPE 10 release.

Revision 25 January 2013

Addition of On The Fly (OTF) Mapping cookbook.

Revision 16 20 February 2013

Updates to "How to add and remove flags" chapter, "Setting flags interactively for many spectra" section. The task "flagTool"
allows for the editing of rowflags.

Revision 17 15 April 2013

Updates to "Flags in HIFI data" chapter, "Quality Flags" section.

Revision 18 23 April 2013

Updates to "HIFI Baseline Removal" chapter, "FitBaseline Options" section.

Revision 19 26 April 2013

Updates to "Exporting HIFI data to CLASS" chapters.

Revision 20 29 April 2013

Updates to "Standing Wave Removal" chapter.

Revision 21 9 July 2013

Updates to "How to make a spectral cube" and "Exporting HIFI data to CLASS" chapters.

Revision 22 25 September 2013

Minor updates to sections 1.1 (added a figure), 4.2 (doPointing instructions), 5.4 (repipelining with new Auxiliary products),
12.3 (doDeconvolution INFO tables).

Revision 23 9 October 2013

doGridding: added a warning on flux conservation in spectral cubes ; fitBaseline: added a caveat on negative flux.

Revision 24 31 October 2013

Added one new flag in Quality Flag chapter. Added an extra detail in definition of "spur_rejection" in the Deconvolution
chapter.

Revision 25 7 November 2013

In chapter 9. How to add and remove flags, section 9.5, changed the GUI figure for flagTool. In chapter 10, Standing Wave
Removal: added the GUI figure for FitHifiFringe + changed input param to "data". In chapter 11, HIFI Baseline Removal:
changed the GUI figure for FitBaseline + changed input param to "data". In chapter 20, Exporting HIFI data to CLASS,
section 20.1, added a note for HIPE 12 - right-click on variable open hiClass GUI.

Revision 26 21 November 2013

Added details to the "HIFI Auxiliary Data" section of the "Tour of a HIFI ObservationContext" chapter.

Revision 27 27 November 2013

Build 15.0.3244

Added Spectral Scan Cookbook in Chapter 2: HIFI Cookbooks.

Revision 28 28 November 2013

Added Point Mode Frequency Switch Cookbook in Chapter 2: HIFI Cookbooks.

Revision 29 29 November 2013

Added Point Mode Load Chop Cookbook in Chapter 2: HIFI Cookbooks.

Revision 30 12 December 2013

Updated chapter "Standing Wave Removal", section "Electrical Standing Wave correction in HEB bands".

Revision 31 16 January 2014

New updates to chapter "Standing Wave Removal", section "Electrical Standing Wave correction in HEB bands".

Revision 32 21 January 2014

Added Point Mode Position Switch Cookbook in Chapter 2: HIFI Cookbooks.

Revision 33 21 February 2014

Updates to: Chapter 1: update method to import Herschel Data to HIPE. Chapter 11: update method to create a mask. Chapter
13: new syntax to command line for doGridding. Section 20.4: clarify text to create a FITS file.

Revision 34 27 February 2014

Added a note to Chapter 4, Level 1, doOffSubtract. Additional updates to Chapter 13: new syntax to command line for
doGridding.

Revision 35 12 March 2014

Updates: Chapter 2, Position Switch cookbook: improved script for checking OFFs. Chapter 16: Units Conversion - included
LoFrequency description.

Revision 36 4 April 2014

Updates: Chapter 2, extension of OTF mapping cookbook to a general mapping cookbook including DBS raster maps

Revision 37 26 April 2014

Updates: Chapter 17, update to polarPair documentation; Chapter 2, improvements to mapping cookbook.

Revision 38 15 Auguts 2014

Updated "Running the HIFI Pipeline" for HIPE 13 and updated flagTool documentation.

Revision 39 15 September 2014

Update to "Setting flags interactively for many spectra" section in the "How to add and remove flags" chapter - maskTables:
Linemasks and Rowmasks files.

Revision 40 9 October 2014

Added a new chapter "The HIFI line identification tool (identifyLines task)".

Revision 41 12 November 2014

Inclusion of all HIFI-specific mathematical tasks in, and general update of, "Mathematical Operations on Spectra" chapter
and update to the "Sideband Deconvolution" chapter.

Revision 42 25 November 2014

Updates to "Creating a Spectral Cube", "Standing Wave Removal", and "Unit Conversions" chapters for HIPE 13 release.

Revision 43 10 December 2014

Build 15.0.3244

Addition of "Understanding and using HIFI beam information in your data" chapter, further updates to "Unit Conversions"
chapter, instructions for use of pipeline to calculate rms noise in data added to "How to run the HIFI pipeline" chapter.

Revision 44 21 January 2015

Changes in parameters syntax for fitHifiFringe, chapter 'Standing Wave Removal': new syntax - startPeriod, endPeriod,
typicalPeriod, and subBase.

Revision 45 6 February 2015

HIPE 13 release: small updates to "What was Done to My Data", "Understanding and using HIFI beam information in
your data", "Flags in HIFI data", "How to add and remove flags", "Standing Wave Removal", "Sideband Deconvolutions",
"Exporting HIFI data to CLASS", and "How to Make a Spectral Cube" chapters.

Revision 46 6 March 2015

HIPE 13 release: updates to "How to run the HIFI Pipeline" chapter for the usage of the mkRms task and algorithm.

Revision 47 1 June 2015

Updates to "Flags in HIFI data" chapter, "Quality Flags" section.

Revision 48 24 July 2015

Updates to "Flags in HIFI data" chapter: "Quality Flags" section, "Sideband Deconvolution" chapter, and "How to make
a spectral cube" chapter.

Revision 49 27 July 2015

Updates to the cookbook 'Spectral Scan Mode', section on Deconvolution.

Revision 50 28 July 2015

Updates to 'Sending HIFI spectra to VO tools' chapter.

Revision 51 31 August 2015

Updates to "Flags in HIFI data" chapter: "Quality Flags" section ; How to make a spectral cube chapter; Standing wave
Removal chapter; HIFI Baseline Removal chapter.

Revision 52 15 September 2015

Updates to Standing wave Removal and HIFI Baseline Removal chapters - documenting new parameter 'addMedianContin-
uum' and updating the Electric Standing Wave Correction section.

Revision 53 21 September 2015

Addition of a new chapter: "Understanding the uncertainty table information in your data".

Revision 54 26 October 2015

Updating the pipeline flow diagrams, and minor fixes to some texts and tables.

Revision 55 3 November 2015

Updates to "Flags in HIFI data" chapter: "Quality Flags" section.

Revision 56 18 November 2015

Updates to "Understanding the uncertainty table information in your data", and to "Running the HIFI Pipeline" chapters.

Revision 57 20 November 2015

Updates to "The HIFI line identification tool" chapter.

Revision 58 24 November 2015

Small update to "The HIFI line identification tool" chapter.

Revision 59 4 December 2015

Build 15.0.3244

Added a warning to "Running the HIFI pipeline" chapter, section "How to run the HIFI pipeline".

Revision 60 4 February 2016

Minor updates to chapter "Tour of a HIFI ObservationContext", section "HIFI Calibration Data".

Revision 61 29 February 2016

On the behaviour of the SPUR_WARNING flag: minor updates to the chapter "Flags in the HIFI data", section "Channel
flags" ; and to the chapter "HIFI Baseline Removal", section "Running FitBaseline".

Build 15.0.3244

Table of Contents
1. HIFI Launch Pad ... 1

1.1. Introduction .. 1
1.1.1. How to get your data .. 1
1.1.2. Looking at your data ... 3
1.1.3. Re-pipelining Observations ... 4
1.1.4. Common data reduction steps ... 5
1.1.5. Dealing with observing mode specific issues ... 6
1.1.6. Exporting data .. 6

2. HIFI Cookbooks .. 8
2.1. Introduction .. 8
2.2. Single Point Mode: Dual Beam Switch ... 8

2.2.1. Introduction ... 8
2.2.2. How Single Point Mode DBS observations are taken 9
2.2.3. Inspecting Single Point Mode DBS data ... 9
2.2.4. Single Point Mode DBS Data Reduction ... 11

2.3. Single Point Mode: Position Switch .. 16
2.3.1. Introduction ... 16
2.3.2. How Single Point Mode Position Switch observations are taken 17
2.3.3. Inspecting Single Point Mode Position Switch data 17
2.3.4. Single Point Mode Position Switch Data Reduction 19

2.4. Single Point Mode: Frequency Switch ... 27
2.4.1. Introduction ... 27
2.4.2. How Single Point Mode Frequency Switch observations are taken 27
2.4.3. Inspecting Single Point Mode Frequency Switch data 30
2.4.4. Single Point Mode Frequency Switch Data Reduction 30

2.5. Single Point Mode: Load Chop .. 37
2.5.1. Introduction ... 37
2.5.2. How Single Point Mode Load Chop observations are taken 38
2.5.3. Inspecting Single Point Mode Load Chop data ... 38
2.5.4. Single Point Mode Load Chop Data Reduction ... 41

2.6. Spectral Map Mode ... 50
2.6.1. Introduction ... 51
2.6.2. How Spectral Map Mode observations are taken 51
2.6.3. Inspecting Spectral Map Mode data .. 54
2.6.4. Spectral Map Mode Data Reduction ... 61

2.7. Spectral Scan Mode ... 64
2.7.1. Introduction ... 64
2.7.2. How Spectral Scan Mode observations are taken 64
2.7.3. Inspecting Spectral Scan Mode data ... 67
2.7.4. Spectral Scan Mode Data Reduction ... 69

3. Tour of a HIFI ObservationContext ... 76
3.1. Data Primer .. 76

3.1.1. Data frames ... 76
3.1.2. Data Products ... 76
3.1.3. Contexts .. 76

3.2. HIFI Science Data ... 77
3.3. HIFI Calibration Data .. 78
3.4. HIFI Browse Products .. 82
3.5. HIFI Auxiliary Data ... 83
3.6. HIFI Quality Context ... 87
3.7. HIFI TrendAnalysis Context .. 87

4. What was done to my data? ... 89
4.1. Introduction .. 89
4.2. Level 0 .. 90
4.3. Level 0.5 ... 93

vii

The HIFI Data Reduction Guide Build 15.0.3244

4.4. Level 1 .. 94
4.5. Level 2 .. 96
4.6. Level 2.5 ... 98

5. Running the HIFI pipeline ... 100
5.1. Introduction to the Pipeline ... 100
5.2. How to run the HIFI Pipeline .. 101
5.3. How to process with new (or different) calibration data 105
5.4. Modifying the pipeline ... 108

5.4.1. Using the interactive Level 2.5 pipeline ... 110
5.4.2. Customising the Level 1 and 2 pipelines .. 113
5.4.3. Editing the pipeline algorithms .. 114
5.4.4. Running the Pipeline step by step ... 114

6. Viewing Spectra ... 116
6.1. Introduction .. 116
6.2. How to look at HIFI spectral data ... 116

6.2.1. Spectra .. 116
6.2.2. Spectral Cubes .. 118
6.2.3. HifiTimelineProducts (HTP) .. 119

6.3. Scripted plotting of spectral data with PlotXY ... 122
6.4. Scripted plotting of spectral data with SpectrumPlot ... 123

7. Converting positions in data to offsets ... 126
7.1. Introduction .. 126
7.2. Using the doOffset task .. 126

8. Understanding and using HIFI beam information in your data .. 128
8.1. Beam Metadata ... 128
8.2. Tools to obtain and use the HIFI beam model ... 129

9. Understanding the uncertainty table information in your data ... 130
9.1. Uncertainty model .. 130
9.2. Flux calibration uncertainty budget ... 130

10. Flags in HIFI data .. 132
10.1. Introduction to flags ... 132
10.2. Channel flags .. 132
10.3. Column rowflags .. 133
10.4. Quality Flags ... 135

11. How to add and remove flags ... 144
11.1. Introduction ... 144
11.2. How to understand what flags are in your data .. 144
11.3. Safe Usage of Flags ... 146
11.4. Setting and Clearing Flags with SpectrumExplorer ... 146
11.5. Setting flags interactively for many spectra ... 148
11.6. Setting and Clearing Flags with command line tools ... 157
11.7. Scripting Techniques for bulk clearing of flags .. 159
11.8. Scripting techniques for setting row flags ... 160

12. Standing Wave Removal .. 162
12.1. Introduction to Standing Wave Removal .. 162
12.2. Modified Passband Calibration Method .. 162
12.3. Sine Wave Fitting Method (fitHifiFringe) ... 162

12.3.1. Introduction to fitHifiFringe .. 162
12.3.2. Running fitHifiFringe ... 162
12.3.3. Example of using fitHifiFringe ... 167

12.4. Electrical Standing Wave correction in HEB bands .. 171
12.4.1. Introduction .. 171
12.4.2. Catalogue ... 171
12.4.3. Spline Model .. 172
12.4.4. Removal ... 174
12.4.5. Demonstration ... 177

13. HIFI Baseline Removal ... 182
13.1. Introduction ... 182

viii

The HIFI Data Reduction Guide Build 15.0.3244

13.2. The FitHifiFringe Task ... 182
13.3. The FitBaseline Task .. 182

13.3.1. Introduction to FitBaseline .. 182
13.3.2. Running FitBaseline ... 183
13.3.3. Re-running FitBaseline ... 184
13.3.4. FitBaseline Options .. 185
13.3.5. Caveats .. 186

14. Sideband Deconvolution .. 188
14.1. Introduction to doDeconvolution ... 188
14.2. Basic strategy for running the deconvolution tool ... 190
14.3. Viewing deconvolution results .. 195
14.4. Exporting deconvolution results to Class .. 197
14.5. Advanced settings and diagnostic functions ... 197

14.5.1. Advanced methods ... 197
14.5.2. Diagnostic functions ... 199

15. How to make a spectral cube .. 204
15.1. Introduction to doGridding ... 204
15.2. doGridding Summary .. 204
15.3. Using doGridding... .. 209

15.3.1. ...to change beam, pixel, and map size ... 209
15.3.2. ...to make cubes of combined H- and V- polarisation 212
15.3.3. ...to make cubes for Solar System Objects .. 212
15.3.4. ...to make cubes more efficiently (limiting data input) 213
15.3.5. ...to make a rotated map or use a different WCS 214
15.3.6. ...with a different convolution .. 214
15.3.7. ...to specify the map centre .. 216
15.3.8. ...with selected data types .. 217
15.3.9. ...to deal with NaNs ... 218

15.4. doGridding in Detail ... 218
15.4.1. Particulars of Convolution ... 218
15.4.2. Using the Gridding task with the Spectrum Toolbox 220

16. Undoing the application of sideband gains .. 222
16.1. Introduction ... 222
16.2. Using undoSidebandGain ... 222

17. Mathematical Operations on Spectra .. 223
17.1. Introduction ... 223
17.2. Spectrum Toolbox HIFI Primer .. 223

18. Unit conversions ... 227
18.1. Converting to velocity and other frequency scales or frames 227

18.1.1. Changing frequency scale to USB, LSB, IF or velocity 227
18.1.2. Use of the Local Oscillator (LO) Frequency ... 228
18.1.3. Changing frequency rest frame with doVelocityCorrection 230
18.1.4. The meaning of velocities found in data and metadata 230

18.2. Flux conversions .. 231
19. Combining H- and V-polarisation Spectra ... 237

19.1. Introduction ... 237
19.2. Using the polarPairs task ... 237

20. Fitting Spectra .. 239
21. The HIFI line identification tool .. 240

21.1. Introduction ... 240
21.2. Basic Usage .. 240
21.3. Advanced Usage .. 244
21.4. A guided tour .. 245
21.5. The exportLines Task ... 250
21.6. Line assignment: the identifyLinesCatalog task .. 250

22. Making Publication quality plots ... 252
23. Exporting HIFI data to CLASS ... 256

23.1. Processing version from HIPE 12 onwards: direct FITS reading 256

ix

The HIFI Data Reduction Guide Build 15.0.3244

23.2. Processing version earlier than HIPE 12: the hiClass task 257
23.2.1. Introduction to hiClass .. 257
23.2.2. hiClass examples ... 259
23.2.3. How to read HIFI data in CLASS ... 262
23.2.4. Exporting the results of deconvolution to Class 263

24. Sending HIFI spectra to VO tools .. 265
25. Reference Frames in HIFI data ... 268

25.1. Introduction ... 268
25.1.1. HSO Frame .. 268
25.1.2. SSBC Frame ... 268
25.1.3. LSR Frame ... 269
25.1.4. Source (nonSSO) Frame ... 269
25.1.5. Source (SSO) Frame .. 270

26. Relative performance of the HIFI spectrometers ... 271
27. Dealing with memory issues and slow performance. ... 272

x

Build 15.0.3244

List of Figures
1.1. HSA Log-in and Herschel Science Archive User Interface from menu 1
1.2. Herschel Science Archive User Interface from button .. 2
1.3. Importing data into HIPE from a tar file ... 3
2.1. HIPE menu of useful scripts ... 8
2.2. DBS observation ... 9
2.3. Getting to the Level 2 spectra .. 10
2.4. The summary table .. 12
2.5. Emission in chop position ... 14
2.6. Emission correction for 1342190183 WBS-H-USB: (ON in green, OFF in red, and
ON_corrected is blue) .. 15
2.7. Correcting for standing waves ... 16
2.8. Position Switch observation timeline ... 17
2.9. Summary ... 18
2.10. BrowseImageProduct .. 18
2.11. Level 1 data summary for HRS .. 20
2.12. Level 1 data summary for WBS ... 20
2.13. Level 1 spectra for HRS. The selected spectrum is from the last OFF of the first se-
quence of OFF-ON-ON-OFF. .. 21
2.14. Loading the Level 1 WBS product into the Spectrum Explorer 21
2.15. The default view of the Level 1 WBS product in Spectrum Explorer 22
2.16. A short tour of what is seen in the HIFI "selection panel". Note the time flow where sub-
bands can be individually viewed. Double clicking the buttons toggles the spectrum to be visi-
ble or not. Double clicking "ALL" will show all the spectra (which at this stage will look quite
the mess). ... 22
2.17. Pressing the "Grid" button will show thumbnail plots of all the spectra. Choosing the
"Location" pulldown will place a "+" at the position of each integration, the "Raster" will
show thumbnails at each position taken. .. 23
2.18. Level 2 WBS-H-USB SpectrumDataset. ... 23
2.19. Level 2 WBS-H-USB SpectrumDataset of 1342252113. Note the strong curvature with-
in subbands. .. 25
2.20. Level 2 WBS-H-USB SpectrumDataset of 1342252113 after baseline correction. 25
2.21. Load Calibrated OFF for Obsid 1342252113 WBS-H-LSB. These will often display very
strong standing waves. ... 26
2.22. Defringed OFF for Obsid 1342252113 WBS-H-LSB. No noticeable emission is present
but platforming should be corrected. ... 27
2.23. Example of a FSW observation in Obsid 1342180473. Note the co-existence of positive
and negative features belonging to the respective LO1 and LO2 tunings. Data are shown in an
Upper Sideband (USB) scale. .. 28
2.24. Sketch illustrating the observing sequence considered in Frequency Switching with a
Reference. Observing blocks are labeled as in the legend showed at the bottom right. 28
2.25. Same as Figure 2.23 for a Frequency Switching observation where no Reference posi-
tion was taken - Obsid 1342200897. ... 29
2.26. Same as Figure 2.23 for a Frequency Switching observation where no Reference posi-
tion was taken - Obsid 1342195094. ... 29
2.27. Same as Figure 2.23 for a Frequency Switching observation in band 6b (Obsid
1342180813), highlighting the presence of Electrical Standing Waves. 30
2.28. Observation context of a FSW observation, and summary table at Level 1 (only partial
here). ... 31
2.29. Illustration of the relative positions of the respective LO1 (positive component) and LO2
(negative component) tuning lines for positive and negative frequency throws, and lines in ei-
ther the LSB or USB. In all cases, the frequency scale assumed here is USB. Opposite direc-
tion will apply to data scaled in the LSB. .. 32
2.30. Line sideband assignment after the folding. Upper panel: USB scale spectrum. Lower
panel: LSB scale spectrum. ... 33

xi

The HIFI Data Reduction Guide Build 15.0.3244

2.31. Defringing correction in a FSW observation with no Reference (Obsid 1342248900).
Four standing waves components are considered here. ... 34
2.32. Spectrum before and after correction. The relatively strong line (CO 5-4) here is masked
in both its positive and negative phases (frequency throw of 94 MHz). 35
2.33. Baseline correction in Obsid 1342248900, after applying the defringing shown in Fig-
ure 2.32. ... 36
2.34. Example of Reference Spectrum for Obsid 1342180473. No particular contamination is
observed here. Note the poorer baseline quality compared to the ON-target double-difference
spectrum from Figure 2.23. ... 37
2.35. Load Chop observations. ... 38
2.36. Summary .. 39
2.37. BrowseImageProduct .. 40
2.38. Level 0 MetaData .. 40
2.39. Level 2 HrsSpectrumDataset opened with Spectrum Explorer. 41
2.40. Level 1 data summary for HRS. ... 42
2.41. Level 1 data summary for WBS. .. 42
2.42. Level 1 HRS SpectrumDataset. .. 43
2.43. Level 2 WBS SpectrumDataset. ... 43
2.44. Smoothing width applied on the OFF spectra depending on the frequency. 44
2.45. Customise pipeline with Level 1 task mkOffSmooth. ... 45
2.46. OFF (sky reference) spectra. .. 45
2.47. FitHifiFringe task menu. ... 46
2.48. OFF (sky reference) spectrum output of the fitHifiFringe task. 46
2.49. Example of OFF contamination in 1342190778 (OFF spectrum in black, ON spectrum in
red, ON-OFF in blue). .. 47
2.50. WBS-H-USB Level 2 spectrum. ... 48
2.51. Zoom on WBS-H-USB Level 2 spectrum. .. 49
2.52. FitHifiFringe task menu. ... 49
2.53. Zoom on WBS-H-USB Level 2 spectrum after fitHifiFringe. 49
2.54. WBS-H-USB Level 2 spectrum for a Load Chop observations with no reference. 50
2.55. Same spectrum after having applied fitHifiFringe with n = 1. 50
2.56. Same spectrum after having applied fitHifiFringe with n = 3. 50
2.57. Positions of read-outs of science data in an OTF (position switch) observation 53
2.58. Positions of read-outs of science data in an OTF (load chop) observation, taken at 90
degree position angle ... 53
2.59. OTF map 1342248770 viewed in Observation Viewer .. 55
2.60. A quick look at a spectral cube in the Spectrum Explorer .. 56
2.61. The spectra in the Level 2 HTP WBS-H-USB in the OTF observation plotted in Spec-
trum Explorer, the extent of baseline drift in the observation can be seen. 58
2.62. The summary table for the WBS-H at Level 1 in the OTF observation. 59
2.63. The location option in Spectrum Explorer's raster mode for the WBS-H at Level 1. Hov-
ering the mouse cursor over the three points to the bottom right (see inset), we see that these
are the spectra in dataset 1 (rectangled in red). ... 59
2.64. The location option in Spectrum Explorer's raster mode for the WBS-H at Level 1,
zooming in (twice) on the map region. .. 60
2.65. The summary table for the WBS-H at Level 1 in the DBS Raster observation. 61
2.66. Contamination due to emission in chop position in the DBS Raster observation
1342205481. ... 63
2.67. Example of WBS spectra collected over a mini-scan in band 1a between LO=492.7 GHz
and LO=493.9 GHz (8 settings, Obsid 1342191505). Each colour corresponds to a different
LO tuning. The sky frequency scale used here is the LSB one. Those lines falling at the same
sky frequency at each tuning belong to the LSB (e.g. at 489.75 GHz), while those falling at
different frequency at various tuning belong to the USB. .. 65
2.68. Sketch illustrating the observing sequence considered in Spectral Scans combined with
DBS. Observing blocks are labeled as in the legend showed at the bottom right. 66
2.69. Same as in Figure 2.68 for Spectral Scans with a frequency grouping of 3 combined with
DBS. The three shades of green are used here to represent the three different LO tunings com-
bined within one single calibration block. .. 67

xii

The HIFI Data Reduction Guide Build 15.0.3244

2.70. Observation context of a Spectral Scan, and summary table at Level 1 (here only partial) ... 67
2.71. Observation context of a Spectral Data, and example spectra from the Level 2 products.
Note the residual standing wave in those data. .. 68
2.72. Level 2.5 deconvolved spectra for the WBS-H data in Obsid 1342191505. Note the
residual standing wave resulting from imperfect data quality at the Level 2. Note also the gap
between the lower and upper side band sky frequency ranges due to the limited LO tuning
coverage. .. 69
2.73. Illustration of an Electrical Standing Wave in a Spectral Scan (Obsid 1342244537) at
two different LO tunings. The data are here shown at Level 1 on an IF scale. As can be seen a
continuum offset is usually also associated to the data distortion. ... 70
2.74. Output of the deconvolution at three levels of data cleaning in Obsid 1342190099. The
top panel uses un-corrected data at Level 2, where spurs were still present and un-flagged
(note the presence of negative ghosts as well). The middle panel uses data with spurs flagged
but residual baseline structure still present. The lower panel uses data with the fringes and
baselines corrected. .. 71
2.75. Example of LO settling time issues in part of a Spectral Scan in band 1a (Obsid
1342232978). This plot shows the collection of all WBS-H subband data collected at Level 2
on an USB scale. The settling time issues occur here at USB frequency around 542 GHz. 72
2.76. Spectral Ghost artefacts from the deconvolution of a strong line (standard Level 2.5
products from WBS-H in Obsid 1342215923). The strong 12CO line lies at 576.5 GHz (70 K)
and injects negative signal in the deconvolution in the range 561-564 GHz. 73
2.77. See Figure 2.78 caption ... 74
2.78. Spectral Scan FSW data in Obsid 1342190186. The upper panel (Figure 2.77) shows
part of the Level 2 spectra from the WBS-H in the USB scale. The water line at 557 GHz
(from the LSB) can be seen on the lower end of the spectrum, together with the 12CO (5-4)
seen both in the USB and LSB (upper end of the spectrum). The lower panel () shows the out-
come of the deconvolution algorithm (on baseline-corrected Level 2 data) around the water
and 12CO lines. Note the ghost features associated with the negative phase of the FSW and
separated by the frequency throw. .. 74
2.79. Example of Reference Spectrum at a given LO tuning for Obsid 1342191505. Since the
spectrum is made of a single difference of two OFF spectra taken at different chopper posi-
tions, the optical standing waves are not as optimally corrected as in a double-difference cali-
bration. .. 75
4.1. Level 0 pipeline flow diagram ... 90
4.2. HRS pipeline flow diagram ... 93
4.3. WBS pipeline flow diagram .. 93
4.4. Level 1 pipeline flow diagram ... 94
4.5. Level 2 pipeline flow diagram ... 96
5.1. HIFI pipeline task: default view ... 101
5.2. Checking the version of the pipeline used at the HSA .. 105
5.3. Checking the calibration version used prior to HIPE 8 (top) and from HIPE 8 (bottom). 106
5.4. Using the Level 2.5 Interactive Pipeline GUI .. 111
6.1. Opening the Spectrum Explorer on a HIFI Level 2 spectrum .. 117
6.2. Opening the HifiTool in Spectrum Explorer on a HIFI Level 2 spectrum 118
6.3. Opening the Spectrum Explorer on a HIFI spectral cube ... 119
6.4. Opening the Spectrum Explorer on a HTP: comparing the Data Tree and Data Selection
Panel .. 120
6.5. Using the location option of the Spectrum Explorer mosaic to see the positions of spectra
in a map ... 122
6.6. Plot produced with SpectrumPlot .. 125
7.1. Absolute positions .. 127
7.2. Relative positions, in a coordinate system co-moving with the Solar-System target 127
9.1. Table containing the uncertainty model (values are in percentages) (for the V polarisation
in this example) ... 130
9.2. Table containing the uncertainty budget (values are in percentages) (for the V polarisation
in this example) ... 131
10.1. Row flags in a HIFI spectrum .. 135
10.2. Example of a Quality flag Report ... 136

xiii

The HIFI Data Reduction Guide Build 15.0.3244

11.1. To view channel flags in your spectrum, click on the blue flag icon (highlighted by the
red oval) ... 144
11.2. To view channel flags in your spectrum by using a pointing device such as a touchpad
or a mouse .. 145
11.3. The region flagged is colour-coded ... 145
11.4. Data point selection from the Spectrum Explorer button bar (highlighted in the red cir-
cle) .. 146
11.5. Selecting a region of the spectrum .. 147
11.6. Results from flagging the selected region ... 147
11.7. FlagTool task GUI ... 149
11.8. FlagTool datasets table and plot showing two flagged regions (coloured 'curtains') using
two different flags .. 150
11.9. FlagTool messages in the console ... 151
11.10. FlagTool Linemasks table .. 152
11.11. flagTool using fitHifiFringe as an option .. 156
11.12. flagTool using fitBaseline as an option ... 156
11.13. The flagged subband is colour-coded in this example .. 159
12.1. FitHifiFringe GUI .. 163
12.2. Fitted sine waves, baseline, line mask, channel flags, and output data 164
12.3. Table containing information resulting from the fitting .. 165
12.4. Example of a typical period (at about 100 MHz) in a Load Chop observation in band 3A
(taken without a sky reference) .. 167
12.5. Sine wave fitted using only one sine wave (i.e. nfringes=1) .. 168
12.6. Resulting fit showing the before and after spectra .. 169
12.7. Resulting fit using the optimum fitHifiFringe parameters 170
12.8. Example of a WBS HEB Catalogue .. 172
12.9. WBS Band 6a and 6 b (H and V) ... 173
12.10. WBS Band 7a and 7 b (H and V) .. 174
12.11. RDor Band 6a V-polarisation ... 174
12.12. Example of a spectrum with ESW (left panel), and a spectrum with no ESW (right pan-
el) ... 175
12.13. Results after correction .. 175
12.14. Example of a spectrum with significant ESW (upper spectrum) and a spectrum with
doubtful ESW (lower spectrum) ... 176
12.15. Results of the spectra going through the procedure ... 176
12.16. Results after correction .. 177
12.17. Uncorrected pipeline output .. 179
12.18. Final spectra after running the script .. 179
12.19. HebCorrection output table with default input parameters .. 180
12.20. HebCorrect output table with exclude parameter ... 180
13.1. FitBaseline GUI ... 183
13.2. Original and Residual plots produced by fitBaseline ... 183
13.3. Example of a Linemasks table .. 184
14.1. Folding of the upper and lower sidebands ... 188
14.2. Example of three different DSB LO settings being deconvolved 189
14.3. Dataset before cleanup .. 191
14.4. SSB result after deconvolution ... 191
14.5. Bad scans and channels stored in the SSB metadata ... 192
14.6. Deconvolution GUI .. 195
14.7. HIPE screenshot .. 196
14.8. Redundancy Histogram Plot ... 197
14.9. Observed vs. Modelled .. 200
14.10. Iterations progression .. 201
14.11. Chi-square vs. Iteration .. 202
15.1. The doGridding GUI .. 206
15.2. Gaussian Filter .. 219
18.1. Beam coupling computation. .. 234
21.1. IdentifyLines task GUI .. 241

xiv

The HIFI Data Reduction Guide Build 15.0.3244

21.2. The spectrum1d of Orion South in band 1a ... 241
21.3. Plot example for identifyLines .. 247
21.4. Plot example for identifyLines with specifying an index number 248
22.1. Plot example produced by the provided script ... 252
22.2. Same result as above but if plotting with Spectrum Explorer 255
23.1. HiClass task GUI ... 259

xv

Build 15.0.3244

Chapter 1. HIFI Launch Pad
Last updated 3 February, 2014.

1.1. Introduction
Welcome to the HIFI Launch Pad!

The Launch Pad is intended to get you off the ground and into HIFI data reduction quickly. We sum-
marise how you get your data, quickly inspect it, and re-pipeline it (if needed) and point you toward
information in the rest of the HIFI Data Reduction Guide and the Herschel Data Analysis Guide about
common aspects of HIFI data reduction and analysis. More detailed information regarding specific
observing modes can be found in the cookbooks in the following chapters.

If you are new to HIPE it is recommended that you also look at the Quick Start Guide and the HIPE
Owners Guide.

1.1.1. How to get your data
Herschel data are stored in ESA’s Herschel Science Archive (HSA):

• You will need to log into the HSA using the "HSA Log-in" button in the bottom status bar of HIPE
(see Figure 1.1) (for more details, see Logging into the HSA)

• Herschel data are identified with a unique number known as the Observation ID (ObsID) (e.g.
1342212115)

• You can query the HSA from within HIPE using the Data Access perspective, from the Window
→ Show Perspectives menu (see Figure 1.1).

• You can also access the Herschel Science Archive by selecting (left-click) the HSA User Interface
button (see Figure 1.2).

• HIPE expects the data in the form of a pool. A pool is like a database, with observations organised
in an Observation Context, containing links to all data, calibration, and supplementary files.

Figure 1.1. HSA Log-in and Herschel Science Archive User Interface from menu

1

HIFI Launch Pad Build 15.0.3244

Figure 1.2. Herschel Science Archive User Interface from button

...from the HSA

There are several ways to get your data from the HSA, they are described in detail in the first chapter
of the Herschel Data Analysis Guide (DAG) and summarised here.

1. To get multiple observations, download a tar file (not a pool) using the shopping basket (see details
in the DAG first chapter)

2. To get one observation you can directly access the HSA:

• via the command line

obs=getObservation(ObsID, useHsa=True)

example

obs=getObservation(1342212115, useHsa=True)

Note that if you are not logged into HSA, a login window will pop-up, allowing you to log in.

If you find that you have trouble obtaining the latest version of your observation it may be that you
have it cached on your disk. In that case, try:

 obs=getObservation(ObsID, useHsa=True, useCache=False)

• or you can use the “Send to external application” in the HSA User Interface.

If you directly access the HSA the data is not automatically saved to your disk and you should imme-
diately save your observation with:

saveObservation(obs, poolName="myPool", saveCalTree=True)

...from disk

Once the data are saved on your hard disk, the Observation Context can be read into HIPE using:

myobs=getObservation(ObsID, poolName=”myPool”)

2

HIFI Launch Pad Build 15.0.3244

If you try to access this pool in the same HIPE session in which you saved it, you must update your
list of local pools before HIPE will be able to find it. To do this, run the following command before
running getObservation:

PoolManager.getInstance().propertyChange(java.beans.PropertyChangeEvent \
(PoolCreatorFactory.getCreators().get("lstore"), \
LocalStoreFactory.LOCAL_POOL_DEFINITIONS_PROP, None, None))

Alternatively, you can press the Refesh button in Storages and Pools in the HIPE Preferences.

...from a tar file

If your data came from a tar file (multiple observations download), uncompress and untar the file,
then, from HIPE view Navigator (see HIPE Owners Guide for more details), locate the folder on your
disk, and open the content of the folder by a left-click on the plus sign. You will see folders associated
to all your observations, an auxiliary folder, a calibration folder, and all your obsIDs with a small
image on the left-side of the obsID's name. To import an obsID into HIPE, just double-left-click on
the file with an image (see Figure 1.3). The ObservationContext of that obsID will then load in the
HIPE view Variables, under Observations.

Note that it is also possible to uncompress and untar your file directly from the HIPE view Navigator
- once you locate your tar file, just double-left-click on the .tar.gz file. A task called decompress will
open and allow you to unpack you tar file.

Similarly to data accessed from HSA, you can save your observation in a localPool once it is uppacked:

obsID located in the HIPE view Variables, under Observations
saveObservation(obsID, poolName="myPool")

Figure 1.3. Importing data into HIPE from a tar file

1.1.2. Looking at your data
...A quick look

The best way to quickly inspect your data is to look at the Browse Product in the Observation Sum-
mary, which you can click on to enlarge. The browse products show:

• Point Mode observations: Two plots of Level 2 spectra with the H-polarisation to the left and the
V-polarisation to the right. The upper and lower axes of the plots show the LSB and USB frequency

3

HIFI Launch Pad Build 15.0.3244

scale, respectively. The AOR label and observation number are used to title the plot. The observing
mode, source name, requested RA and dec are below the plot title.

• Mapping observations: The map average spectra for the WBS-H (top) and WBS-V (bottom) is
plotted per subband beside the integrated map of that subband. The upper and lower axes of the
spectral plots show the LSB and USB frequency scale, respectively. The plots are arranged in order
of increasing frequency. The integrated maps created with no correction done for any baseline is-
sues. The x- and y- axes show the RA and declination, respectively, while the auxiliary axes show
pixel coordinates. The colour scale used for the image is 'heat' and the intensity scale used is 'ramp'
so the strongest emission in the map appears white.

The AOR label and observation number are used to title the browse product. The observing mode,
source name, requested RA and dec are below the plot title.

• Spectral Scans: The single sideband solution after deconvolution of the Level 2 WBS spectra. No
baseline correction has been done prior to deconvolution. The H-polarisation is shown to the left
and the V-polarisation to the right. The AOR label and observation number are used to title the plot.
The observing mode, source name, requested RA and dec are below the plot title.

...A deeper look

You can navigate through the Observation Context using the ObservationViewer, see Chapter 3 for
more information about the contents of the Observation Context.

SpectrumExplorer is the main tool to plot and inspect spectra.

• It can be started by right mouse clicking on a SpectrumDataset or product (e.g. HTP) and selecting
Open With → Spectrum Explorer. When viewing the contents of an HTP you must click in the box
next to the variable name to plot the spectra.

• The selector panel appears at the bottom, with a row for each scan and a box (initially grey) for
each subband. Clicking on each square will plot the spectrum for that subband, double-clicking will
remove the plot.

• Tooltips describe the actions possible from the button bar above the plot.

1.1.3. Re-pipelining Observations
When should I reprocess my data?

The HIFI ICC recommends that your data should ideally be processed using the HIPE version that you
are using for data analysis to ensure that you do not run into data-software compatibility problems.
However, it is not anticipated that you will have problems if you keep within one HIPE version, e.g.
perform data analysis in HIPE 13 on data that was pipelined with HIPE 12. In some cases we may
recommend that certain observing modes are processed with a particular HIPE version, see the HIFI
Instrument and Calibration page .

How do I reprocess my data?

To reprocess (re-run the pipeline) data you can find hifiPipeline in the Applicable Tasks menu
when you click on an Observation Context in the Variables View. Select the spectrometers and the
levels between which you want to reprocess for and hit accept. Or, in the command line:

Create a new Observation Context called newobs by reprocessing all levels of the
 Observation Context “obs”
newobs = hifiPipeline(obs = obs, save=False)
#
To just reprocess from Level 1 to Level 2, and only for the HRS
newobs = hifiPipeline(obs = obs, fromLevel=1, upToLevel=2, apids = ['HRS-H', 'HRS-
V'], save=False)

4

HIFI Launch Pad Build 15.0.3244

See Chapter 5 for more details.

How do I use newer calibration data?

To re-pipeline data using the latest calibration version available from the HSA, rather than the cali-
bration data that was shipped with your data, you must first configure the pipeline to go to the HSA
for the calibration data. To do so, first run the configureHifiPipeline task:

calconfig = configureHifiPipeline(useHsa=True)

You can tell the pipeline to use the newer calibration by checking the cal box in the GUI and by
passing the variable calconfig to the palStore bullet, before running the pipeline.

In the command line this is all done as follows:

calconfig = configureHifiPipeline(useHsa=True)
obs_1 = hifiPipeline(obs=obs, cal=1, palStore=calconfig)

See Section 5.3 for more details.

1.1.4. Common data reduction steps
1.1.4.1. Correcting for Standing Waves

• Standing waves can be fitted with sine waves and subtracted using FitHifiFringe, which ap-
pears as an applicable task when one clicks on the Observation Context variable.

• On the command line, it is typically done as follows:

fitHifiFringe(data=obs,nfringes=2,product='WBS-V-LSB')

• See Chapter 12 for more details.

1.1.4.2. Correcting for Baseline Drifts
• Baselines can be easily removed using the fitBaseline task. To create a new observation con-

text with baseline corrected Level 2 products, use:

obs_fit = fitBaseline(data=obs)

and follow the instructions that appear in the console. For more information, see Section 13.3

1.1.4.3. Spectrum Arithmetics and Manipulation
When a spectrum is selected in the Variables View, HIPE becomes the spectrum toolbox; a range of
tools for performing spectral arithmetics and manipulation become automatically available.

• View a spectrum in Spectrum Explorer and click on the crossed hammer and spanner icon in the
toolbar above, the toolbox will appear to the right of the plot. Select the task you wish to perform
from the drop-down menu and complete the GUI form.

• The spectrum tasks available in the toolbox can also be used in scripts or in the command line. The
simplest way to find the syntax is to copy the command from the console after using the GUI. Here,
we give a couple of examples.

5

HIFI Launch Pad Build 15.0.3244

#
First extract a spectrum from the Observation Context, for example the Level 2
 WBS-H-USB
spectrum=obs.refs["level2"].product.refs["WBS-H-
USB"].product.refs["box_001"].product["0001"]
#
#Stitch subbands together:
StitchedSpectrum = stitch(ds=spectrum, variant="crossoverPoints",
 edgeTolerance=0.01,stepsize=0.0)
#
#extract a range in frequency (the ranges are given in the units in the spectrum)
ExtractedSpectrum = extract(ds=spectrum,ranges=[(555.0, 558.7)])

The use of all the tasks is described generally in Spectrum Toolbox of the Herschel Data Analysis
Guide where you will find more information. Some HIFI-specific examples can also be found in
Chapter 17.

1.1.4.4. Fitting spectra
Spectral features can be fitted and removed using the SpectrumFitterGUI , which is available from the
Spectrum Explorer. The tool can be used to interactively fit a single spectrum, or in automatic mode
on multiple spectra using a previously defined model.

• To interactively fit a spectrum, extract the region of interest or stitch all the subbands of the data
together so that you have only one segment of data (this is one box in the Spectrum Explorer selector
panel).

1.1.5. Dealing with observing mode specific issues
Interactive tasks and data issues that are particular to given observing modes are described in a series
of cookbooks in Chapter 2:

• Section 2.2: Single Point Mode: Dual Beam Switch

• Section 2.3: Single Point Mode: Position Switch (included are some discussion on Platforming and
Off-Emission)

• Section 2.4: Single Point Mode: Frequency Switch

• Section 2.5: Single Point Mode: Load Chop

• Section 2.6: Spectral Map Mode

• Section 2.7: Spectral Scan Mode

1.1.6. Exporting data
1.1.6.1. Exporting Data to CLASS

• HIFI data can be exported to CLASS readable FITS files using the HiClass task. You may wish
to stitch subbands together before exporting to CLASS.

Export one dataset to a FITS file:
 HiClassTask()(data = myspectra, fileName = 'myspectra.fits')
#
Export one HIFI timeline product to a FITS file:
 HiClassTask()(data = myhtp, fileName = 'myhtp.fits')
Export the Level 2 spectra to a FITS file by supplying the ObservationContxt:
 HiClassTask()(data = obs, fileName = 'myl2spectra.fits')

The FITS file is written in the directory you started HIPE from unless you specify a path.

6

HIFI Launch Pad Build 15.0.3244

• To read the FITS file into CLASS:

 file out MyHIFISpectra.hifi mul
 fits read MyHIFISpectra.fits
#
Now you have a CLASS file named MyHIFISpectra.hifi (you can use whatever you
 want as an
extension) that you can access like you always do in CLASS:
#
 file in MyHIFISpectra.hifi
 find
 get first
 set unit f i
 device image white
 plot

• Note that you need to use a recent version of CLASS, i.e. the version from April 2010 onwards.

• See Chapter 23 for detailed information and examples on how to use the task.

1.1.6.2. Exporting Data to FITS
Use the simpleFitsWriter to save spectra to FITS file.

simpleFitsWriter(product=spectrum, file='spectrum.fits')

1.1.6.3. Exporting Data to ASCII
Use the exportSpectrumToAscii task available from the Spectrum Toolbox to save spectra to text file.

exportSpectrumToAscii(ds=spectrum, file='spectrum.txt')

7

Build 15.0.3244

Chapter 2. HIFI Cookbooks
Last updated: 2 June, 2015

2.1. Introduction
The following cookbooks summarise important information on usage of all aspects of HIFI data ac-
quisition and reduction for all observing modes. You will find a summary of how observations were
carried out for a given mode, an overview of the Observation Context, from calibration to Level 2.5,
and a description of the data reduction workflow including post-processing recipes to e.g. inspect
emission in the OFF positions.

Although much care was taken to provide complete details for each mode, it is worth consulting all
cookbooks in case some details were not repeated in every cookbooks.

To complement the cookbooks, you have access to some useful scripts (containing detailed comments)
via HIPE that will guide you in writing your own scripts, and teach you more in-depth methods of
data reduction for specific tasks e.g. artifacts cleaning, HEB correction etc... (see Figure 2.1). You can
save these scripts, and adapt them to your need.

Figure 2.1. HIPE menu of useful scripts

2.2. Single Point Mode: Dual Beam Switch
Last updated: 1 April, 2015

2.2.1. Introduction
The most common problems faced when working with DBS mode observations are dealing with emis-
sion in chop positions and hard to remove (electronic) standing waves in band 6 and 7.

8

HIFI Cookbooks Build 15.0.3244

The observation used here (obsid=1342190183) is a FastChop DBS CO 5-4 observation of LDN 1157,
therefore you can follow the script exactly with the data used in it. This cookbook provides more in
depth information than that given in comments in the script and also screen shots to reassure you that
you are doing the right thing.

To learn about removing baselines, fitting to lines, combining H and V spectra, and other data analysis
steps that are not observing mode specific, you are referred to the remainder of the HIFI Data Reduction
Guide.

2.2.2. How Single Point Mode DBS observations are
taken
2.2.2.1. Observing Principles

Dual Beam Switch (DBS) observations are taken by repeatedly chopping 3' between the science tar-
get and a sky reference position (nod 1), then slewing the telecope 3' to the chop position just used
and repeatedly chopping between the science target and a second chop position (nod 2). See the Fig-
ure 2.2 for a schematic representation. This sequence is repeated as many times as needed to attain
the requested noise.

Figure 2.2. DBS observation

2.2.3. Inspecting Single Point Mode DBS data
Get your observation into HIPE, here we download a Fast Chop DBS observation from the HSA.

obs=getObservation(1342190183, useHsa=True)

The variable you just created using the getObservation command, obs, is not actually the data
but a set of references to the data in the HSA. There is a reference for every product (e.g., Level

9

HIFI Cookbooks Build 15.0.3244

2.5, Level 2, Level 1, calibration. HifiTimelineProduct, SpectrumDatasets, see Chapter 3 for more
information about the contents of a HIFI ObservationContext) and the first time you access a product
it will be downloaded from the HSA. This makes working slow and susceptible to lost connections;
thus, it is strongly recommended to save the observation to a pool on your local disk and then work
from that.

Immediately save observation rather than work from HSA.
Save in a pool with the obsid used as the pool name, save the
calibration tree too, in case you want to re-pipeline the observation

saveObservation(obs,saveCalTree=True)

This command will save the observation into a pool called 1342190183 (the Observation Number).

2.2.3.1. Level 2 (and 2.5) Spectra
In the Level 2.5 of all point mode observations, HTP are stitched, folded (if Frequency Switch) and
converted to simpleSpectrum format. HRS spectra are stitched together only if the subbands over-
lap in frequency. The mkRms task is run on the data to calculate the rms noise, the output is stored in
the Trend Analysis product. In the remainder of this section, we concentrate on the Level 2 data.

The chop position spectra are subtracted from the science target spectra, using an averaged spectra of
nod 1 and nod 2. The resulting target spectra are then averaged together and converted to sky frequency
and to the T*

A temperature scale to create the final Level 2 spectra.

In the Level 2 product there will be HifiTimelineProducts (HTP) for each of the spectrometers selected
to be used in the observation. In most cases this will be both horizontal and vertical polarisations of
the WBS and HRS, and there are separate products for the USB and LSB frequency scales.

To look at the Level 2 spectra, right click on the obs variable and open it with the Observation
Viewer (unless you have previously selected a different viewer for an Observation Context in this
HIPE session, the Observation Viewer will be the default viewer opened on a double click). Click your
way through the tree until you reach the spectrum of interest.

Figure 2.3. Getting to the Level 2 spectra

In Figure 2.3 we illustrate opening the Level 2 WBS-H-USB spectrum. There are several points of
note:

10

HIFI Cookbooks Build 15.0.3244

• Step four involves clicking open a box product which can contain up to 100 spectra (by default, but
you can customise the doCleanUp step of the Level 2 pipeline to have different size boxes) that
are grouped together to increase download time from the HSA.

• In step five we open a product called 0001, this is the Level 2 spectrum. Spectra in boxes are
numbered from (000)1-(0)100, starting at 0001. DBS observations result in one Level 2 spectrum
for each spectrometer-polarisation-sideband combination.

When you (single) click on the spectrum it will appear in the editor panel beside the Observation
Context tree, with the reference to the product displayed above the plot. You can pan along the axes of
this spectrum and zoom in on a box drawn with the mouse it after selecting Tools → Zoom upon right
clicking on the plot. If you have Zoom selected as the initial tool in the Spectrum Explorer preferences
Edit → Preferences → SpectrumExplorer you can zoom in directly. If you double click on the spectrum
then Spectrum Explorer takes over the entire Editor View. You can navigate the spectrum as above
but you also have access to all of the tasks in the Spectrum Toolbox.

To create a variable of the Level 2 spectrum that you can pass to tasks, you can drag the highlighted
spectrum product (0001) in the Observation Context tree into the Variables View; in this example,
a variable called obs_level2_WBS_H_USB_box_001_0001 will be automatically be created,
you can rename it by selecting the Rename option on right click on the variable name.

The reference can be copied using the copy path button (see Figure 2.3) and then pasted into a script or
the console. For example, to extract the Level 2 WBS-H-USB spectrum from the ObservationContext
in the command line you can use the following contruct:

spectrum_wbs_h_u = obs.refs["level2"].product.refs["WBS-H-
USB"].product.refs["box_001"].product["0001"]

2.2.4. Single Point Mode DBS Data Reduction
Can I trust the continuum?

DBS observations can produce very stable baselines, particularly in fast chop mode; however, unless
you selected continuum optimisation in HSpot, the continuum is not guaranteed to be accurate.

2.2.4.1. Level 1 Spectra

Looking at your Level 1 data can help to identify problems with your observation that affect the
quality of your Level 2 data. For example, in Figure 2.3 above, an absorption feature can be seen at
~576.25-576.26 GHz; as we shall see, inspection of the Level 1 spectra shows that this is seen only in
one nod of the observation and so is due to emission in one of the chop positions.

Level 1 data contains calibration observations in addition to science data, the science data are frequen-
cy calibrated but still in the IF scale and with TA

’ temperature scale. The best way to identify which
are the science data is to use the summary table, which can be found in each HTP. You can double
click on the summary table to open it with the Dataset Viewer and you can also extract it from the
Observation Context in the same way you can a spectrum:

WBS_H_L1_SummaryTable=obs.refs["level1"].product.refs["WBS-H"].product["summary"]

11

HIFI Cookbooks Build 15.0.3244

Figure 2.4. The summary table

The science data are labelled “science” in the type column of the summary table. At Level 1, we store
the average of the reference subtracted chop positions in datasets identified by the column with isLine
set to True. There is also science data with isLine "false", and this is the reference subtracted spectra
of one of the nod positions.

In Figure 2.4, we show the summary table for the WBS-H where we can see that the first set of
averaged nod positions are in dataset 4, while the first set of reference subtracted spectra for one of the
nod positions is in dataset 5. We can also see, from the bbNumber in the fifth column, that the entire
observation consists of six repeats of the nod cycles, and mid-way through the observation another set
of calibrations – a comb and a hot-cold load measurement – were taken.

Clicking on one of the science datasets will open the spectrum up in the Editor view to the right as
before, and we can see that there are seven sets of spectra in each dataset. It can be useful to look at
each individual spectrum if you are concerned about drifts in the observation but here we will average
all the spectra for each set of science data.

First, extract the HTP. This step is not necessary but makes the commands in the following steps easier
to follow.

htp_wbs_h_L1 = obs.refs["level1"].product.refs["WBS-H"].product

At Level 1, the data are not all precisely on the same frequency grid, in particular the start and end
frequencies of the spectra may differ slightly. This will cause the selectHifi task to give a warning
that:

Not all the datasets have exactly the same shape - some need to be cropped
so that they will fit all in one dataset.

This is not harmful but can be avoided by resampling the data in the HTP to a common grid. This is
normally done by the doFrequencyGrid step of the Level 2 pipeline. A function can be written

12

HIFI Cookbooks Build 15.0.3244

to resample all of the WBS spectra to the same grid, a grid spacing of 0.5 MHz is used in the Level
2 pipeline and that is selected here.

def resampleHtp(htp):
 # This routine resamples all WBS spectra in a HTP to a common grid.
 # This makes it easier to perform spectral arithmetic on spectra calibrated
 # with different COMB measurements, since the frequencies will be now be aligned.
 #
 # Step 1: define a grid of WBS frequencies in MHz at 0.5 MHz spacing
 # note : WBS has 4 subbands, so we need 4 arrays.
 # : the subbands start at rougly 4000, 5000, 6000, and 7000 MHz
 # : the subbands are roughly a GHz wide
 sbgrid=0.5*Double1d.range(2000)
 grid = [4000.0 + sbgrid,5000.0+sbgrid, 6000.0+sbgrid,7000.0+sbgrid]
 #
 # Step 2: inspect summary table to get the index of all data, then loop through
 them
 for htpindex in htp["summary"]["dataset"].data :
 spectrum= htp.get(htpindex) # fetch the spectrum from the HTP
 spectrumType=spectrum.meta["sds_type"].value # determine type (COMB, HC,
 SCIENCE, TUNE)
 spectrum_resampled = resample(ds=spectrum, density=True, grid=grid) # resample
 htp.set(htpindex,spectrum_resampled,spectrumType) # reinsert spectra to the HTP
 #
 return htp # return the modified HTP

In order to resample the data in an HTP, it can now be passed to this function:

htp_wbs_h_L1 = resampleHtp(htp_wbs_h_L1)

The first time you run the above line, you will see the following message several times:

Resolution parameter could not be adjusted since the wave scale
unit is incompatible with the unit the resolution is expressed in.

It is harmless and can be ignored.

Now we want to find the averages of the Level 1 science spectra. This can be done by selecting the
spectra based on their Bbid (Building block ID). For a DBS fast chop observation, nod 1 has a Bbid
of 6042, and nod 2 a Bbid of 6043, while the science phases of a DBS slow chop observation are
labelled with 6031 and 6032. By the time Level 1 of a DBS chop observation is reached, Bbid 6042
spectra have morphed into the average of the two reference subtracted chop spectra, while Bbid 6043
represent the reference subtracted spectra at one nod position.

We use the selectHifi task and set the return_single_ds option to true in order to return a Spec-
trumDataset that the avg task can be used on.

bbid_6042_select = \
selectHifi(htp=wbs_h_L1, selection = {"bbtype":[6042]}, return_single_ds=True)
bbid_6042_av = avg(ds=bbid_6042_select)

bbid_6043_select = \
selectHifi(htp=wbs_h_L1, selection = {"bbtype":[6043]}, return_single_ds=True)
bbid_6043_av = avg(ds=bbid_6043_select)

The average of the mean reference subtracted chop position spectra (in blue) is shown overlaid on the
average of the reference subtracted spectra from one nod position (in red) in the lower right hand corner
of Figure 2.4. We can see that the averaged reference subtracted spectrum from one nod position is
free from contamination, whilst the dip before the line is still seen in the averaged reference subtracted
chop spectra. Therefore, the contamination must come from emission in only one chop position (the
one not seen).

13

HIFI Cookbooks Build 15.0.3244

To overlay the two spectra, plot nod1_av in SpectrumExplorer and then, drag the nod2_av variable
into the plot.

2.2.4.2. Comparing Chop Position Spectra
The chop position contamination we see with the observation we use in this example is quite clear-
cut but there may be occasions when you wish to directly examine the spectra in the chop positions.
Of course, the chop position spectra contain emission from the sky, which can make interpretation
difficult, so instead we remove the contribution from the sky by looking at the difference in the chop
spectra.

The difference in chop position (also called the OFF) is calculated by the pipeline for all modes. You
can find the OFF positions for all spectrometers of the observation in the Calibration product in the
Observation Context; choose calibration → pipeline-out → ReferenceSpectra.

The OFF data is processed up to an equivalent Level 2, and have USB and LSB products. On fixed
and moving targets, there is one single OFF spectrum per backend/sideband (the sum of all available
OFF from the Level 1).

The OFF positions spectra can be run through the standard tasks such as fitHifiFringe, fit-
Baseline, and flagTool, and will also be corrected from Electrical Standing Waves by default.

In Figure 2.5 we show the differenced chop spectra for the WBS-H-USB in this observation as well as
the location of this spectrum in the Observation Context. We note the presence 1) of possible contami-
nation in the chop position, and 2) of optical standing waves that can be corrected (see Section 2.2.4.4).

Figure 2.5. Emission in chop position

2.2.4.3. Correcting for emission in OFF positions
We can correct the contaminated chop position by subtracting (or adding) the average difference in
the two chop positions from each of the affected chop spectra in the HTP.

You should apply an addition or a subtraction depending on whether the contamination in the pro-
cessed OFF (which corresponds to OFF1-OFF2) was seen as a positive or negative contribution.

14

HIFI Cookbooks Build 15.0.3244

In this example, we use obsid=1342190183 WBS-H-USB

OFF = obs.refs["calibration"].product.refs["pipeline-
out"].product.refs["ReferenceSpectra"].product.refs["WBS-H-USB"]\
.product.refs["box_001"].product["0001"]

ON = obs.refs["level2"].product.refs["WBS-H-
USB"].product.refs["box_001"].product["0001"]

To correct for contamination if the contamination is in the OFF1 (positive
 contribution)

ON_corrected = add(ds1=ON,ds2=OFF)

Figure Figure 2.6 shows the result of our correction: the ON spectrum is shown in green, the OFF
spectrum is shown in red, and the ON_corrected spectrum is shown in blue.

Figure 2.6. Emission correction for 1342190183 WBS-H-USB: (ON in green, OFF in red, and ON_corrected
is blue)

To correct for contamination if the contamination is in the OFF2 (negative
 contribution)

ON_corrected = subtract(ds1=ON,ds2=OFF)

2.2.4.4. Correcting for standing waves

Standing waves are not a particular problem for DBS observations in bands 1-5. They can be corrected
using the fitHifiFringe task (which is described in Chapter 12) to remove sine-waves from the
data. Here, however, we briefly illustrate the importance of considering more than one sine wave fit
to the data.

The observation in this cookbook shows a low-level standing wave that, upon first look, appears to
have a period of about 150 MHz. The default settings of fitHifiFringe are to fit the WBS-H, and
to fit one sine wave with a typical period of 150 MHz. Inspection of the Chi-squared plot produced
when the task is run with default settings shows the presence of at least three standing waves, see
Figure 2.7. Accordingly, we correct the data in this way.

CorrectedData = fitHifiFringe(obs_or_htp=obs, nfringes=3)

15

HIFI Cookbooks Build 15.0.3244

Figure 2.7. Correcting for standing waves

In the case of DBS observations in bands 6 and 7, electronic standing waves (ESWs) are found and
can be difficult to satisfactorily correct by subtraction of sine-waves. If you have band 6 or 7 DBS data
that are badly affected by standing waves, we recommend that you first consult Section 12.4 to see
how to treat them. The method presented in this section may allow you to correct the ESWs present in
your data. If, you are still unable to correct your data, we recommended that you contact the Helpdesk
to ask for assistance.

2.3. Single Point Mode: Position Switch
Last updated: 10 March, 2015

2.3.1. Introduction
This is the simplest observing mode for HIFI. This mode uses the internal loads for flux calibration
and an external source reference to remove the emission from the telescope and any standing waves
present. The reference position is within 2 degrees of the source and should be free from emission.
The internal sources (hot and cold loads) are obtained via the chopping mechanism, the source and
reference positions are obtained by slewing the telescope.

The observations used here are Position Switch observation of L1557-b2 (obsid=1342190836) in
band 1b set to simultaneously observe the 557 (GHz) water line (in lower sideband) and the 572.49
GHz ammonia line (in the upper sideband). Also used in this chapter is another observation (ob-
sid=1342270533) in band 1b of the ground state ortho water transition, and a band 2a observation of
the CO 6-5 transition (obsid=1342252113).

16

HIFI Cookbooks Build 15.0.3244

2.3.2. How Single Point Mode Position Switch observa-
tions are taken
2.3.2.1. Observing Priciples

Position Switch observations are taken by first integrating on the reference (OFF) position, then slew-
ing the satellite to the source position (ON), and integrating. This sequence is repeated in reverse order
(ON then OFF) to make a OFF-ON-ON-OFF pattern. The offset between the ON and the OFF can be
at most 2 degrees. Aside from the integration time lost on the OFF position, slewing the satellite costs
time, making Position Switch observations less time efficient than some of the other modes.

2.3.2.2. Observing Timeline
Figure 2.8 illustrates the different observing blocks involved in a Position Switch observation. Before
the first OFF position integrations, the LO is tuned to the desired frequency (cyan box), a comb and
dark are taken for frequency calibration of WBS (yellow box), and cold and hot load sequences are
taken (red and blue boxes). These internal calibrations may be repeated during the slews at later times
during the observation. The green boxes indicate integrations on the sky either at the source position
(ON), or on the reference position (OFF).

Figure 2.8. Position Switch observation timeline

2.3.3. Inspecting Single Point Mode Position Switch
data

Get your data into HIPE, here we download the band 1b observation from the HSA.

obs=getObservation(1342190836,useHsa=True)

The variable you just created using the getObservation command, obs, is not actually the data but a
set of references to the data in the HSA. There is a reference for every product (e.g., Level 2.5, Level
2, Level 1, calibration) which are displayed on the editor window when double-clinking on the obs
variable. See Chapter 3 for more information about the contents of a HIFI ObservationContext.

The first time you access a product it will be downloaded from the HSA. This makes working slow
and susceptible to lost connections; thus, it is strongly recommended that you save the observation to
a pool on your local disk, and then work from that.

17

HIFI Cookbooks Build 15.0.3244

Immediately save observation rather than work from HSA. Save in a pool with the
 obsid used as
the pool name, save the calibration tree too, in case you want to re-pipeline the
 observation.
#
saveObservation(obs,saveCalTree = True)
#
This command will save the observation into a pool called 1342190836 (Obsid).
To recall these data in any future HIPE sessions, use the getObservation command
 again:
#
obs=getObservation(1342190836)
#
#This reads the data directly from the disk where you saved it.

2.3.3.1. Summary and MetaData Tables
The Summary shows you the headlines of the observation, including the nominal coordinates and the
HIPE version (SPG) that has been used to process these data:

Figure 2.9. Summary

A browse product giving an overview of the WBS spectra in both polarisations is shown in the right-
hand side. This image can also be seen by clicking on the browseImageProduct in the Data window
(indicated here with a red oval), and corresponds to the post-card displayed in the HSA for this par-
ticular observation:

Figure 2.10. BrowseImageProduct

These pictures are automatically generated from the Level 2 product. You should then verify in the
Meta Data that the observed coordinates (ra, dec) do not differ (within the pointing accuracy) from

18

HIFI Cookbooks Build 15.0.3244

the requested ones (raNominal, decNominal). The requested (RA,DEC) can be found in the metadata
of any Level 0 product:

The small script below allows you to calculate the differences between requested RA and DEC and
the actual RA and DEC.

Requested Coordinates: put the metaData values into variable
#
raNominal=obs.getMeta()["raNominal"].value
decNominal=obs.getMeta()["decNominal"].value
#
Observed Coordinates
#
ra=obs.getMeta()["ra"].value
dec=obs.getMeta()["dec"].value
#
print (decNominal-dec)*3600.0
print (raNominal-ra)*COS(decNominal/180.0*3.14159)*3600.0

Hence, the difference between observed and requested is (0.0489", -0.457") arcseconds. To assess
how good that is, you should check the pointing accuracy of the satellite. The Absolute Pointing Error
(APE) is not the same all over the mission - see this following document for more information.

The difference in positions in this observation are well within the APE for OD281 which had a pointing
accuracy of 2".

2.3.4. Single Point Mode Position Switch Data Reduc-
tion

2.3.4.1. Data structure

Level 1 data

Figure 2.11 and Figure 2.12 illustrate the summary tables of this Position Switch observation at the
Level 1, where calibration and OFF observations are still present. The summary table indicates the time
flow of how an observation was taken. Each activity (tune, comb, hot/cold, OFF or ON integration)
is given a unique bbtype number. For Position Switch the OFF integrations are labeled with bbtype
6021 and the ON integrations with 6022. Products are present for HRS and WBS backends for both
polarisations.

The LO tuning (tune) takes place right before the calibration block, and has a fixed duration that
depends on the frequency. Tuning indeed implies some thermal stabilisation of the LO chain so that
a dead time, allowing for this, is allocated into the tuning block. Right after in this summary table,
one can recognise the sequence illustrated in Figure 2.8: the calibration block, composed of a comb
(WBS frequency calibration) and a hc (code for “Hot-Cold”, for the bandpass and flux calibration), is
followed by the OFF- and ON-target blocks in the order given in Section 2.3.2.2. Note that Level 1
data for ON-target Bbid already have the OFF position integrations subtracted.

The sequence of the observation with HRS backend is listed in the table shown in Figure 2.11. The
structure is the same for the WBS data (see Figure 2.12) but of course without the comb.

19

HIFI Cookbooks Build 15.0.3244

Figure 2.11. Level 1 data summary for HRS

Figure 2.12. Level 1 data summary for WBS

Figure 2.13 shows the content of the Level 1 HRS-H Dataset. Each line represents a dataset block
(from 1 to 11) which itself is made of several SpectrumDataset. Each dataset block corresponds to a
type of event (tuning, hot-cold calibration, Off Integration, On Integration). For instance, the dataset 6
is a block of 12 SpectrumDatasets (from 0 to 11) corresponding to the OFF integration on the reference
position.

Note that the frequency scale is 'Intermediate Frequency' (IF) at this stage.

20

HIFI Cookbooks Build 15.0.3244

Figure 2.13. Level 1 spectra for HRS. The selected spectrum is from the last OFF of the first sequence of
OFF-ON-ON-OFF.

Viewed from the Spectrum Explorer, it is possible to see the spectra of the various steps of the obser-
vation. For this section, the WBS-H product will be used, but everything that is shown here holds for
the other backends and polarisations as well.

Figure 2.14 to Figure 2.17 demonstrate how to open the HIFI product in the Spectrum Explorer, and
view various integrations as well as the position on the sky of the integrations.

Figure 2.14. Loading the Level 1 WBS product into the Spectrum Explorer

21

HIFI Cookbooks Build 15.0.3244

Figure 2.15. The default view of the Level 1 WBS product in Spectrum Explorer

Figure 2.16. A short tour of what is seen in the HIFI "selection panel". Note the time flow where subbands
can be individually viewed. Double clicking the buttons toggles the spectrum to be visible or not. Double
clicking "ALL" will show all the spectra (which at this stage will look quite the mess).

22

HIFI Cookbooks Build 15.0.3244

Figure 2.17. Pressing the "Grid" button will show thumbnail plots of all the spectra. Choosing the "Loca-
tion" pulldown will place a "+" at the position of each integration, the "Raster" will show thumbnails at
each position taken.

Level 2

At Level 2, only ON-target spectra are maintained and there is one spectrum (HifiTimelineProducts,
HTP) per backend/sideband/polarisation. Click your way through the tree until you reach the spectrum
of interest.

Figure 2.18. Level 2 WBS-H-USB SpectrumDataset.

Note that the spectrum is in TA
* temperature scale. Careful inspection of Figure 2.18 shows a slight

curvature and mismatches between WBS subbands. This is an example of "platforming" and the effect
can be much worse, depending on the observation.

23

HIFI Cookbooks Build 15.0.3244

2.3.4.2. Data artifacts and data cleaning

The main data problems one can find in Position Switch observations are:

• Baseline jumps and curvature (Platforming):

• Platforming is seen as offsets between neighbouring WBS subbands and/or curvatures within
subbands. Platforming can be addressed using the standard fitBaseline task (see Chapter 13)
and by applying a low order polynomial to each WBS subband. Note that platforming is an
artifact of the WBS. If you correct your spectra with fitBaseline specifically for platforming,
you should not apply the same correction to the HRS data. Also be aware that if there was a
significant continuum in the WBS data, it will be removed by fitBaseline.

• Standing Waves:

• Optical standing waves can be present in the data, with typical periods depending on the band
used (see this report for more details). Those baseline modulations are usually enhanced in the
presence of non-negligible continuum, and can become really severe on planet observations. For
these standing waves, the fitHifiFringe task usually does a pretty good job (see Chapter 12).

• Additionally, bands 6 and 7 are affected by a peculiar Electrical Standing Wave (ESW) that forms
behind the mixer in the IF (Intermediate Frequency) amplification chain. This modulation is not
sinusoidal in nature and can only be dealt with by fitHifiFringe in case of very simple
isolated lines (i.e. narrow, without wings). For more complex cases, a dedicated algorithm has
been developed (so-called matching technique) and is offered in the hebCorrection task
(details can be found here hebCorrection). We also recommend Section 12.4. From HIPE 13.0
onwards, the ESW are automatically corrected in the pipeline by the task doHebCorrection,
which applies prepared solutions stored in the HIFI calibration product. The same task can remove
an already-applied correction if you wish to attempt a different correction yourself by using the
task HebCorrection. Not every observation is perfectly corrected, unfortunately, though we
are pursuing those judged in need of improvement. We invite you to consult the documentation
cited above for more details.

• Spurious spectral features:

• There are two main sorts of spurious features in the HIFI data: narrow spur lines and saturation
(probably a very broad form of the narrow spur). While the HIFI pipeline does its best to auto-
matically detect and flag those, it is possible to fine-tune this data by flagging with the flag-
Tool task (see Section 11.5).

Platforming Example

Total power observations like Position Switch, often show abrupt offsets between WBS subbands and/
or baseline distortions within subbands. The Obsid 1342252113 demonstrates a good example of this
- see Figure 2.19. The data are readily corrected with fitBaseline (see Chapter 13).

Note

The option doglue = 0 will be needed to not join the WBS subbands.

24

HIFI Cookbooks Build 15.0.3244

Figure 2.19. Level 2 WBS-H-USB SpectrumDataset of 1342252113. Note the strong curvature within sub-
bands.

Figure 2.20. Level 2 WBS-H-USB SpectrumDataset of 1342252113 after baseline correction.

Flagging bad data

It is important to emphasise that Level 2 data are averaged data mixing potentially good and bad
spectra. Hence, it is wise to carefully check the quality of the data at Level 1. When inspecting these
Level 1 data, if you detect weird data (e.g. weird baseline, jump between WBS subbands, spurious
spectral features) you can flag them (see Section 11.5), and then re-pipeline the observation.

2.3.4.3. Inspecting OFF data for contamination

Position Switch observations should be taken with an OFF position free of emission. To date, there
are no known cases of contaminated OFF positions however, it is possible to investigate further. Note
that the OFF position is synthetic and formed using the Cold load to mimic an empty sky. This leads
to enhanced baseline instabilities.

You can find the OFF positions for all spectrometers of the observation in the Calibration product in
the Observation Context; choose calibration → pipeline-out → ReferenceSpectra.

25

HIFI Cookbooks Build 15.0.3244

The OFF data is processed up to an equivalent Level 2, and have USB and LSB products. On fixed
and moving targets, there is one single OFF spectrum per backend/sideband (the sum of all available
OFF from the Level 1).

The OFF positions spectra can be run through the standard tasks such as fitHifiFringe, fit-
Baseline, and flagTool, and will also be corrected from Electrical Standing Waves by default.

The OFF spectra in a Position Switch observation are key to the proper calibration of the observation.
It is therefore recommended to examine all OFF spectra. You will be looking especially for emission
contamination.

Figure 2.21 shows an example of the 'load calibrated' OFF Spectrum for Obsid 1342252113 WBS-
H-LSB. Like LoadChop observations without Refs, the standing waves can be very obvious. Since
there is a significant difference between subbands, the defringing should not try to "glue" subbands
together, i.e., doglue=0.

Figure 2.21. Load Calibrated OFF for Obsid 1342252113 WBS-H-LSB. These will often display very strong
standing waves.

After running the task fitHifiFringe (using nfringes=3 and doglue=0), the result can be inspected
with the Spectrum Explorer (see Figure 2.22). For the data used in this example, we do not see any
significant contamination, although cleaning the platforming should be done. Please note that the
colour representing the subbands between e.g. Figure 2.21 and Figure 2.22 are unrelated to one another;
Spectrum Explorer assigns random colours when plotting.

26

HIFI Cookbooks Build 15.0.3244

Figure 2.22. Defringed OFF for Obsid 1342252113 WBS-H-LSB. No noticeable emission is present but
platforming should be corrected.

2.4. Single Point Mode: Frequency Switch
Last updated: 6 March, 2015

2.4.1. Introduction
The Frequency Switching observing mode is one of the Single Point observing modes implemented
in the HIFI instrument. This cookbook describes the strategy used to collect Frequency Switched data
and addresses the main issues to take into account when working with such data from the archive.

2.4.2. How Single Point Mode Frequency Switch obser-
vations are taken
2.4.2.1. Observing Principles

The Frequency Switching (FSW) observations consist in observing individual total power spectra with
two slightly different Local Oscillator (LO) tunings (thereafter called LO1 and LO2), separated by the
so-called frequency throw. If the frequency throw is small enough, the response of the instrument will
not change much between LO1 and LO2. By forming the difference between the spectra taken at the
respective LO tunings, the total power contributions from the instrument and sky can be cancelled out,
while the line information is preserved, as lines will fall at a different Intermediate Frequencies (IF)
due to the different tunings. As a consequence, an emission line will appear both as a positive and a
negative feature, separated by the frequency throw. This is illustrated in Figure 2.23.

The main advantage of this approach is that, unlike in the other HIFI modes, the line is observed both
in the respective ON-target and Reference spectra (in effect both spectra are ON-target), optimising
the observing time efficiency and therefore the achieved noise. With HIFI, two frequency throws were
offered: a small one at around 100 MHz, and a larger one at around 300 MHz for SiS bands and 200
MHz for HEB bands (both either positive or negative).

Although the frequency throws were chosen to minimise the residual standing waves resulting from
the different instrument response at the respective LO frequencies, the band-pass correction obtained

27

HIFI Cookbooks Build 15.0.3244

after performing this single difference is usually not sufficient. In order to remove this residual re-
sponse, a Reference position is observed at a blank sky position. This position is also observed at both
LO1 and LO2, the difference is taken and then subtracted from the ON-target data. Although it was
recommended to always take FSW observations with a Reference position (and even more so in the
HEB bands 6 and 7), some data have been observed without (so-called FSW NoRef), at the expense
of a poorer baseline quality. We will illustrate later how to deal with these particular cases.

Figure 2.23. Example of a FSW observation in Obsid 1342180473. Note the co-existence of positive and
negative features belonging to the respective LO1 and LO2 tunings. Data are shown in an Upper Sideband
(USB) scale.

Spectrometers in use
Both the Wide-Band (WBS) and High-Resolution Spectrometers (HRS) can be used simultaneously
with this mode. Particular care is needed when observing with the HRS using a large throw at very
high spectral resolution, as the line might fall outside of the spectrometer bandwidth (256 MHz) when
tuning in the second phase LO2.

2.4.2.2. Observing Timeline
Figure 2.24 illustrates the different observing blocks involved in a Frequency Switching observation
with a Reference. The different LO tunings are here labeled ν1 and ν2. The switching between the two
tunings is much faster (typically 100 msec) than any other change in e.g. telescope or chopper (the
internal HIFI beam steering mirror) positions. In order to optimally calibrate the band-pass at each LO
tuning, internal load measurements are also taken in FSW fashion, i.e. at each of the two tunings.

Figure 2.24. Sketch illustrating the observing sequence considered in Frequency Switching with a Refer-
ence. Observing blocks are labeled as in the legend showed at the bottom right.

28

HIFI Cookbooks Build 15.0.3244

2.4.2.3. Continuum information in Frequency Switching observa-
tions

The continuum from the observed source is lost in FSW observations. Indeed, because the respective
LO1 and LO2 tunings are both performed on the target, all total power contributions are cancelled out
in the subtraction process – only the lines are preserved as they shift in the IF scale.

2.4.2.4. Observation without a reference position

In order to avoid the overheads needed to observe a Reference position and make the best of the
telescope time, some programmes have decided to use the NoRef option of the FSW mode. This option
leads to relatively poorer baselines, as is illustrated in Figure 2.25 and Figure 2.26.

As shown in Figure 2.25, having strong lines somehow mitigates the effect from the distorted baseline.
When the lines are weak, as shown in Figure 2.26, the analysis is more problematic. The detected lines
can sometimes be recovered by applying a relatively heavy baseline correction, as will be shown in
the following section. Typically this will only work for very narrow (and strong) lines, while broader
lines or line wings will almost systematically be lost, or altered in the process.

Figure 2.25. Same as Figure 2.23 for a Frequency Switching observation where no Reference position was
taken - Obsid 1342200897.

Figure 2.26. Same as Figure 2.23 for a Frequency Switching observation where no Reference position was
taken - Obsid 1342195094.

2.4.2.5. Frequency Switching in HEB bands

Using the FSW mode in HEB bands can be problematic due to the poor response stability of those
bands. Figure 2.27 illustrates the kind of spectra achieved in this fashion, dominated by very large
baseline standing waves. In practice, almost no observation has been taken in this fashion so this
remains a very isolated situation.

29

HIFI Cookbooks Build 15.0.3244

Figure 2.27. Same as Figure 2.23 for a Frequency Switching observation in band 6b (Obsid 1342180813),
highlighting the presence of Electrical Standing Waves.

2.4.3. Inspecting Single Point Mode Frequency Switch
data

Get your observation into HIPE. Here, we use obsid=1342180473 as an example:

obs=getObservation(1342180473, useHsa=True)

The variable you just created using the getObservation command, obs, is not actually the data
but a set of references to the data in the HSA. There is a reference for every product (e.g., Level
2.5, Level 2, Level 1, calibration. HifiTimelineProduct, SpectrumDatasets, see Chapter 3 for more
information about the contents of a HIFI ObservationContext) and the first time you access a product
it will be downloaded from the HSA. This makes working slow and susceptible to lost connections;
thus, it is strongly recommended to save the observation to a pool on your local disk and then work
from that.

Immediately save observation rather than work from HSA.
Save in a pool with the obsid used as the pool name, save the
calibration tree too, in case you want to re-pipeline the observation

saveObservation(obs,saveCalTree=True)

This command will save the observation into a pool called 1342180473 (the Observation Number).

2.4.4. Single Point Mode Frequency Switch Data Re-
duction

2.4.4.1. Data Structure

The Frequency Switching data structure shares many similarities with that of any of the Single Point
modes. Figure 2.28 illustrates the sequence of observation blocks present at the Level 1. After the
initial calibration blocks, a series of OFF- and ON-target blocks is performed, in an “ABBA” pattern.
At Level 1, the ON-target blocks (HIFIFSwtichOnIntegration) in fact already contain the subtraction
of the Reference position spectra to that of the ON-target. The OFF-target blocks (HIFIFSwtichOffIn-
tegration), however, solely correspond to observation at the Reference position. Note that less time is
spent on the Reference position, so that these data are smoothed to a pre-defined channel width before
being subtracted to the ON-target data.

30

HIFI Cookbooks Build 15.0.3244

Figure 2.28. Observation context of a FSW observation, and summary table at Level 1 (only partial here).

At Level 2, only ON-target spectra are maintained and there will be only one averaged spectrum per
spectrometer, scaled both in USB and LSB frequencies. The WBS spectra from this level are displayed
together in the browse product shown at the upper right corner of the observation context visualiser.
This picture is also used as preview post-stamp for the observation when running queries on the HSA.

2.4.4.2. Level 2: folded vs unfolded spectra

The data at Level 2 do not correspond to the last processing step of FSW data. Indeed, in order to make
the most of the noise in the data, the spectra need to be folded. What this means is that the lines from
both the LO1 and LO2 tuning should be combined, as they effectively correspond to two independent
observations of the same line. The folding action basically works like a shift-and-add, except that this
time the copied spectrum is shifted by the frequency throw, multiplied by -1 (hence making coincide
in position and sign the two lines contributions), added to the original spectrum and finally divided by
2 (hence the noise improvement). The resulting line will consist of a central component bracketed by
two negative ghosts of half the intensity (the balance between the intensity of the respective left and
right ghost is also an indication of instrument stability).

The sign of the shift however depends whether the spectrum is scaled in Lower Sideband (LSB) or
Upper Sideband (USB). Indeed, for a given LO shift, lines from either the LSB or the USB will move
in opposite direction. This can already be seen in Figure 2.23 where some lines have their “negative”
component at lower USB frequencies while others have it at higher USB frequencies. This trend is
already sufficient to assign a sideband to the line if one knows the sign of the frequency throw. Fig-
ure 2.29 summarises how the pair of LO1 and LO2 tuning lines would look like on an USB scale. The
opposite would apply on a LSB scale.

31

HIFI Cookbooks Build 15.0.3244

Figure 2.29. Illustration of the relative positions of the respective LO1 (positive component) and LO2 (neg-
ative component) tuning lines for positive and negative frequency throws, and lines in either the LSB or
USB. In all cases, the frequency scale assumed here is USB. Opposite direction will apply to data scaled
in the LSB.

In order to perform the data folding, two tasks are made available: fold and doFold. When calling
those tasks, it is usually not necessary to indicate the value of the frequency throw, as it should be
held in the data.

The output of the folding will inform directly about the instrument sideband to which a given line
belongs. Indeed, the sign of the frequency shift applied in the folding will only be correct if the line
belongs to the treated sideband. This is illustrated in Figure 2.30. Lines belonging to a given sideband
will appear as a positive feature bracketed with the two negative ghosts only on the applicable fre-
quency scale. In the other scale, the central line will show up negative.

32

HIFI Cookbooks Build 15.0.3244

Figure 2.30. Line sideband assignment after the folding. Upper panel: USB scale spectrum. Lower panel:
LSB scale spectrum.

Note that the Level 2 data are not folded by default. One of the reasons for this is that the baseline
correction may be easier on unfolded data than on folded ones. Additionally, baseline subtraction in
unfolded spectra involves two masks per lines, while three masks would be needed in folded data (to
account for the two side-ghosts).

Folding and Stitching

It is usually better to stitch your data before applying the folding. Indeed, when folding on non-stitched
data, discontinuity will be created in the overlapping regions of the respective WBS or HRS subbands.

2.4.4.3. Data Artefacts and Cleaning
The typical data artefacts found in FSW observations are those associated to the imperfect band-pass
correction inherent to the observing mode principles. As indicated earlier, these effects are enhanced
when no Reference position was combined to the ON-target spectra. Those baseline distortions will
mostly manifest in two forms:

Standing Waves

Optical standing waves can be present in the data, with typical periods depending on the band used
(see a detailed report here). Those baseline modulations are usually enhanced in the presence of non-
negligible continuum and can become really severe on planet observations. For these standing waves,
the fitHifiFringe task (Chapter 12) usually does a pretty good job. However, in FSW observa-
tions they often sit on top of complicated baseline structure (see below) so that baseline correction may
be needed before. Figure 2.32 illustrates a standing wave correction in an FSW observation without
Reference. We have run here the correction per WBS subband (option doglue = False). This is usually
more adequate so that irregular baseline structures are more easily taken into account by the task.
Also, the sub_base option was used to remove a first order baseline level. In this particular case it is
interesting to note that the main modulation occurred at a periods of ~36 MHz and ~145 MHz, which
are not very common in HIFI data, but can occur in particular in such FSW observations.

33

HIFI Cookbooks Build 15.0.3244

Figure 2.31. Defringing correction in a FSW observation with no Reference (Obsid 1342248900). Four
standing waves components are considered here.

34

HIFI Cookbooks Build 15.0.3244

Figure 2.32. Spectrum before and after correction. The relatively strong line (CO 5-4) here is masked in
both its positive and negative phases (frequency throw of 94 MHz).

Additionally, bands 6 and 7 are affected by a peculiar Electrical Standing Wave that forms behind the
mixer in the IF amplification chain. An illustration of such a standing wave can be seen in Figure 2.27.
Since very little FSW observations were taken in those bands, we are not giving more details about this
artefact here. Those Electrical Standing Waves can however be tackled with a dedicated task called
hebCorrection (see hebCorrection). We also recommend Section 12.4.

Baseline structures

Because of the imperfect band-pass calibration, it will be common to have residual baseline structure,
usually in the form of a slope or a more complex shape. These residual can be corrected using polyno-
mial fits to the baseline with the fitBaseline task (Chapter 13). Figure 2.33 illustrates the baseline
correction on the defringed spectrum from Figure 2.32. Here a polynomial fit of order 19 was used.

35

HIFI Cookbooks Build 15.0.3244

Figure 2.33. Baseline correction in Obsid 1342248900, after applying the defringing shown in Figure 2.32.

Artefact correction in HRS data

When HRS data have also been collected together with the WBS one, it may be interesting to perform
the correction rather on those. Indeed, owing to their narrower instantaneous bandwidth, complicated
baseline structure may be easier to fit (typically involving lower order polynomial fit) than when
considered over the 1 GHz width of single WBS subbands. Of course, a higher noise will apply if a
higher spectral resolution was used. However, data smoothing is possible to reconcile the noise level
with those of the WBS.

Other artefacts

On top of those, like any other HIFI observations, FSW data may suffer from spurious spectral features,
either in the form of narrow spur lines, or saturation (probably a very broad form of the narrow spur).
While the HIFI pipeline does its best to automatically detect and flag those, it is possible to fine-tune
this data flagging with the flagTool task (see Section 11.5).

2.4.4.4. Assessing emission in the OFF data
When taking FSW observations with a reference, it is possible to check whether the OFF data contain
potential line contamination from a non-blank sky position. The OFF data is processed up to an equiv-
alent Level 2 by the pipeline, and have USB and LSB products. You can find the OFF positions for all
spectrometers in the Calibration product in the Observation Context; choose calibration → pipeline-
out → ReferenceSpectra.

On fixed and moving targets, there is one single OFF spectrum per backend/sideband (the sum of all
available OFF from the Level 1). The OFF positions spectra can be run through the standard tasks such
as fitHifiFringe, fitBaseline, and flagTool, and will also be corrected from Electrical
Standing Waves by default.

An example of an OFF position spectrum is shown in Figure 2.34. It clearly shows the limitation of
such checks. Indeed, the OFF spectrum formed here corresponds to a single difference and therefore

36

HIFI Cookbooks Build 15.0.3244

is equivalent to FSW observations taken without Reference. As a consequence, they will provide
relatively poor baseline quality where the identification of any potential line contamination is more
complex.

Figure 2.34. Example of Reference Spectrum for Obsid 1342180473. No particular contamination is ob-
served here. Note the poorer baseline quality compared to the ON-target double-difference spectrum from
Figure 2.23.

2.4.4.5. Combining data from both polarisations
Although the H and V mixers do not strictly point at the same position in the sky (the offset between
the two is small compared to the beam at the applicable frequencies), it is often useful to combine
the signal from the two polarisations to improve the signal-to-noise. Because the band-pass shape is
different in the two mixers, it is probably best to perform this merging after the baseline correction.
On the other hand, once the latter is done, combining H and V before or after the folding should not
make any difference.

This combination can be done using the polarPair task (also available in a GUI).

specTotal = polarPair(ds1=specH, ds2=specV)

When weak lines are targeted in FSW mode, disentangling the contribution of a line from that of
complicated baseline structure can make use of the distinct H and V data. Typically, in case of doubtful
line identification, not only should you check whether the feature is seen in both polarisations, but you
should also verify whether the negative component of the FSW also appears at the right frequency
throw, and so in both polarisations with a similar intensity as the candidate positive component.

2.4.4.6. Exporting spectra
The Level 2 spectra can be exported to Class at any stage (see Chapter 23). In case data are exported
prior to the folding, Class will have no problem to recognise the frequency throw and apply it with
its own fold command. It should be noted, however, that if you export a spectrum already folded with
hiClass, Class will not know it a priori so you may still be able to run the fold command there,
creating an erroneous spectrum.

2.5. Single Point Mode: Load Chop
Last updated: 24 March, 2015

2.5.1. Introduction
This mode uses the internal loads for reference with an optional OFF sky reference. The most common
problems faced when working with Load Chop mode observations are dealing with standing waves

37

HIFI Cookbooks Build 15.0.3244

if the OFF reference option has not been chosen by the user. This applies most strongly to Bands 3,
4, 6, and 7.

The observations used here are a LoadChop CO 5-4 observation (band 1b) of o Ceti (Obsid
1342190841) and a LoadChopNoRef CH+ observation (band 3a) of DR21 (Obsid 1342180551).
Therefore, you can follow the script exactly with the data used in it. To learn about removing baselines,
fitting to lines, combining H and V spectra, and other data analysis steps that are not observing mode
specific, you can find information elsewhere in this Guide.

2.5.2. How Single Point Mode Load Chop observations
are taken
2.5.2.1. Observing Principles

Load Chop observations are taken by alternately looking at the target on the sky and an internal source
of radiation with a typical period of a few seconds. Hence, an internal cold calibration source (load,
physical temperature around 10 K) is used as a reference to correct short term changes in instrument
behaviour. Since the optical path differs between source and internal reference, a residual standing
wave structure may remain. Even if the telescope by itself does not move during the process, such a
scheme has relatively high dead times (typically only 1/3 to 1/4 of the total time spent on the actual
science target). Additional calibration using an OFF sky reference position is optional but highly rec-
ommended whenever possible for standing wave correction in the pipeline. This applies most strongly
to Bands 3, 4, 6, and 7. See Figure 2.35 for a schematic representation. This sequence is repeated as
many times as needed to attain the requested noise.

2.5.2.2. Observing Timeline
Figure 2.35 illustrates the different observing blocks involved in a Load Chop observation for the case
of the Load Chop with OFF sky reference option selected. For one LO tuning (cyan box), a calibration
block will be taken (yellow, red, and blue boxes in Figure 2.35) in-between two target blocks (sequence
of green and blue boxes). The target blocks are a sequence of integration on sky and on cold load.
These target blocks are first on the OFF sky reference, then two times on source position, hereafter
two times on the OFF sky reference, and finally on source. For the noRef mode, the sequence is the
same but without the OFF sky reference target block. This sequence is repeated as many times as
needed to attain the requested noise.

Figure 2.35. Load Chop observations.

2.5.3. Inspecting Single Point Mode Load Chop data
Get your observation into HIPE. Here we download a Load Chop with OFF reference observation
from the Herschel Science Archive (HSA).

38

HIFI Cookbooks Build 15.0.3244

obs=getObservation(1342190841, useHsa = True)

The variable you just created using the getObservation command, obs, is not actually the data but a
set of references to the data in the HSA. There is a reference for every product (e.g., Level 2.5, Level
2, Level 1, calibration) which are displayed on the editor window when double-clinking on the obs
variable. See Chapter 3 for more information about the contents of a HIFI ObservationContext.

The first time you access a product it will be downloaded from the HSA. This makes working slow
and susceptible to lost connections; thus, it is strongly recommended to save the observation to a pool
on your local disk, and then work from that.

Immediately save observation rather than work from HSA.
Save in a pool with the obsid used as the pool name, save the
calibration tree too, in case you want to re-pipeline the observation
saveObservation(obs,saveCalTree = True)

#This command will save the observation into a pool called 1342190841 (Obsid).

2.5.3.1. Summary and MetaData tables

The Summary shows you the headlines of the observation, including the nominal coordinates and the
HIPE version (SPG) that has been used to process these data:

Figure 2.36. Summary

A browse product giving an overview of the WBS spectra in both polarisations is shown in the right-
hand side. This image can also be seen by clicking on the browseImageProduct in the Data window
and corresponds to the post-card displayed in the HSA for this particular observation:

39

HIFI Cookbooks Build 15.0.3244

Figure 2.37. BrowseImageProduct

These pictures are automatically generated from the Level 2 product. Then, verify in the MetaData
that the observed coordinates (ra, dec) do not differ (within the pointing accuracy) from the requested
ones (raNominal, decNominal). The requested (RA,DEC) can be found in the MetaData of any Level
0 product:

Figure 2.38. Level 0 MetaData

For this observation, RA= 34.836625 and DEC= -2.977638888888889. If you open any Level 2
HrsSpectrumDataset with the Spectrum Explorer, you will see the observed coordinates, e.g.:

40

HIFI Cookbooks Build 15.0.3244

Figure 2.39. Level 2 HrsSpectrumDataset opened with Spectrum Explorer.

Place your mouse cursor on the longitude or latitude value, and the complete number will appear. Here
we have RA= 34.83679065844212 and DEC= -2.977408302339797.

Hence, the difference between observed and requested is (1.6565e-4, 2.30586e-4) degrees, i.e.
(0.6,0.83) arcseconds. To assess how good that is, you should check the pointing accuracy of the
satellite. The Absolute Pointing Error (APE) is not the same all over the mission - see this following
document for more information.

This observation has been performed on OD281 when the APE was 1.9-2.0’’, so well beyond the
difference measured here.

2.5.4. Single Point Mode Load Chop Data Reduction

2.5.4.1. Data structure

Level 1 data

Figure 2.41 and Figure 2.40 illustrate the summary tables of this Load Chop observation at the Level
1, where calibration and OFF observations are still present. Products are present for HRS and WBS
backends for both polarisations.

The LO tuning (tune) takes place right before the calibration block and has a fixed duration that de-
pends on the frequency. Tuning indeed implies some thermal stabilisation of the LO chain so that
a dead time allowing for this is allocated into the tuning block. Right after in this summary table,
one can recognise the sequence illustrated in Figure 2.35: the calibration block, composed of a comb
(WBS frequency calibration) and an hc (code for “Hot-Cold”, for the bandpass and flux calibration),
is followed by the OFF- and ON-target blocks in the order given in Section 2.5.2.2. Note that Level
1 data for ON-target Bbid are already made of a double difference.

The sequence of the observation with HRS backend is listed in the table shown in Figure 2.40. The
structure is the same for the WBS data (see Figure 2.41) but of course without the comb.

41

HIFI Cookbooks Build 15.0.3244

Figure 2.40. Level 1 data summary for HRS.

Figure 2.41. Level 1 data summary for WBS.

Figure 2.42 shows the content of the Level 1 HRS-H Dataset. Each line represents a dataset block
(from 1 to 11) which itself is made of several SpectrumDataset. Each dataset block corresponds to a
type of event (tuning, hot-cold calibration, Off Integration, On Integration). For instance, the dataset 3
is a block of 13 SpectrumDatasets (from 0 to 12) corresponding to the OFF integration on the internal
load.

Note that the frequency scale is Intermediate Frequency (IF) at this stage.

42

HIFI Cookbooks Build 15.0.3244

Figure 2.42. Level 1 HRS SpectrumDataset.

Level 2 data

At Level 2, only ON-target spectra are maintained and there is one spectrum (HifiTimelineProducts,
HTP) per backend/sideband/polarisation. Click your way through the tree until you reach the spectrum
of interest.

Figure 2.43. Level 2 WBS SpectrumDataset.

At a first glance, data are perfect, without any baseline issues. Note that the spectrum is in TA
* tem-

perature scale.

2.5.4.2. The OFF (sky reference) spectrum

How the OFF spectrum is used in the data reduction

For the FSW and Load Chop observing modes (both for pointed and mapping modes), it is highly
recommended to have a reference spectrum measured at a reference position. This reference spectrum
is observed with a shorter integration time than the ON source spectrum, and as a consequence has a
higher noise for the same spectral resolution. In the double difference method applied in the pipeline,

43

HIFI Cookbooks Build 15.0.3244

the OFF spectrum is then smoothed to reduce the extra noise from that reference measurement. In
the pipeline, what is thought to be the optimal smoothing (see Figure 2.44) is applied to the reference
spectrum in order to improve the S/N in the final observation for the user. Note that since the OFF
spectrum is the result from (OFF_sky - COLD_load), it is possible that the overall level of this spec-
trum is negative because the 'blank sky' will often have a lower temperature equivalent to that of the
cold source.

Figure 2.44. Smoothing width applied on the OFF spectra depending on the frequency.

Nevertheless, you might want to try different smoothing by tuning the Level 1 task mkOffSmooth in
the Customize Pipeline:

44

HIFI Cookbooks Build 15.0.3244

Figure 2.45. Customise pipeline with Level 1 task mkOffSmooth.

Any contamination in the OFF spectrum ?

It is wise to verify that there is no signal (contamination) in the OFF sky reference spectrum (if any).

The OFF data is processed up to an equivalent Level 2 by the pipeline, and have USB and LSB prod-
ucts. You can find the OFF positions for all spectrometers in the Calibration product in the Observa-
tion Context; choose calibration → pipeline-out → ReferenceSpectra.

On fixed and moving targets, there is one single OFF spectrum per backend/sideband (the sum of all
available OFF from the Level 1). Because the OFF spectrum corresponds to a single difference, the
consequence is relatively poor baseline quality where the identification of any potential line contam-
ination is more complex. Note that OFF positions spectra can be run through the standard tasks such
as fitHifiFringe, fitBaseline, and flagTool, and will also be corrected from Electrical
Standing Waves by default.

Example of an OFF spectrum (for the WBS-H-LSB):

Figure 2.46. OFF (sky reference) spectra.

Unfortunately, because of the strong standing waves in this example, it is difficult to know if there
is any contamination. You might try to apply the fitHifiFringe task (see Chapter 12) on it in

45

HIFI Cookbooks Build 15.0.3244

order to remove those waves. To do so, select the observation (obs) and double-click on the fitHi-
fiFringe task shown in the Applicable Tasks window of HIPE. A menu will appear in order to tune
the task. With such waves, we recommend to select 3 fringes, with a typical period of 100 MHz and
to apply it on individual WBS subbands (unselect doglue) as follows:

Figure 2.47. FitHifiFringe task menu.

The result will be:

Figure 2.48. OFF (sky reference) spectrum output of the fitHifiFringe task.

But, in this case, it is still difficult to check.

Figure 2.49 is an example of a different observation (1342190778, band 7b) with a clear C+ contam-
ination around 1900.65 GHz:

46

HIFI Cookbooks Build 15.0.3244

Figure 2.49. Example of OFF contamination in 1342190778 (OFF spectrum in black, ON spectrum in red,
ON-OFF in blue).

In this example, the residual standing waves in the single difference spectra (ON and OFF respectively)
is only properly cancelled out in the ON-OFF difference, albeit implying a distortion of the C+ line due
to the contamination in the OFF. In order to use a non-contaminated ON spectrum, you should either
apply some defringing to this data, or subtract the OFF only in spectral ranges sufficiently separated
from the C+ line, at the expense of some residual standing wave modulation in the frequency range
applying to this line.

2.5.4.3. Data artifacts and data cleaning
The main data problems one can find in Load Chop observations are:

• Standing Waves:

• Optical standing waves can be present in the data, with typical periods depending on the band
used (see this report for more details). Those baseline modulations are usually enhanced in the
presence of non-negligible continuum, and can become really severe on planet observations. For
these standing waves, the fitHifiFringe task usually does a pretty good job (see Chapter 12).

• Additionally, bands 6 and 7 are affected by a peculiar Electrical Standing Wave (ESW) that forms
behind the mixer in the IF (Intermediate Frequency) amplification chain. This modulation is not
sinusoidal in nature and can only be dealt with by fitHifiFringe in case of very simple
isolated lines (i.e. narrow, without wings). The task hebCorrection is available to correct
spectra by fitting models of the ESW. Although not every instance of ESW is well-represented
by the available models, the great majority of observations are much improved (details can be
found here hebCorrection). We also recommend Section 12.4. Since HIPE 13.0, prepared ESW
solutions have been stored in the HIFI calibration, and are now applied automatically by the
pipeline task doHebCorrection. The same task can remove an already-applied correction.

47

HIFI Cookbooks Build 15.0.3244

• Spurious spectral features:

• There are two main sorts of spurious features in the HIFI data: narrow spur lines and saturation
(probably a very broad form of the narrow spur). While the HIFI pipeline does its best to auto-
matically detect and flag those, it is possible to fine-tune this data flagging with the flagTool
task (see Section 11.5).

• Residual baseline slopes/structure:

• In addition to the spurious features, it is still possible to have residual baseline structure, usually
in the form of a slope or a more complex shape. These residual can be corrected using polynomial
fits to the baseline with the fitBaseline task [see Chapter 13). This kind of problems is
particularly strong in Load Chop mode without a reference. Although all these options were
strongly discouraged, it is possible to find such data in the archive (part of them belonging to
the Performance Verification Phase) so very special care needs to be taken if you want to exploit
such datasets (see Section 2.5.4.4).

Flagging bad data

It is important to underline that Level 2 data are averaged data mixing potentially good and bad spectra.
Hence, it is wise to carefully check the quality of the data at Level 1. When inspecting these Level
1 data, if you detect weird data (e.g. weird baseline, jump between WBS subbands, spurious spectral
features) you can flag them (see Section 11.5). After flagging the data, you will then need to re-pipeline
the observation.

Correcting for standing waves

Calibrated observations taken with Load Chop (with OFF reference) modes in beamsplitter Bands 1,
2, and 5 usually show clean spectra. If any residual waves are present in the Level 2 products, they
have the shape of pure sine waves and can be subtracted using the fitHifiFringe task in HIPE
(see Chapter 12). Observations in diplexer Bands 3 and 4 often show residual waves generated in
the diplexer rooftop which are not pure sine waves. Amplitudes increase strongly toward the IF band
edges. Although fitHifiFringe only fits sine waves, fits to the diplexer waves can be approxi-
mated using multiple sine waves, typically around 600 MHz. Note that the approximation is not as
good at the IF band edges. Also, in the HEB bands 6 and 7 (especially short, non-DBS), observations
show rather strong electrical standing wave residuals in Level 2 spectra. In HIPE 13.0 onwards, they
are corrected automatically in the pipeline by the task doHebCorrection based on prepared solu-
tions stored in the HIFI calibration product. Not every dataset is perfectly corrected, unfortunately.
We're making an effort to improve the correction where judged necessary. It is possible for you to
remove the applied correction with doHebCorrection, and attempt a correction yourself. For in-
structions on how to run the task yourself, see Chapter 12.

Even if the observation we consider here is clean, let’s apply fitHifiFringe on it. Select the
observation obs and double-click on the fitHifiFringe task. Let’s work on the WBS-H-USB
product.

Figure 2.50. WBS-H-USB Level 2 spectrum.

Let’s zoom a bit:

48

HIFI Cookbooks Build 15.0.3244

Figure 2.51. Zoom on WBS-H-USB Level 2 spectrum.

As a first guess, we might see at least weak standing waves with periods of 100 MHz and 1 GHz.
Hence, let’s tune the fitHifiFringe task as follows with 3 fringes and a typical period of 1000
MHz:

Figure 2.52. FitHifiFringe task menu.

The task finds 3 fringes:

period MHz amplitude K amplitude
%baseline

phase degrees chisq delta_chisq

750.014 0.003 -85.777 169.014 0.068 0.056

564.747 0.003 -73.529 144.113 0.065 0.044

62.080 0.002 -52.492 334.688 0.063 0.024

And the output spectrum is:

Figure 2.53. Zoom on WBS-H-USB Level 2 spectrum after fitHifiFringe.

Apply the same method, if necessary, to all products.

2.5.4.4. How to deal with Load Chop observations without sky ref-
erence

Observations performed without any sky reference very likely suffer from enhanced ripples, untreat-
able continuum, or at least a continuum modified by that of the cold load, etc. The impact can be

49

HIFI Cookbooks Build 15.0.3244

different for SiS and HEB bands: in HEB your data may be usable without any big trouble since data
may be dominated by the ESW (see Section 2.5.4.3).

If your observation has been performed without any sky reference (e.g. LoadChopNoRef CH+ ob-
servation band 3a of DR21 (Obsid 1342180551), case shown hereafter), you very likely have strong
ripples in Level 2:

Figure 2.54. WBS-H-USB Level 2 spectrum for a Load Chop observations with no reference.

At least one 100 MHz fringe seems to dominate. In order to remove these ripples, you should apply
the fitHifiFringe task with only one fringe in that case. One fringe of 96 MHz will be found,
and the output of the task will be:

Figure 2.55. Same spectrum after having applied fitHifiFringe with n = 1.

Still some strong residuals are present. If 3 fringes are searched, the task will converge on 85, 95 and
150 MHz waves, but the result will not be satisfactory as the interesting line around 835.2 GHZ will
be spoiled:

Figure 2.56. Same spectrum after having applied fitHifiFringe with n = 3.

You can still increase the number of fringes but you might completely remove the real lines ! In most
cases, the final data will be of poor quality compared to the ones you could have obtained using the
Load Chop mode with off reference.

2.6. Spectral Map Mode
Last updated: 1 April, 2015

50

HIFI Cookbooks Build 15.0.3244

2.6.1. Introduction
HIFI spectral mapping observations are performed in one of two modes: On The Fly (OTF) or Dual
Beam Switch (DBS) Raster. OTF mapping involves taking data continuously as the telescope slews
over the area to be mapped, while data is taken at fixed grid positions in DBS Raster maps. OTF
maps are most commonly carried out using position switching as a reference scheme but frequency
switching and load chop are also available.

The high efficiency of OTF mapping makes it the most commonly used HIFI mapping mode. However,
the nature of OTF mapping, where the telescope can be slewing at speeds greater than the settling
time of the instrument, makes it more prone to baseline issues than DBS raster mapping. DBS Raster
maps tend to have more stable baselines, due to the double-differencing used in the DBS reference
scheme, but require greater observation times. As a consequence, OTF maps are not recommended
for continuum studies while DBS Raster maps are most suitable for small maps and observations in
the HEB bands (6 and 7). Nonetheless, both mapping modes can be affected by standing waves and
other baseline distortions in addition to spurs. Clean-up of the Level 2 data prior to re-gridding into
spectral cubes is always recommended.

In this cookbook we use the observation obsid= 1342248770, which is an OTF map of S 140 IRS 1
taken in band 5a with position switching used for the OFF (sky) reference. The strongest line seen in
the data is the CO (10-9) line and the Level 2 data shows signs of baseline drift in the WBS, which
will require clean-up before re-gridding. We also use a DBS Raster map observation, also of S 140
IRS 1, with obsid= 1342205481. This is a 3-by-3 map taken in band 7 and targeted on the C+ line,
which is contaminated by emission in a chop position.

2.6.2. How Spectral Map Mode observations are taken
2.6.2.1. Observing Principles

OTF maps

OTF maps were taken by slewing the telescope over the region to be mapped whilst continuously
taking data. The telescope slews "up" one scan leg and "down" the next while data is dumped every
four seconds, giving a grid of read-outs, as shown in Figure 2.57, which is taken from the AOT release
notes. The map is repeated as necessary to meet the noise requirements specified in HSpot starting
again from the same position on the sky. The sky reference (if used) is taken at the end of a scan leg
by a position switch, and at either fixed coordinates or an offset, as specified in HSpot, and is "shared"
by several source measurements for calibration.

Dual Beam Switch (DBS) Raster maps

DBS Raster maps are created by taking measurements on a fixed grid, and using the DBS method of
chopping 3' either side of the target position to observe a sky reference. DBS Raster maps produce a
more accurate continuum than OTF maps, at the expense of a greater time overhead, and are useful in
bands 6 and 7, which require fast chopping references to mitigate the longer settling times of the Hot
Electron Bolometers (HEBs). DBS observations were carried out with chop speeds of 0.125 Hz (slow
chop) or up to 4 Hz (fast chop). Fast chop observations produce a more accurate continuum, and more
accurate measurements of broad lines. It has also been found that fast chop observations are easier to
correct for electrical standing waves in bands 6 and 7.

Sky sampling in HIFI spectral maps

HIFI spectral maps could be carried out with sky samplings of 10", 20", 40", half-beam sampling or
Nyquist sampling. For DBS Raster maps, this means that each grid point was separated by this spacing.
For OTF maps, this means that the scan legs were separated by this spacing.

Until OD 419, "Nyquist sampling" was defined as HPBW/2 (half-beam sampling). This resulted in a
slight under-sampling in Nyquist terms. From OD 419, the Nyquist definition was corrected to give a

51

HIFI Cookbooks Build 15.0.3244

sampling between readouts of a factor approximately 1.2 less than the sampling used in the half-beam
case. For more details see this technical note.

You need to be aware of this because observations that were planned to have Nyquist beam spacing
prior to OD 419 still have the HTP and cube metadata item nyquistSampling set to true even though
the actual sampling is half-beam.

Noise definition in HIFI spectral maps

When the observation was planned in HSpot, the optimimum observing sequence (e.g., number of
readouts, number of times the sky references was observed, number of repetitions of the map) that
fit the input setup was found and the resulting noise in the observation was calculated. The noise
calculated in a regridded cell at the requested spatial sampling is the best value to compare with the
noise predicted by HSpot.

2.6.2.2. Reference Schemes
OTF maps

The reference schemes used to calibrate OTF maps are Position Switch, Frequency Switch and Load
Chop, which are described in the point mode cookbooks, see Section 2.3, Section 2.4 and Section 2.5,
respectively. Position Switching, where a sky reference up to two degrees away from the map centre
is used, is the most commonly used reference scheme for OTF maps as it is the most time-efficient. In
the case that a line-free region cannot be found within 2 degrees of a target then Frequency Switching,
in which the telescope remains on target buta different Local Oscillator (LO) setting is observed,
typically would be the next choice of reference scheme. The Load Chop reference scheme, in which
the telescope remains on target but internal Hot and Cold loads are used as reference, would be used in
the case that the region is very extended and line-rich so that neither Position-Switching or Frequency
Switching were possible. For bands 6 and 7, which have longer settling times than bands 1-5 and so
require fast (chopping) references, Frequency Switching or Load Chop could be the reference scheme
of choice.

Irrespective of the reference scheme used, OTF maps are prone to baseline issues as the slewing speed
of the telescope can be faster than the settling time of the instrument. However, Frequency Switching
and Load Chop OTF observations are particularly badly affected as the optical path between the source
and references differ. During Performance Verification this was found to be such an issue that it was
recommended to always perform Frequency Switch and Load Chop observations with an additional
sky reference. Nonetheless, some OTF Frequency Switch and OTF Load Chop mapping observations
have been carried out without a sky reference, and these observations can suffer from severe baseline
distortions, which degrade the data quality. The baselines can be improved with much correction but
the process typically only works for very strong and narrow lines as faint lines and broad line wings
tend to be lost in the correction.

DBS Raster maps

DBS raster maps are calibrated using the DBS reference scheme, which uses the chopper to observe
fixed sky reference positions 3' either side of the target position. The reader is directed to Section 2.2
for more detail. This method of double differencing generally gives good baseline stability. It is al-
ways a good idea to check for contamination in the reference spectra of DBS observations (see Sec-
tion 2.6.4.2).

2.6.2.3. Observing Timeline
OTF maps

OTF maps are performed continuously with data read out as the telecope scans "up" one scan leg and
"down" the next. Data is dumped (or read) every four seconds but not in the turn between scan legs. In
Figure 2.57 you can see that the map read-outs (denoted by blue dots) form a zig-zag pattern. This is a

52

HIFI Cookbooks Build 15.0.3244

consequence of a timing mismatch between the commanding of the pointing of the telescope and the
commanded times at which data is read out. In order to ensure that the requested sensitivity of the map
is attained over the entire map, an extra read out is added to each scan leg in the map. In Figure 2.57
the requested map area is shown shaded in grey and the approximate beam size is indicated by the
blue circle.

Figure 2.57. Positions of read-outs of science data in an OTF (position switch) observation

In the case of OTF maps taken using the frequency switching or load chop, reference schemes data
is still read-out every four seconds. However, this includes the integrations used for the reference,
i.e., the alternative frequency or the measurement of the loads. As a result, the sampling on the sky
of scientific data does not form a regular grid of points as in the case of position switch OTF maps,
and this is illustrated in Figure 2.57 below (also taken from the AOT Release notes). Note, however,
that the HIFI pipeline and the doGridding task used in HIPE to create spectral cubes convolve the
read-outs onto a regular grid (weighted according to the distance of the position the data was taken at
from the position taken as the centre of the pixel).

Figure 2.58. Positions of read-outs of science data in an OTF (load chop) observation, taken at 90 degree
position angle

53

HIFI Cookbooks Build 15.0.3244

DBS Raster maps

DBS raster maps are performed as a grid of DBS observations and the grid is repeated until the re-
quested noise is expected to be achieved. The timeline for a single DBS observation is illustrated in
Figure 2.2 in the Point mode DBS cookbook. As the telescope does not continuously slew during
DBS Raster map observations, the grid of points is regular and does not display the zig-zag seen in
OTF maps.

2.6.3. Inspecting Spectral Map Mode data

2.6.3.1. Data Structure

The first step in any data reduction is to take a look at what you have. For all mapping observations
the data structure is the same and contains:

• data including calibration observations at Level 1

• calibrated spectra at Level 2

• a copy of the Level 2 HTP and spectral cubes created from the Level 2 data at Level 2.5

• Browse Products to give a quick overview of the data at the top level

• OFF data processed up to an equivalent Level 2 by the pipeline

The Browse Products are created in the same way irrespective of the type of map. Level 2.5 spectral
cubes are created using the default options of the doGridding task with no data clean-up and should
also be considered as a type of quick look product. Differences in the data structure and content due
to the type of map are seen below Level 2.5. We describe the contents of each Level in more details
below. We use an OTF Position Switch map (obsid= 1342248770) and a DBS Raster map (obsid=
1342205481) to illustrate the structure of these types of data.

To get the observations from the HSA into HIPE:

OTF map
obs=getObservation(1342248770, useHsa=True, save=True)
#
Raster map
obs_raster = getObservation(1342205481, useHsa=True, save=True)

The observations are saved into your MyHSA pool.

You will see obs_otf and obs_raster listed as variables in the Observations section of the Vari-
ables panel in HIPE. Double-click on one of these to open it in the Observation Viewer. You can
see the Observation Context for the OTF map viewed in this way in Figure 2.59. The Observation
Context summary is to the top left and contains identifying information about the observation, such
as observation number (obsid), observation date, observing mode, etc.

2.6.3.2. Browse Product

The first thing you can do to get a sense of the data is to look at the Browse Product. This is the small
image you see at the top right in the Observation Context summary, and is the same as the postcard that
you can see in the Herschel Science Archive. To view the image, click on it. You can zoom in and out
using the mouse scroll wheel (or the trackpad equivalent). Click again on the image to exit the viewer.

54

HIFI Cookbooks Build 15.0.3244

Figure 2.59. OTF map 1342248770 viewed in Observation Viewer

The mapping browse product shows a sets of map-averaged Level 2 spectra for each subband with
the integrated map, also for that subband, to the right. The sets of images are arranged in order of
increasing frequency, i.e., subbands 1-4 from top left to bottom right for bands 1-5, and subbands 4 to
2 from top left to bottom left for bands 6 and 7. The AOR label and observation number are used to
title the plot. The observing mode, source name, requested RA and dec are below the plot title.

For each spectrum, the upper and lower axes of the plots show the LSB and USB frequency scale,
respectively. The y-axis is scaled to a factor 1.2 times the peak value in the spectrum excluding data
flagged as a spur. This allows you to see that the data is impacted by a spur but still see other features
in the spectrum.

To the right of each spectrum are integrated maps that are created with no correction done for any
baseline issues. In the cases that the baseline suffers from drifts and/or standing waves, the continuum
will dominate the map. The right and bottom x- and y- axes show the RA and declination, respectively,
while pixel coordinates are shown on the auxiliary axes. The colour scale used for the image is 'heat'
and the intensity scale used is 'ramp' so the strongest emission in the map should appear white.

For more information about browse products, see Section 3.4.

2.6.3.3. Level 2.5
The Level 2.5 mapping product contains a copy of the Level 2 HTPs (see Section 2.6.3.4 below) and
spectral cubes that have been created by the HIFI pipeline. The doGridding task is used by the
pipeline to convolve the science data in the Level 2 HifiTimelineProducts (HTPs) onto a regular grid,
giving spectral cubes with the grid spacing that was used in the observation; observations of Solar
System Objects (SSOs) are gridded in a coordinate system comoving with the target. The spectra in
the cubes are on the TA

* temperature scale. Frequencies are Doppler-corrected to the LSR frame (i.e.,
source velocity relative to the LSR is not corrected for) except for SSOs, which are Doppler-corrected
to their rest frame. See Section 15.4 for more information about the details of how doGridding
works.

Spectral cubes are created for each spectrometer, polarisation, and sidebands used in the observation
and the products are organised as follows:

• first, we find a copy of the Level 2 HTPs

• then, we find a cubesContext, which is a special Context used to store, and allow you to
easily explore cubes. The Level 2.5 cubesContext is named cubesContext. If the map was made
with a non-zero position angle, as is the case for the obsid used in this cookbook, you will also
find a cubesContext named cubesContextRotated. The cubesContext contains cubes gridded

55

HIFI Cookbooks Build 15.0.3244

assuming no rotation angle and so is displayed with the traditional North up and East to the left,
while cubesContextRotated contains cubes gridded with the position angle that was entered into
HSpot and thus with a mathematically correct convolution.

• Inside both cubesContext and cubesContextRotated are cubeContexts for each of the spectrom-
eters and polarisations used in the observation for both lower and upper sidebands. Each context
is labelled accordingly, e.g., the cubeContext for the lower sideband, horizontal polarisation of
the WBS gridded without taking rotation into account is called cubesContext_WBS-H_LSB.

• The final level contains one spectral cube with the subbands stitched (for WBS) for a given spec-
trometer, polarisation and sideband. The cube is labelled by spectrometer, polarisation, and sideband
and have an index numbered with 1, e.g., the spectral cube for the WBS-H USB is called cube_WB-
S_H_USB_1. The HRS subbands are stitched only if they overlap in frequency (doStitch is
called using fillGaps=False) in order to avoid NaNs in the cubes. The label with follow the
same convention as with the WBS, e.g. cube_HRS_H_LSB_1. Otherwise, if the HRS subbands do
not overlap (as it is the case with this observation), the pipeline will produce one cube per spec-
trometer, polarisation, and sideband, for each subband, e.g. cube_HRS_H_LSB_2, for subband 2.

We emphasise again that the cubes at Level 2.5 are created "as is" from the Level 2 data and should be
considered as a type of quick look product. In order to obtain optimal results, Level 2 data should be
"cleaned" by correcting baselines and flagging any remaining spurs prior to regridding into spectral
cubes.

The spectral cubes are products of type SimpleSpectralCube and can be quickly viewed in the
Spectrum Explorer by clicking on the cube name, or can be fully viewed and manipulated by opening
the Spectrum Explorer completely with a double-click. If you previously opened a cube with some-
thing other than the Spectrum Explorer then you may need to right-click on the cube and select Open
With → Spectrum Explorer.

The quick view option of the Spectrum Explorer window will appear beside the Observation Context
tree and allows you to quickly navigate among the cubes in the Observation Context but has limited
functionality. Opening the Spectrum Explorer fully (so that it takes over the entire Editor View) gives
you full access to all of the display and toolbox options in the Spectrum Explorer.

Figure 2.60. A quick look at a spectral cube in the Spectrum Explorer

56

HIFI Cookbooks Build 15.0.3244

When manipulating a cube in the Spectrum Explorer, it is recommended to create a variable to work
on. The reason for this is that some of the tasks in the toolboxes associated with the Spectrum Explorer
modify the data. But, to protect your original data from being overwritten, HIPE will not allow data
still in an Observation Context to be modified. To create a variable of a cube you can drag the cube
name from the Observation Context tree to the Other Variable section of the Variables View, where
you will probably wish to rename the variable to something shorter by clicking on the variable name,
deleting the default variable name, and typing your preferred choice. You can also right-click on the
cube name, a menu open, then select Create Variable. In the command line the same is done with:

cube = obs.refs["level2_5"].product.refs["cubesContextRotated"].product.refs\
["cubesContextRotated_WBS-H-USB"].product.refs["cube_WBS_H_USB_1"].product

The use of the Spectrum Explorer with Spectral Cubes is described later in this manual in Section 6.2.2
and more generally in How to display the spectra in cubes in the Herschel Data Analysis Guide.

2.6.3.4. Level 2
The Level 2 HifiTimelineProduct (HTP) contains only science data (no calibration or reference data)
that has been converted to antenna temperature and sky frequency as described for cubes above. It
is recommended to inspect the data at Level 2 to identify whether there exist any baseline issues in
the data that could affect the quality of the Level 2.5 cube, necessitating some clean-up prior to re-
gridding.

At Level 2, one finds HTPs for each spectrometer and polarisation used in the observation for both
upper and lower sidebands. Inside each HTP is at least one box, which is a construct used to compactly
store the datasets in the observation. For OTF observations, there is one dataset per scan leg, numbered
from 0001. Each dataset contains one spectrum per read-out in that scan leg, where these are numbered
from zero. For DBS Raster maps there is one dataset for each position in the map, and each dataset
contains one spectrum, which is the average of all the data taken at that position.

The OTF Position Switch observation considered in this cookbook has seven datasets within the box,
corresponding to the seven scan-legs in the map, see Figure 2.60. Each dataset contains eighteen spec-
tra, which are convolved by doGridding to produce the spectra in the nine pixels per scan-leg in
the map.

The HTP is extracted from the Observation Context to work on by dragging the name of the HTP to
the Variables View or, in the command line by:

htp = obs.refs["level2"].product.refs["WBS-H-USB"].product

The datasets are extracted in a similar way, here we extract the first dataset in the OTF observation:

ds1 = htp.refs["box_001"].product["0001"]

If desired, one can extract one of the spectra within the dataset to work on, say the tenth spectrum.
In the command line this is done by:

recall spectra within datasets are numbered from 0
spectrum9 = extract(selection=[9], segments=[1, 2, 3, 4], ds=ds1)

You can look at each dataset individually by opening it in Spectrum Explorer with a double click,
or using the Open With → Spectrum Explorer option after right-clicking on the dataset number, see
Section 6.2.1 later in this manual, and the section How to display spectra of the Herschel Data Analysis
Guide for how to use the Spectrum Explorer to view spectra. Alternatively, you can look at all the
spectra in the HTP by opening the HTP itself in Spectrum Explorer using the Open With → Spectrum
Explorer option after right-clicking on the HTP name. This will open the HTP in the Data Tree, which

57

HIFI Cookbooks Build 15.0.3244

allows you to maintain the product structure within the HTP thereby allowing you to keep track of
spectra within scan-legs. See Section 6.2.3 later in this manual, and the section How to display spectra
of the Herschel Data Analysis Guide for how to use the Spectrum Explorer and the Data Tree to view
HTPs.

In Figure 2.61, we plot all the spectra in the Level 2 WBS-H-USB HTP of the OTF observation in the
Spectrum Explorer. The baseline level varies on a level approaching 10 K over the entire map and the
spectral cube would benefit from baseline correction prior to gridding.

Figure 2.61. The spectra in the Level 2 HTP WBS-H-USB in the OTF observation plotted in Spectrum
Explorer, the extent of baseline drift in the observation can be seen.

One particularly useful feature of the Spectrum Explorer for mapping data is the ability to inspect the
locations of the readouts within the map. This is done by plotting all the data in the HTP, and then
selecting the raster view of the Spectrum Explorer, followed by the location option, as described in
Section 6.2.3. We discuss this further in the next section.

2.6.3.5. Level 1
Science data at Level 1 is in units of Intermediate Frequency (IF) [MHz] and on the TA

’ temperature
scale [K]. The data is organised into HTPs for each spectrometer and polarisation used in the obser-
vation and still contains calibration and reference (off) integrations. The best way to identify which
are the science data is to use the summary table, which can be found in each HTP. You can double
click on the summary table to open it with the Dataset Viewer and you can also extract it from the
Observation Context in the same way you can a spectrum:

WBS_H_L1_SummaryTable=obs.refs["level1"].product.refs["WBS-H"].product["summary"]

Here we investigate what can been seen in the Level 1 data for the OTF observation. We show the
summary table for the WBS-H at Level 1 in Figure 2.62

58

HIFI Cookbooks Build 15.0.3244

Figure 2.62. The summary table for the WBS-H at Level 1 in the OTF observation.

The first three datasets in the HTP are calibration integrations; a tuning for the LO, a comb measure-
ment to use for frequency calibration, and a measurement of the hot and cold loads ("hc") that will be
used to calculate the bandpass used in the intensity calibration. The science (integrations in the map)
data are labelled “science” in the type column of the summary table, and are listed as "true" in the
isLine column. The off measurements are also labelled “science” in the type column but are listed as
"false" in the isLine column. Off spectra can be expected to contain standing waves (it is the subtrac-
tion of these from the on map integrations that removes the standing waves in the final science data).

You can compare the positions of each phase (on, off, calibration) in the observation from the Level
1 data using the location option of the raster mode in the Spectrum Explorer. In Figure 2.63, we show
what is seen in this view initially when inspecting the locations of all spectra in the WBS-H. Zooming
in (by drawing a box around the points) on the scattered points to the bottom right, and hovering the
mouse cursor over those points informs us that these are spectra 0-2 in dataset 1. These are the three
tuning measurements that were taken as the instrument was slewing to the map coordinates.

Figure 2.63. The location option in Spectrum Explorer's raster mode for the WBS-H at Level 1. Hovering
the mouse cursor over the three points to the bottom right (see inset), we see that these are the spectra in
dataset 1 (rectangled in red).

59

HIFI Cookbooks Build 15.0.3244

By zooming back out (right click on the plot) and then zooming in on the map region, we see the
map (science) data and the off positions. By hovering the mouse over these and comparing with the
dataset indices in the Summary Table, we can identify the tuning measurements and the hot-cold load
measurements (see Figure 2.64). In this observation the off positions were all taken at the same location
(within the pointing uncertainty).

Figure 2.64. The location option in Spectrum Explorer's raster mode for the WBS-H at Level 1, zooming
in (twice) on the map region.

Level 1 data for DBS Raster observations take the same form as for point mode DBS observations
(see Section 2.2.4.1). In Figure 2.65, we show the Summary Table for the WBS-H of observation
1342205481. Science observations, labelled as Science, contain the average of the reference subtract-
ed target position spectra. The science observations, labelled as isLine "true", were taken with the
telescope on source, while the science observations, labelled as isLine "false", were taken with the
telescope at the nod position. There is a pair of on source and on nod science observations for each
point in the map for as many repeats as were made of the map. For example, in Figure 2.65, we see
that there are nine such pairs, as the map was observed only once, but for a 3-by-3 raster map observed
with two repeats, we would see 18 pairs of science data at Level 1. Tuning and calibration observations
of the comb and hot-cold load measurements are labelled as described above.

60

HIFI Cookbooks Build 15.0.3244

Figure 2.65. The summary table for the WBS-H at Level 1 in the DBS Raster observation.

2.6.4. Spectral Map Mode Data Reduction
2.6.4.1. Data artefacts and data cleaning in spectral maps

Mapping observations suffer from the following types of data artefacts:

• Optical standing waves: These can be corrected fby using fitHifiFringe, see Chapter 12 for
more information.

• Electrical standing waves in bands 6 and 7: These are quite prominent in OTF maps due to the short
stability time compared with time between reference observations. They can be corrected by using
the HebCorrection task. See Section 12.4 for more information.

• Baseline residuals: In the case of OTF Position Switch data, these are very commonly parabolic
in shape. Baseline residuals can be corrected using the task fitBaseline. See Chapter 13 for
information on using fitBaseline.

• Spurs: These are usually flagged by the pipeline but if there is any feature in your data that you
would prefer be ignored by post-processing tools, you can use the flagTool task. See Section 11.5
for more information.

• OTF maps display a zig-zag: As described above in Section 2.6.2.3.

• Striping: During Performance Verification, it was shown that there should not be significant striping
once drift artefacts (baseline residuals) are removed. See HIFI AOT Observing Mode Release and
Performance Notes. As a consequence, maps of peak or integrated intensity should not suffer from
striping, but continuum maps and maps in the HEB bands (bands 6 and 7) which have longer settling
times than the SIS bands (bands 1-5) frequently do. For this reason, it is not recommended to use
OTF maps for continuum studies.

All tasks mentioned above can be included in the Interactive Level 2.5 pipeline prior to the creation
of cubes by dragging the task name from the Tasks View to the Interactive Pipeline panel in the HIFI
pipeline GUI. See Section 5.4.1 for more information.

The Level 2 data in the OTF observation above shows that the baseline levels have drifted by ap-
proximately 10 K over the map area during the observation. It is for this reason that OTF maps are

61

HIFI Cookbooks Build 15.0.3244

not recommended for continuum studies. The final map will benefit from correcting the data for this
baseline drift, and this can be done in HIPE using fitBaseline. See Chapter 13 for information
on using fitBaseline.

In the case of this observation, where each subband shows slightly different baseline behaviour with
subbands 1 and 4 showing more curvature than subbands 2 and 3 (see Figure 2.61), it is recommended
to fit each subband individually. Using a second order Polynomial gives best results.

2.6.4.2. Assessing OFF data for contamination

OTF maps

The smoothed and averaged off position spectra, uncorrected for the bandpass, for each spectrometer
and polarisation used in the observation are available for inspection in the Calibration Context under
Calibration → pipeline-out → Baseline.

These off spectra are only partially calibrated and not straightforward to understand. However, the OFF
data is also processed up to an equivalent Level 2 by the pipeline, and have USB and LSB products.
You can find the OFF positions for all spectrometers in the Calibration product in the Observation
Context; choose calibration → pipeline-out → ReferenceSpectra.

For a fix target, you will find one OTF calibrated OFF spectrum per map. For a moving target, there
will be several OTF calibrated OFF spectra per map, taken at different positions on the sky due to
the SSO tracking.

The OFF positions spectra can be run through the standard tasks such as fitHifiFringe, fit-
Baseline, and flagTool, and will also be corrected from Electrical Standing Waves by default.

DBS Raster maps

The pipeline calculates the difference in the two sky reference (chop) positions. If there is any emission
(or absorption) in one of the chop positions it can be seen in this difference. The position averaged
difference spectra for each spectrometer can be found in the Calibration Context in the Observation
Context. Look under Calibration → pipeline-out → ReferenceSpectra. On fixed and moving targets,
there is one OFF spectrum per raster position.

In Figure 2.66 we show a Level 2 WBS-V-USB spectrum (box_0001/0003) and the difference in the
chop positions, as found in the ReferenceSpectra in the Calibration Context. We see that the absorption
in the line in the Level 2 data is due to contamination in a chop position. The method to correct for
contamination is highlighted in the point mode DBS cookbook (see Section 2.2)

62

HIFI Cookbooks Build 15.0.3244

Figure 2.66. Contamination due to emission in chop position in the DBS Raster observation 1342205481.

2.6.4.3. Creating spectral cubes
The gridding of mapping data into spectral cubes is done with the doGridding task. The task can be
run as part of the Interactive Level 2.5 pipeline, or as a stand-alone task. If you include doGridding
in the Interactive Level 2.5 pipeline (possibly as the step after fitBaseline) then the cubesCon-
text in the Level 2.5 product will be over-written with the new cubes generated. Note that when
running the pipeline interactively like this, doGridding is only run once. So, if the map was per-
formed at a non-zero position angle, only the rotated maps will be created. As a stand-alone task do-
Gridding runs on Level 2 HTPs rather than Observation Contexts and will create a variable that is a
context containing cubes for each subband in that HTP. However you run doGridding, it will au-
tomatically take information about how the mapping observation was performed (beam size, number
of readouts, maps size etc) from the HTP metadata and use that to create the cubes. You only need
to tweak parameters in doGridding if your science goals require it, for example, if you require a
specific beam or pixel size in order to compare with other observations.

To add doGridding to the Interactive Level 2.5 pipeline, you select Interactive level 2.5 Pipeline
in the Interactive Pipeline panel in the hiPipeline task GUI, and then activate doGridding. See
Section 5.4.1 for more information. To run doGridding as a stand alone task you can either open
the task in the Tasks View on an HTP - the GUI will autofill with information from the HTP metadata
- or run in the command line with:

cubesContext = doGridding(htp=htp)[0]

You can learn in detail how to use the doGridding task in Chapter 15. Here, we merely show how
to create cubes for a selection of subbands, which saves memory, and with a specific pixel size:

Create cubes for subbands 1 and 4, with a pixel size of 16.36" square
#
cubesContext = doGridding(htp=htp, subbands=Int1d([1, 4]), pixelSize=[16.36])[0]
#

63

HIFI Cookbooks Build 15.0.3244

Extract the cube for subband 1
cube1 = cubesContext.refs["cube_WBS_V_USB_1"].product
Extract the cube for subband 4
cube4 = cubesContext.refs["cube_WBS_V_USB_4"].product
#
Pixels can also be specified to be rectangular:
cubesContext = doGridding(htp=htp, pixelSize=[10.0, 20.0])

2.6.4.4. Spectral cube analysis
Cubes can be viewed in HIPE using the Spectrum Explorer, and analysed using the Spectrum and
Cube Toolboxes . In addition, you can fit models to the spectra in the cube using HIPE's Spectrum
Fitting Toolbox, the Spectrum Fitter GUI .

The use of these Toolboxes is described in the links to the Herschel Data Analysis Guide given above
but here we give some tips for using the Cube Toolbox with HIFI data:

• Crop cubes spectrally, and spatially if needed, to help prevent long computation times. In addition,
tasks in the Cube Toolbox that involve line fitting, such as the computeVelocity task, can
produce poor results if there is more than one line present in the data.

• The computeVelocity task in the Cube Toolbox provides a means to produce integrated maps
using either a Gaussian fit to the line in the data, or a moments computation. Lines in HIFI spectra
are rarely Gaussian in nature and this causes the Gaussian fit approach to produce poor results. The
moments calculation works for simple lines shapes. However, the complex line profiles typically
seen with HIFI's high spectral resolution are best treated by fitting multi-component lines in the
Spectrum Fitter, and taking the integrated flux output from that.

• Always remove baselines prior to making calculations, particularly when creating integrated maps.
It it recommended to do this prior to creating the cube.

• When using the computePVMap task, check the correctAspectRatio radio button to set this pa-
rameter to "True". HIFI data typically has a large spectral range compared to spatial range and this
causes display problems with the PV map unless the aspect ratio is corrected.

• Sometimes, cube images produced by the Cube Toolbox do not display well in the Standard Cube
Viewer and may even appear to be blank. To remedy this, right click on the image (or where it
should be) and select the Edit cutLevels option, then set the cut levels to one of the choices available.

2.7. Spectral Scan Mode
Last updated: 27 July, 2015

2.7.1. Introduction
The Spectral Scan observing mode is one of the three main AOTs (Astronomical Observing Template)
used with the HIFI instrument. It allows to build spectra over spectral ranges larger than the instanta-
neous bandwidth of the Wide-Band Spectrometer (4 GHz in bands 1 to 5, 2.4 GHz in bands 6 and
7) and cover large line surveys at very high spectral resolution. This cookbook describes the strategy
used to collect the data and addresses the main issues to take into account when working with such
data from the archive.

2.7.2. How Spectral Scan Mode observations are taken
2.7.2.1. Observing Principles

The Spectral Scan observations consist in taking individual spectra at semi-regular frequency steps
over the spectral range targeted by the observer. Because HIFI works with Double-Sideband (DSB)

64

HIFI Cookbooks Build 15.0.3244

receivers, there is an intrinsic degeneracy in the sky frequency to be assigned to a given channel of the
spectrometers. Because lines in the respective Upper and Lower Sidebands (USB and LSB) will move
in opposite directions in observations taken between two close frequencies, observing a given sky
frequency several times with slightly different Local Oscillator (LO) tunings will allow to discriminate
between the two sidebands. The reconstruction of the Single Sideband (SSB) spectrum from the DSB
spectra is called deconvolution, and will be discussed in more details in Section 2.7.4. Figure 2.67
illustrates the individual Level 2 spectra collected over a short spectral scan.

Figure 2.67. Example of WBS spectra collected over a mini-scan in band 1a between LO=492.7 GHz and
LO=493.9 GHz (8 settings, Obsid 1342191505). Each colour corresponds to a different LO tuning. The
sky frequency scale used here is the LSB one. Those lines falling at the same sky frequency at each tuning
belong to the LSB (e.g. at 489.75 GHz), while those falling at different frequency at various tuning belong
to the USB.

The number of spectra covering the same sky frequency is driven by the so-called Redundancy, which
is one of the input parameters of the Spectral Scan AOT and can vary between 2 and 12. Combined to
the lower and upper ends of the spectral range to be covered, these parameters define the total number
of spectra collected to build the spectral survey. They also define the exact LO tuning steps that will
be used to build the redundancy. These tunings will use a slightly irregular stepping, necessary for the
deconvolution algorithm to work optimally (strictly identical steps would create aliasing).

Spectral Scans can only be done per LO bands so that a survey over the whole HIFI tuning range
involves at 1east 14 Obsids. Partial scans are also possible to target a particular spectra range – these
mini-scans are particularly useful in sources with crowded spectra where redundancy is needed to
disentangle the contribution from the respective sidebands. Like Point Mode observations, Spectral
Scans observe along one single line-of-sight.

Spectrometers in use

The default spectrometer in Spectral Scan observations is the WBS. However, the HRS may be used
as well depending typically on the requested redundancy. This is not something chosen by the User but
is automatically switched by the uplink engine. The HRS data do not have the necessary redundancy
to achieve a decent deconvolved SSB spectrum, however they will provide complementary data at
higher spectral resolution.

Data noise in Spectral Scan

The sensitivity of the HIFI detector is usually not constant over the tuning range of a given band.
If strictly the same time is spent at each LO tuning, some spectral ranges will suffer from degraded
noise. In order to partially compensate for that, the observing time at LO frequencies known to be less

65

HIFI Cookbooks Build 15.0.3244

sensitive on average will be doubled. Those duplicated spectra will be kept separate at the Level 2,
i.e. they will not be averaged.

2.7.2.2. Reference Schemes
There exist three flavours of the Spectral Scan mode, distinguished by the referencing scheme in use
to collect the data, and usually optimised for the source geometry and/or nature (see also Section 2.2):

• Double Beam Switching (DBS), available both in Slow or Fast-Chop sub-modes

• Frequency Switching (FSW), with or without a Reference

• Load-Chop (LC), with or without a Reference

For each of the above scheme, we refer to the corresponding Single Point mode Cookbook for details
about the observing mode characteristics: Dual Beam Switch (Section 2.2), Frequency Switch (Sec-
tion 2.4), and Load Chop (Section 2.5).

Irrespective of the chosen scheme, the sequence of CAL-ON-OFF observations is repeated at each
individual LO tuning, and put side-by-side in such a way that it optimises telescope slews as much
as possible.

2.7.2.3. Observing Timeline
Figure 2.68 illustrates the different observing blocks involved in a Spectral Scan observation for the
particular case of the DBS referencing scheme. For each LO tuning (cyan box), a calibration block
will be taken (yellow, red and blue boxes in Figure 2.68) in-between the two ON/OFF target blocks
(green boxes). The difference shades of green correspond to different LO frequencies.

Figure 2.68. Sketch illustrating the observing sequence considered in Spectral Scans combined with DBS.
Observing blocks are labeled as in the legend showed at the bottom right.

2.7.2.4. Frequency Grouping
Early in the Herschel mission, the idea of sharing calibration measurements over several consecutive
LO tunings was considered as a way of optimising use of observing time. The observing time efficiency
was then improved by acquiring several LO tuning points before visiting the calibration sources, or
slewing to e.g. move to the second nod position in DBS observations. This is illustrated in Figure 2.69,
which follows the same colour code as in Figure 2.68. This approach was tested during the Performance
Validation (PV) phase but did not achieve the expected data quality when processed with the standard
pipeline. As a consequence this version of the Spectral Scan was never rolled out to the Users. A certain
number of Obsids taken in this fashion is however now publicly available in the Herschel Archive.
The Users should be warned that part of those data is suffering from severely distorted baselines and
very special care need to be taken when interpreting those data (see also the disclaimer note for public
calibration data).

66

HIFI Cookbooks Build 15.0.3244

Figure 2.69. Same as in Figure 2.68 for Spectral Scans with a frequency grouping of 3 combined with DBS.
The three shades of green are used here to represent the three different LO tunings combined within one
single calibration block.

2.7.3. Inspecting Spectral Scan Mode data

2.7.3.1. Data Structure
The Spectral Scan data structure is similar to that of the equivalent Single Point mode data, but contains
more data due to the typically large number of LO tunings in an Obsid. Figure 2.70 illustrates the
summary tables of a Spectral Scan at the Level 1, where calibration and OFF phase observations are
still present. The measured LO frequency for each spectrum is listed in this table.

In this particular case, one can see that HRS data were acquired during the observation. Note also that
the very first dataset (“tune”) corresponds to an adjustment of the WBS attenuator levels, and should
not be confused with the LO tuning blocks, which are not listed in this summary table as they don’t
contain any spectra.

Apart from the first frequency, which is bracketed by a calibration block, one can recognise the se-
quence illustrated in Figure 2.68: the calibration block, composed of a “comb” (WBS frequency cali-
bration) and an “hc” (code for “Hot-Cold”, for the bandpass and flux calibration), is followed by the
ON- and OFF-target blocks (here corresponding to the two DBS nodding phases, see Section 2.2).
The LO tuning takes place right before the calibration block and has a fixed duration that depends on
the frequency. Tuning indeed implies some thermal stabilisation of the LO chain so that a dead time
allowing for this is allocated into the tuning block. As we will see in 3.4, this dead time may be too
short in some circumstances and lead to data imperfection.

Figure 2.70. Observation context of a Spectral Scan, and summary table at Level 1 (here only partial)

67

HIFI Cookbooks Build 15.0.3244

At Level 2, only ON-target spectra are maintained and there will be one spectrum per individual LO
tuning. Note that in case a given LO frequency is observed twice, the corresponding data will not
be averaged but rather kept independent. It is possible to visualise all individual WBS subbands of a
given polarisation in the same plot, as was illustrated already in Figure 2.67. For this, you just have
to open the Hifi Timeline Product (HTP), i.e. one of e.g. WBS-H-USB, WBS-H-LSB, etc, with the
Spectrum Explorer (hyperlink to SE doc), and select all spectra contained in it.

Figure 2.71. Observation context of a Spectral Data, and example spectra from the Level 2 products. Note
the residual standing wave in those data.

2.7.3.2. Level 2.5: Deconvolved Spectra

In comparison to Single Point mode data, the Spectral Scan observation context contains an additional
Level 2.5 product hosting the result of the deconvolution task run on the Level 2 data for each spec-
trometer. These data are also reflected in the browse product featured at the upper right corner of the
observation context visualiser, as well as quick-look figure in the HSA. It is important to note that
the data at Level 2.5 are the straight result of the Level 2 data deconvolution and that no particular
data cleaning is performed prior to that. This means that any artefact still present at Level 2 will be
propagated. In that sense we warn that Level 2.5 products may not be fit for science usage and we
recommend to carefully cleaning the Level 2 data before re-running the deconvolution task. Some
recipes are given in the following section.

68

HIFI Cookbooks Build 15.0.3244

Figure 2.72. Level 2.5 deconvolved spectra for the WBS-H data in Obsid 1342191505. Note the residual
standing wave resulting from imperfect data quality at the Level 2. Note also the gap between the lower
and upper side band sky frequency ranges due to the limited LO tuning coverage.

Because of its Double Sideband nature, HIFI detects the continuum in both the Lower and Upper
Sidebands simultaneously and they add up in the DSB data at Level 2. Typically, for a Sideband
Ratio-balanced receiver, the DSB continuum will be about twice its SSB value. The deconvolution
algorithm is capable of recovering the SSB information both from the lines and from the continuum,
so that the continuum at Level 2.5 has a single sideband scale too. Whether this continuum is accurate
or not on an absolute scale is independent of the deconvolution process and very much depends on the
quality of calibration in the data fed into the deconvolution. This means that any artefact affecting the
continuum in the Level 2 products will propagate as a continuum error in the deconvolved spectrum.

2.7.4. Spectral Scan Mode Data Reduction
2.7.4.1. Data Artefacts and Cleaning

The typical data artefacts associated with Spectral Scan data do not differ too much from those usually
encountered with their associated Single Point mode observations – one exception may be the baseline
distortion involved by potential LO tuning settling time issue, which is discussed in more details in
the following sub-section.

The main data problems one can find in Spectral Scan can be summarised as follows:

• Standing Waves:

• Optical standing waves can be present in the data, with typical periods depending on the band
used (see this report for more details). Those baseline modulations are usually enhanced in the
presence of non-negligible continuum (see Figure 2.71), and can become really severe on planet
observations. For these standing waves, the fitHifiFringe task (see Chapter 12) usually
does a pretty good job – it is recommended to not use more than 3 components.

• Additionally, bands 6 and 7 are affected by a peculiar Electrical Standing Wave (ESW) that forms
behind the mixer in the IF (Intermediate Frequency) amplification chain (see Figure 2.73 for an
example). This modulation is not sinusoidal in nature and can only be dealt with by fitHi-
fiFringe in case of very simple isolated lines (i.e. narrow, without wings). For more complex
cases, a dedicated algorithm has been developed (so-called matching technique) and is offered
in the hebCorrection task (see hebCorrection and Section 12.4). From HIPE 13.0 onwards,
the ESW are automatically corrected in the pipeline by the task doHebCorrection, which
applies prepared solutions stored in the HIFI calibration product. Not every observation is per-
fectly corrected, unfortunately, though we are pursuing those judged in need of improvement.
Having said that, it has been observed that Spectral Scan are usually less sensitive to this kind of
modulation than Single Point or Mapping modes – there can however be exceptions.

• Spurious spectral features:

69

HIFI Cookbooks Build 15.0.3244

• There are two main sorts of spurious features in the HIFI data: narrow spur lines and saturation
(probably a very broad form or the narrow spur). While the HIFI pipeline does its best to auto-
matically detect and flag those, it is possible to fine-tune this data flagging with the flagTool
task (see Section 11.5).

• Residual baseline slopes/structure:

• In addition to the spurious features, it is still possible to have residual baseline structure, usually
in the form of a slope or a more complex shape. These residual can be corrected using polynomial
fits to the baseline with the fitBaseline task (see Chapter 13). It should be noted that this
kind of problems is particularly strong in Spectral Scans taken in FSW or LC mode without a
reference, as well as Spectral Scans using FSW in bands 6 and 7. Although all these options were
strongly discouraged, it is possible to find such data in the archive (part of them belonging to
the Performance Verification Phase) so very special care needs to be taken if you want to exploit
such data-sets.

Figure 2.73. Illustration of an Electrical Standing Wave in a Spectral Scan (Obsid 1342244537) at two
different LO tunings. The data are here shown at Level 1 on an IF scale. As can be seen a continuum offset
is usually also associated to the data distortion.

One of the fundamental points in Spectral Scan data processing is that any of the artefacts still present
in the Level 2 data fed into the deconvolution algorithm will be treated as valuable information to
build the SSB solution and can therefore severely distort the output result. Figure 2.74 illustrates the
progressive improvement (and residual artefacts) in the deconvolved data when taking or not into
account some of the above-mentioned effects. In the final panel (c), one can see that the flagging of
some of the spurious areas can result in small portions of the deconvolved data being empty if too
many channels need to be thrown away.

70

HIFI Cookbooks Build 15.0.3244

Figure 2.74. Output of the deconvolution at three levels of data cleaning in Obsid 1342190099. The top
panel uses un-corrected data at Level 2, where spurs were still present and un-flagged (note the presence
of negative ghosts as well). The middle panel uses data with spurs flagged but residual baseline structure
still present. The lower panel uses data with the fringes and baselines corrected.

We indicate in the following two tables the flags that are relevant to the data cleaning of Spectral Scan
data, in particular those recognised by the deconvolution task. We recall that rowflags refer to the
whole spectrum, while channel flags apply to channel ranges – see the HIFI Data Reduction Guide,
Chapter 10 for more details.

Channel Flag Name Description Comment

SPUR_CANDIDATE Potential spur at this channel Set by pipeline

BRIGHT_LINE Flag to denote a bright line Set by User

IGNORE _DATA Flag to denote channels to be
ignored

Set by User

Rowflag Flag Name Description Comment

SUSPECT_LO Potentially bad spectrum Set by pipeline

IGNORE_DATA Flag to denote spectrum to be
ignored

Set by User

Note that the SUSPECT_LO rowflag is based on an a priori table of well known unruly LO frequen-
cies, but does not necessarily mean that the data are corrupted. Any of the above flags can be added/
undone by the flagTool task. We describe in more details in Section 2.7.4.3 how some of the de-
convolution task options can be adjusted in order to honour, or not, some of the above flags.

2.7.4.2. LO Tuning Settling Issues
There is an intrinsic thermal settling time involved in the HIFI electronics every time the instrument
has to be configured to observe at a new frequency. In Spectral Scans, these re-tuning occur at a
relatively quick pace since only limited time can be afforded at each frequency point (typically up to

71

HIFI Cookbooks Build 15.0.3244

10 seconds ON-target per LO tuning). Depending on the frequency, it may happen that the settling
time exceeds the dead time allocated to the tuning block before starting the observation. In this case,
part of the spectra may be acquired under sub-optimal stability conditions and result in imperfect
baseline calibration at the Level 2. This problem usually occurs at isolated ranges of a given band,
as illustrated in Figure 2.75.

Figure 2.75. Example of LO settling time issues in part of a Spectral Scan in band 1a (Obsid 1342232978).
This plot shows the collection of all WBS-H subband data collected at Level 2 on an USB scale. The settling
time issues occur here at USB frequency around 542 GHz.

We currently have no particular solution for this instrumental effect in the pipeline. Obviously these
baseline outliers can have very severe impact on the quality of the deconvolved data. There are dif-
ferent alternatives to circumvent this problem:

• The brut force approach would consist in flagging those spectra as BAD_DATA using the flag-
Tool so they get totally ignore in further processing.

• If possible, it is however preferable to correct the baseline distortion using tasks such as fitBase-
line although this would probably not allow to recover any continuum information (if applies).

• In case the Level 2 spectrum at a given affected frequency consists of the average of several indi-
vidual Level 1 spectra (i.e. the total integration time was large enough that it implied more than one
chopping cycle), a more sophisticated way can be envisaged at Level 1 whereby typically the first
of those Level 1 chopping cycle spectra is flagged so it is ignored in the average used to form the
Level 2 data. This usually leads to much cleaner baseline quality at the expense of increased noise.

2.7.4.3. Deconvolution Tricks

How to deconvolve more than one observation at a time

By default the Level 2.5 products only consider the Level 2 data from its own Obsid. This means that
data at the lower and upper end of the scan will sample sky frequencies only in one sideband. When
spectral surveys have been taken over contiguous frequency ranges, it is therefore advantageous to
perform the deconvolution over a combination of several Obsids. Indeed, in this case, band edges will
benefit from data available in both sidebands, allowing to better constraint the SSB solution, as well
as improving the noise in those data. This is achieved with the following command lines (here for
example with 2 Obsids):

obs1 = getObservation(obsid1)
obs2 = getObservation(obsid2)
obs_array = [obs2]
decon_result = doDeconvolution(obs = obs, obs2_array = obs_array)

Obviously this will only make sense if the combined Obsids share the same line of sight. If not, the
task will complain.

72

HIFI Cookbooks Build 15.0.3244

Deconvolution and flagged spurs

As explained in Section 2.7.4.1, there are several ways of masking parts of the spectrum containing
spurious information. In terms of deconvolution, both row and channel flags IGNORE_DATA will
always be discarded, regardless of any option. However, flags concerning spurs will or will not be
taken into account depending on the spur_rejection option. It is sometimes the case that flags auto-
matically set, like SPUR_CANDIDATE or SUSPECT_LO are too conservative and mask useful data.
It is recommended that you review those with the flagTool task and remove them if applies. When
this is carefully done, the best option for spur_rejection should be REJECT_SCAN_WITH_SPURS.

Deconvolution of strong lines

The deconvolution algorithm can create spectral ghost features (usually showing up as negative fea-
tures) in the neighborhood of relatively strong lines (typically several tens of Kelvins). This is illus-
trated in Figure 2.76. In order to recover both weak and strong spectral line emission in the SSB spec-
trum (level2_5 -> myDecon -> myDecon_WBS-H -> dataset), it is necessary to mask those lines in
the Level 2 (using the BRIGHT_LINE mask) and then run the deconvolution in two steps, with and
without the ignore_bright_line option selected. This is explained below.

Figure 2.76. Spectral Ghost artefacts from the deconvolution of a strong line (standard Level 2.5 products
from WBS-H in Obsid 1342215923). The strong 12CO line lies at 576.5 GHz (70 K) and injects negative
signal in the deconvolution in the range 561-564 GHz.

By default deconvolution runs ignoring any flag on the bright lines, i.e. it corresponds to:

decon_bright_notflagged = doDeconvolution(obs = obs, ignore_bright_line = 0)

Once this is done, an inspection of the output (level2_5 -> myDecon -> myDecon_WBS-H -> dataset)
should indicate to the user where bright lines might have resulted in negative ghost, like in Figure 2.76.
The User then needs to go back to the Level 2 data and use the flagTool task to flag all channels
of the corresponding bright lines with the flag BRIGHT_LINE. Note that this has to be done for all
tunings where the bright line is present in a spectrum (usually appearing both in the USB and in the
LSB). The deconvolution can then be run again:

decon_bright_flagged = doDeconvolution(obs = obs, ignore_bright_line = 1)

In the above result, the bright line will be totally absent from the SSB spectrum, but so will be the
negative ghosts. It is then a matter of merging the two above deconvolution outputs in order to basically
inject the isolated signal of the bright line recovered from decon_bright_notflagged into the spectrum
from decon_bright_flagged. As an example, for the 12CO line at 576.5 GHz:

We now need to concatenate those two spectra only at the location of the bright
 lines

73

HIFI Cookbooks Build 15.0.3244

Extract SSB spectra from decon output
decBright = decon_bright_notflagged["dataset"]
decNoBright = decon_bright_flagged["dataset"]

Extract flux from decBright in channels where decNoBright is NaN
freqInd = decNoBright["flux"].data.where((IS_NAN(decNoBright["flux"].data)))
decNoBright["flux"].data[freqInd] = decBright["flux"].data[freqInd]

Deconvolution of Spectral Scan in FSW mode

Taking Spectral Scan in combination with the FSW referencing scheme was essentially limited to the
Performance Verification phase, and in effect almost no science program did finally use it over the
mission. In total there are 19 Spectral Scans taken in this fashion in the Herschel Science Archive
(only four are not from the Calibration programme). In general the data quality of these data meets the
general level achievable with other referencing schemes (with the exception of bands 6 and 7 where
it does not do a good job at all), however there can be issues when it comes to deconvolving those
data. Figure 2.77 and Figure 2.78 illustrate the presence of ghosts resulting from imperfect treatment
of the negative phases of the FSW sequence. We recommend using these data and the outcome of their
deconvolution with very special care, and favour any equivalent dataset taken with another referencing
scheme such as DBS or Load Chop.

Figure 2.77. See Figure 2.78 caption

Figure 2.78. Spectral Scan FSW data in Obsid 1342190186. The upper panel (Figure 2.77) shows part of
the Level 2 spectra from the WBS-H in the USB scale. The water line at 557 GHz (from the LSB) can be
seen on the lower end of the spectrum, together with the 12CO (5-4) seen both in the USB and LSB (upper
end of the spectrum). The lower panel (Figure 2.78) shows the outcome of the deconvolution algorithm (on
baseline-corrected Level 2 data) around the water and 12CO lines. Note the ghost features associated with
the negative phase of the FSW and separated by the frequency throw.

2.7.4.4. Assessing emission in OFF data
It is possible to check whether the OFF position data contain potential line contamination from a non-
blank sky position. As of HIPE 13.0, those data are readily available for Spectral Scan taken in any

74

HIFI Cookbooks Build 15.0.3244

mode, and can be found in the calibration product (calibration > pipeline-out > ReferenceSpectra) –
see Figure 2.79.

The OFF data are now processed up to an equivalent Level 2, and have USB and LSB products.
For Spectral Scan observations, on fixed and moving target, there is one OFF per LO Tuning, per
backend/sideband. OFF positions spectra can be run through the standard tasks (fitHifiFringe,
fitBaseline, flagTool). Additionally for Spectral Scan, the OFF positions can be run through
the deconvolution to be directly compared to the ON-target Level 2.5 data (use option use_reference
from doDeconvolution). Note that OFF positions will also be corrected from Electrical Standing
Waves by default.

Figure 2.79. Example of Reference Spectrum at a given LO tuning for Obsid 1342191505. Since the spec-
trum is made of a single difference of two OFF spectra taken at different chopper positions, the optical
standing waves are not as optimally corrected as in a double-difference calibration.

2.7.4.5. Combining data from the two polarisations
Although the H and V mixers do not strictly point at the same position in the sky (the offset between the
two is small compared to the beam at the applicable frequencies), it is often useful to combine the signal
from the two to improve the signal-to-noise. This combination can be done after the deconvolution
using the accumulate task.

deconTotal = accumulate(ds = [deconH,deconV], pointingTolerance = Double.NaN)

It is also useful to compare the respective H and V deconvolution outputs to check for consistency
in the detection of weak lines.

2.7.4.6. Exporting deconvolved data
The deconvolution output can be exported to a FITS file:

simpleFitsWriter(deconTotal,"/Your/Path/deconTotal.fits")

It can also be exported to a Class-compatible FITS file:

hifiDeconToClass(deconTotal,filename = "/Your/Path/deconTotal.fits")

75

Build 15.0.3244

Chapter 3. Tour of a HIFI
ObservationContext

Last updated: 4 February, 2016

3.1. Data Primer
All Herschel data comes from the HSA in the form of an ObservationContext, which is comprised of
various layers of science data, auxiliary data, and other information about your observation in an onion
skin type of structure. In this chapter we describe what you will find in an HIFI ObservationContext.
First we give a short introduction to the structure of Herschel HIFI data storage, starting with the
smallest data structure, the dataframe, and work our way up to the outer skin of the Observation
Context.

3.1.1. Data frames
The Herschel spacecraft stored data onboard (up to two days' worth) until it was transmitted to Earth.
Science data, such as a WBS spectrometer readout, came naturally in sets, or Frames. Data frames
were packetised for transmission from the Herschel Space Observatory to Earth. Along with House
Keeping (HK) data, they were downlinked to the tracking station and thence to the Mission Operation
Centre (MOC) at ESOC in Darmstadt, or to the latter directly. The data packets then flown from the
MOC to the Herschel Science Centre (HSC) at ESA's European Space Astronomy Centre (ESAC) in
Madrid. The HIFI ICC copied the data from HSC, as well.

At ESAC, the data packets were 'ingested' into a database and the science data frames were reconsti-
tuted.

The combination of HK and science data created a SpectrumDataset, or spectrum in more common
language.

3.1.2. Data Products
A Herschel Data Product consists of metadata keywords, tables of SpectrumDatasets, and the history of
the processing that generated the product. There are various product types (Observation, Calibration,
Auxiliary, Quality Control, User Generated).

The types of Observation Data Product for HIFI is called a HifiTimelineProduct, or HTP. This is a
time-ordered series of SpectrumDatasets comprising all the integrations in the observation.

For more information about Herschel products, see the Product Definitions Document .

3.1.3. Contexts
A Context is a subclass of Product, a structure containing references to Products and necessary meta-
data. A Context can contain Contexts, giving rise to Context 'trees.' Types:

1. ListContexts (for grouping products into sequences or lists, hardly used)

2. MapContexts (for grouping products into key value dictionaries)

3.1.3.1. Herschel Observation Context
A MapContext instance serves as the organisational product unit for the Herschel Data Processing
system. It contains the following contexts:

1. Level-0, Level-0.5, Level-1, Level-2, Level-2.5, & Level-3 (optional) Contexts

76

Tour of a HIFI ObservationContext Build 15.0.3244

2. Calibration Context

3. Auxiliary Context

4. Quality Context

5. Browse product

6. Trend Analysis Context

7. optional Telemetry Context: not by default, only when the HSC deems it necessary because of a
serious problem in the processing to Level-0 data.

The uses of these Contexts will be described in Chapter 5.

Note that the descriptive modifiers "Product" and "Context" are often dropped conversationally.

3.2. HIFI Science Data
HIFI Science data is found in the Level 0, 1, 2, and 2.5 Contexts and is the result of each stage of the
pipeline (data at Level 0.5 is removed in order to conserve memory as it is less useful). The availability
of data from each level of the pipeline allows you to easily check for problems in the data that are better
seen at earlier stages of processing, such as individual integrations showing signs of poor thermal
stability ("bad scans") or erroneously repeated calibration observation datasets that cause the pipeline
problems (because the pipeline expects data in a set pattern of science and calibration integrations
for each observing mode). Additionally, the presence data from each stage of processing means that
you do not need to re-pipeline the entire observation if you wish to re-run or modify only, say, the
Level 2 pipeline.

The following is found in the Level 0 to 2.5 Contexts:

• Level 0

The Level 0 Context contains a HifiTimelineProduct (HTP) for each spectrometer used in the
observation, which contains a dataset for each integration in the observation, and as a consequence
contains more datasets than higher levels of processing. The Level 0 Context also contains a Quality
Product based on checks on the Level 0 data for telemetry issues common to both the WBS and
HRS (in the CommonTm product), and for checks on the data frame count and quality (in the Quality
product for each spectrometer).

Level 0 is the most raw that you will see your data. It has been minimally manipulated into a HTP,
had pointing information from the satellite associated with it, and undergone several "sanity checks"
to flag any incidences of housekeeping parameters, such as the mixer currents, being out of allowed
limits. Additionally, information from the Uplink product, which contains information calculated
by HSpot concerning how the observation should be carried out, e.g., the spacing between scan legs
in a map, is copied to the HTP and metadata. Level 0 data has units of channel number and counts.

• Level 0.5

Level 0.5 science data is removed upon the successful creation of a Level 1 product but you
can recreate it by re-running the pipeline up to Level 0.5, or to higher levels, and using the re-
moveLevel0_5=False option in the command line pipeline, see Section 5.2.

Quality information is retained at Level 0.5, and it contains the WBS-H and WBS-V comb, and
zero quality checks.

• Level 1

The Level 1 context contains HTPs for each spectrometer used in the observation and a Quality
product.

77

Tour of a HIFI ObservationContext Build 15.0.3244

Level 1 data is frequency and intensity calibrated, and also corrected for the velocity of the space-
craft. Level 1 denotes the stage of processing that the ICC believes can safely be done automatically.
Data processed to Level 1 is in the IF scale (in MHz) and on the TA

’ temperature scale (in K).

The quality product at Level 1 contains, for each spectrometer used in the observation, the results
of the phase checks done by the Level 1 pipeline (in PhaseChecks and, in the FlagsSummary
product. The FlagsSummary contains a table summarising all the row flags that have been assigned
to the individual Level 1 spectra of a given spectrometer. The table is complementary to the list of
spurs detected by the pipeline, and compiled in the TrendAnalysis context (see Section 3.7). Row
flags can also be graphically visualised on individual data-frames in the Spectrum Explorer (see
Section 6.2). The list of HIFI row flags can be found in section Section 10.3.

• Level 2

The Level 2 Context contains an HTP for each spectrometer used in the observation. Level 2 data is
converted to antenna temperature scale (TA

* in K) and to sky frequency (GHz). Spectra are averaged
together, per each spectrometer, for each LO setting, and each spatial position in the observation.
This results in a single spectrum (for each spectrometer) for point observation mode, averages per
LO setting for spectral scans, and spectra averaged per position and LO setting for maps (OTF
maps are made by scanning continuously and are not averaged). These data products may be at a
publishable quality level, although corrections for baseline issues are likely required, and should be
suitable for Virtual Observatory access.

• Level 2.5

The contents of the Level 2.5 Context depend on the observing mode. The data is derived from the
Level 2 data and is combined into cubes in the case of mapping data, deconvolved to produce a
single sideband product in the case of Spectral Scans, or the HTP are stitched, folded (if Frequency
Switch) and converted to simpleSpectrum format in the case of point mode observations.

Note that the Quality Products provided with each level of data processing are the results of checks
done and are always populated with information even if nothing is found to be wrong. In addition,
some of the quality checks are done for trending purposes. This is in contrast to the quality Context
(below the logObsContext in the ObservationContext tree) that is only filled with reports of potential
problems with the quality of your data (see Section 3.6).

You can find more information about the pipeline processing steps in Chapter 4.

3.3. HIFI Calibration Data
The CalibrationContext contains all of the data passed to the pipeline for calibration (Downlink), the
calibration files created by the pipeline (Pipeline-out), and information about how the observation was
carried out (Uplink). The contents of these are described below. Products tables can be plotted using
right-click on "Open With / TablePlotter".

The Downlink calibration node contains the following:

Node Contents Description

Eng DiplexerCoefficients Table containing the diplexer coefficients
for the diplexer bands (3, 4, 6 and 7).

Generic BeamProfiles Tables containing the HIFI beam pro-
files. There is a node containing the ta-
bles for the 2D beam model and a node
containing the tables for the azimuthal-
ly-averaged (1D) beam models. Beam
models are provide for two spot frequen-
cies, per mixer band for each polarisation
H and V. Spot frequencies are chosen to

78

Tour of a HIFI ObservationContext Build 15.0.3244

Node Contents Description
be close to the central frequency of the
LO subbands a and b, respectively (see
Chapter 8).

Spurs Obsolete. Historically, tables listing
known LO impurities. Now replaced by
spurFlags.

spurFlags List of spurs to be applied as channel and
rowflags to a given Obsid. For point and
map observations, the vast majority is
based on a spur predictor model and la-
belled as "SPUR_WARNING".

apertureEfficiency-H, apertureEf-
ficiency-V

Tables listing the aperture efficiencies for
each band for the H and V spectrometers,
respectively. For each spectrometer there
is one node containing the efficiencies
for a Gaussian beam approximation (pro-
vided for backwards compatibility), e.g.
apertureEfficiency-H, and a sec-
ond node containing the efficiencies for
the 2D beam model, e.g., aperture-
Efficiency2dBeams-H (see Chap-
ter 8).

beamEfficiency-H, beamEfficien-
cy-V

Tables listing beam efficiencies for each
band for the H and V spectrometers, re-
spectively. For each spectrometer there
is one node containing the efficiencies
for a Gaussian beam approximation (pro-
vided for backwards compatibility), e.g.
beamEfficiency-H, and a second
node containing the efficiencies for the
2D beam model, e.g., beamEfficien-
cy2dBeams-H (see Chapter 8).

beamWidth-H, beamWidth-V Tables listing beam widths for each band
for the H and V spectrometers, respec-
tively. For each spectrometer there is
one node containing the beam widths for
a Gaussian beam approximation (pro-
vided for backwards compatibility), e.g.
beamWidth-H, and a second node con-
taining the beam widths for the 2D beam
model, e.g., beamWidth2dBeams-H
(see Chapter 8).

chopperPositions Table listing the voltages required to
point the chopper at each load. There is
one table for the prime (not used after OD
81) and redundant sides.

chopperThrows Table listing the chopper throws (in de-
grees) for each band.

couplingEfficiency-H, coupling-
Efficiency-V

Tables listing the efficiency in coupling
to the hot and cold loads for each band
for the H and V spectrometers, respec-
tively.

79

Tour of a HIFI ObservationContext Build 15.0.3244

Node Contents Description
forwardEfficiency-H, forwardEffi-
ciency-V

Tables listing the forward efficiency for
each band for the H and V spectrometers,
respectively.

hebCorrection Spline models and fit results of standing
waves found in the HEB mixers (bands 6
and 7). These are also known as ESW.

mixerCurrentTolerances Table listing the mixer current tolerances
for each band.

sideBandGainIF-H, side-
BandGainIF-V

Tables listing the sideband gain coeffi-
cients in the IF for each band for the H
and V spectrometers, respectively.

sideBandGainLO-H, side-
BandGainLO-V

Tables listing the sideband gain coeffi-
cients in the LO for each band for the H
and V spectrometers, respectively.

smoothOffWidth-H, smoothOf-
fWidth-V

Tables listing the smoothing widths in
MHz, per band, to be used in the pipeline
for Load Chop and Frequency Switch ob-
servations for the H and V spectrometers,
respectively.

uncertaintyModel-H, uncertainty-
Model-V

Tables containing the uncertainties (per-
centages) related to the various error bud-
get components of the HIFI flux calibra-
tion, for the H and V spectrometers, re-
spectively (see Chapter 9).

HRS-H/HRS-V CalHrsPowCorr Gain non-linearity correction table used
in HRS pipeline.

CalHrsQDCFast Table needed to perform an approximate
correction of the quantisation distortion
of the correlation functions of HRS. This
table is not used as a standard part of the
HRS pipeline.

CalHrsQDCFull Table needed to correct the quantisation
distortion of the correlation functions of
HRS. This calibration is used in standard
processing of HRS data.

Level 0 APE Measured absolute pointing error for dif-
ferent time periods of Herschel opera-
tions.

BBids Table listing BBids used in the pipeline
to identify observing mode and phases of
the observation.

CleanDF Tables of observations (obsids) which re-
quired slightly corrupted by the on-board
software.

HK Table listing house keeping parameters,
their units, and a description.

UpConvertLo Contains the upconversion factors (in the
metadata).

hkThreshold-H, hkThreshold-V Contains tables listing the threshold pa-
rameters for the H and V spectrometers,

80

Tour of a HIFI ObservationContext Build 15.0.3244

Node Contents Description
respectively, for: the mixer currents of
the SIS bands (1-5), the magnetic resis-
tance for all bands; the diplexer current
for the diplexer bands (3, 4, 6 and 7); and
the Local Oscillator Unit (LOU) currents
for bands 1, 3, and 7 (to avoid impuri-
ties).

WBS-H/WBS-V badPixels Table listing the pixels known to be bad
for the WBS-H and WBS-V spectrome-
ters, respectively.

combFitParameters The parameters used for the fitting of
COMB spectra.

linearityCoefficient Table listing the WBS linearity coeffi-
cients for each band for the WBS-H and
WBS-V spectrometers, respectively.

zeroThresholds A table of minimum and maximum ac-
ceptable Zero values.

The Uplink calibration node contains the following:

Node Contents Description
HifiAORData Values of HSPOT parameters If present, indicate the values

and parameters used in HSPOT
to plan the observation.

HifiUplinkData UplinkModes The list of all possible HIFI ob-
serving modes and the expected
uplink parameters.

UplinkParameters A description of each uplink pa-
rameter.

The pipeline-out calibration node contains the following:

Node Contents Description

BadPixelProposed WBS-H, WBS-V Table listing pixels identified by
the WBS pipeline to be saturated
('bad') for the WBS-H and WBS-
V spectrometers, respectively.

Baseline HRS-H, HRS-V, WBS-H, WBS-
V

Only for observations containing
a sky reference (or 'OFF') po-
sition. Spectra of the smoothed
and averaged OFF positions for
each of the spectrometers.

ESWCorrection all spectrometers The list of fit parameters per
spectrometer of the found ESW
for each spectrometer.

ReferenceSpectra all spectrometers Calibrated off spectra. For DBS
observations, these are differ-
ence spectra of the averaged
CHOP positions for each spec-
trometer.

FrequencyGroups HRS-V, HRS-V, WBS-H, WBS-
V

Tables listing the dataset in-
dex mapping for the frequency

81

Tour of a HIFI ObservationContext Build 15.0.3244

Node Contents Description
groups identified by the pipeline
for each of the spectrometers.

Tsys HRS-V, HRS-V, WBS-H, WBS-
V

Spectra of the Tsys and Band-
Pass calculated by the pipeline
for each of the spectrometers.

Uncertainty WBS-H-USB, WBS-H-LSB,
WBS-V-USB, WBS-V-LSB,
HRS-H-USB, HRS-H-LSB,
HRS-V-USB, HRS-V-LSB

Table providing, for each Lev-
el 2 spectrum, the uncertainty ta-
ble for the flux calibration error
budget (percentages), based on
the error propagation of the un-
certaintyModel entries from the
Downlink node (see Chapter 9).

WbsFreq WBS-H, WBS-V Frequency coefficients calculat-
ed by the MkWbsFreq step of
the WBS pipeline for the WBS-
H and WBS-V spectrometers, re-
spectively.

Zero WBS-H, WBS-V Spectra of the zero level ob-
servations for the WBS-H and
WBS-V spectrometers, respec-
tively.

3.4. HIFI Browse Products
A browse product is an automated extraction from the results of the standard pipeline. It allows you to
have a quick look at your data and assess what you have observed, as well as any problems you may
have to deal with. The browse product is not intended to be used for science work.

The browse product is displayed in the Observation Context summary as a thumbnail image and in
the Observation Context tree in the browseImageProduct. Clicking once on the thumbnail image and
double clicking on the browse Image Product will open a large version in the Browse Image Viewer,
you can zoom in and out on the image by scrolling with the mouse wheel (or using the equivalent
trackpad motion). Click on the image again to exit the Browse Image Viewer. The spectra used to
create the browse product are stored in the browseProduct Context in the Observation Context tree.

The HIFI browse products are as follows:

• Point Mode: this shows two plots of unstitched Level 2 WBS spectra with the H-polarisation to
the left and the V-polarisation to the right. The upper and lower axes of the plots show the LSB
and USB frequency scale, respectively. The AOR label and observation number are used to title the
plot. The observing mode, source name, requested RA and dec are below the plot title.

The spectra stored in the browseProduct Context are all the Level 2 spectra, including the HRS
which are not used for the browse product otherwise.

• Mapping: this shows a sets of map-averaged Level 2 spectra for each subband with the integrated
map, also for that subband, to the right. The sets of images are arranged in order of increasing
frequency, i.e., subband 1-4 from top left to bottom right for bands 1-5, and subbands 4 to 2 from
top left to bottom left for bands 6 and 7. The AOR label and observation number are used to title
the plot. The observing mode, source name, requested RA and dec are below the plot title.

For each spectrum, the upper and lower axes of the plots show the LSB and USB frequency scale,
respectively. The y-axis is scaled to a factor 1.2 times the peak value in the spectrum excluding
data flagged as a spur, this allows you to see that the data is impacted by a spur but still see other
features in the spectrum.

82

Tour of a HIFI ObservationContext Build 15.0.3244

To the right of each spectrum are integrated maps that are created with no correction done for
any baseline issues. In the cases that the baseline suffers from drifts and/or standing waves the
continuum will dominate the map. The right and bottom x- and y- axes show the RA and declination,
respectively, while pixel coordinates are shown on the auxiliary axes. The colour scale used for the
image is 'heat' and the intensity scale used is 'ramp' so the strongest emission in the map should
appear white.

The spectra stored in the browseProduct context are the stitched and averaged WBS-H and WBS-
V Level 2 spectra.

• Spectral Scan: this shows the single sideband solution after deconvolution of the Level 2 WBS
spectra. No baseline correction has been done prior to deconvolution. The H-polarisation is shown
to the left and the V-polarisation to the right. The gap between the sidebands is shown as a line at
0 K. The AOR label and observation number are used to title the plot. The observing mode, source
name, requested RA and dec are below the plot title.

The data stored in the browseProduct Context are the output from doDeconvolution, as per-
formed on the Level 2 HTP, these are identical to the Level 2.5 products.

3.5. HIFI Auxiliary Data
The information tables in the Auxiliary Product are passed to the pipeline from sources which have
stored how the observation was planned and carried out, including data from related sub-systems of
the telescope such as the pointing system (ACMS). They are required in order to assign pointing
information to the data, and provide some constraints in certain steps of the pipeline, as well as for
technical diagnostics. For most data reduction, you are unlikely to need to work directly with the
Auxiliary Product, but it is helpful to know what and where the “usable” information is located in
this product in case of tailored reductions needing the same information as in the pipeline. This will
pertain mainly to the HifiUplinkProduct.

Attitude Control and Measurement System (ACMS) Telemetry Product

The spacecraft Attitude Control and Measurement System (ACMS) consist of several components.
Telemetry are provided from the main constituents of the ACMS which consist of the attitude con-
trol computer (ACC), gyroscopes (GYR), star trackers (STR), reaction control system (RCS), reac-
tion wheel assembly (RWA), Sun acquisition sensors (SAS), coarse rate sensors (CRS), and attitude
anomaly detectors (AAS).

Events Log Product

The events log product is intended to provide a uniform product containing event reports from either
the instruments, or the spacecraft.

HifiUplinkProduct

This product was introduced into the Auxiliary Product tree to capture the essential parameters related
to the planning, execution, and predicted performance of the observation. Some of these parameters
are used in subsequent pipeline steps, described below.

The HifiUplinkProduct solves two main issues of connecting the observation planning and execution
with the data processing by means of key observing configuration parameters:

1. In HSpot the parameters which completely describe the planning, execution, and expected perfor-
mance of observations were not always stored in the associated AORs, thus they were not available
in the data products.

This is because of a limitation in the HIFI design of the observation planning tool that treated such
parameters as informational for the User during time estimation. The HIFI planning software in
HSpot was modified to solve this roughly half-way into the mission, and this message content

83

Tour of a HIFI ObservationContext Build 15.0.3244

(which has seen several format changes over the mission) is henceforth stored with the AORs for
further processing to merge parsed parameters with the data products in the pipeline. The merging
is done at Level 0, starting in OD 835 (the odNumber of an observation is in the obsContext
header). For earlier observations, the HIFI ICC has regenerated and stored in the HIFI calibration
tree the parameters for each obsid using the same version of AOT software and calibration files,
the co-called Mission Configuration (MC) for configuring and operating the instrument, that was
operational at the time the observation was scheduled regardless of when it was initially delivered
by the program PI to the HSC. This synchronisation is necessary to be consistent with the perfor-
mance of the instrument during the observation, for instance system temperatures and thus sensi-
tivities are dependent on how the Local Oscillators were operated at the time in different bands
and specific frequencies (more information is contained in the HIFI Observing Modes Release and
Performance notes). However, note that not all performance parameters provided in versions earlier
than HSpot 5.0 are consistently produced, and this time dependency means that some parameters
variably appear with UNKNOWN values in the HifiUplinkProduct.

To give an example, the baseline noise goals for an observation have been initially entered in HSpot
by the User while setting up the AOR, in terms of either an observing time goal or a desired noise
value. But the predicted single sideband noise performances (which are crucial when comparing
noise measured in the data to that expected) are returned in the message output after time estimation.
These appear, accompanied by units and descriptions, in the HifiUplinkParameters table of the

HifiUplinkProduct.obs.refs["auxiliary"].product.refs["HifiUplinkProduct"].product["HifiU-
plinkParameters"]

which can be navigated to through the Context Viewer in HIPE. If the values of noiseMinUsb,
noiseMaxUsb, and so on are UNKNOWN, then they were not predicted (or else not in a retain-
able format) in HSpot under the version of the AOT software when the observation was carried out.

2. The AOR configuration and performance parameters with each observation must be unique to the
HIFI observing mode which was used.

The Auxiliary Product tree also contains an UplinkProduct for all three Herschel instruments. For
HIFI it contains tables of parameters describing the astronomical setup or configuration of the ob-
servation (such as the desired dimensions of a spectral map). However, this product has serious
deficiencies, first that the parameters are restricted to the setups reflecting the User’s goals for the
observation, and excludes any of the actual configuration or optimised parameters following time
estimation. Using spectral map dimensions again as an example, the User has entered desired X
and Y dimensions in arcminutes in the AOR setup panel of HSpot, and these are stored as flyX
and flyY in the UplinkProduct. However the actual dimensions are computed as part of time es-
timation, and depend on the input values of flyX, flyY, the sampling (Nyquist or other), and
adopted beam size. There may be other factors which adjust the map dimensions (OTF maps
typically have one extra map point along each scan line to mitigate a telescope scanning anomaly).
These do not appear in the UplinkProduct, yet they record the actual mapping pattern that was com-
manded, and are needed to check the dimensions of the spectral cubes constructed in the pipeline.
Furthermore, the UplinkProduct suffers a design deficiency that it contains the parameter sets for
all HIFI observing modes, not just the one associated with the obsid. The extraneous parameters are
left at default values, and this has lead to confusion for both User and Expert as to which parameters
are applicable and valid for the observation. Thus, the UplinkProduct has no value to the general
User; the HifiUplinkProduct is considered valid and complete.

The properties related to the usage of the HifiUplinkProduct for data reduction may be summarised
as follows:

• The full list of so-called uplink parameters associated with the employed observing mode and
available for data processing, trending, and informational purposes is given in a table in the HIFI
Calibration Tree (note the different location when navigating, it is not in the Auxiliary Tree):

obs.refs["calibration"].product.refs["Uplink"].product.refs["HifiUplinkData"].product["Up-
linkModes"]

84

Tour of a HIFI ObservationContext Build 15.0.3244

• The units and descriptions of the combined lists of uplink parameters for all modes are tabulated
also under the HIFI Calibration Tree:

obs.refs["calibration"].product.refs["Uplink"].product.refs["HifiUplinkData"].product["Up-
linkParameters"]

This table is informational here, its usage as a reference is in the Level 0 pipeline during gener-
ation of the HifiUplinkProduct, into which only the valid parameters relevant to the employed
observing mode have been populated.

• The HifiUplinkParameters table in the HifiUplinkProduct consists of two sets of parameters of
different origin from HSpot:

a. Configuration and setup parameters which have been entered by the User, or set by the AOT
logic with no dependence on time estimation.

b. Configuration and observing performance parameters (time efficiency, noise estimation, map-
ping patterns) which are deduced through time estimation.

At the moment, there is no distinction in the product tables identifying the origin of the param-
eters.

• Most parameters in the HifiUplinkParameters table for each obsid are also copied into the Hifi-
UplinkProduct header as metadata, to facilitate trending studies and database queries.

• The HifiUplinkProduct also contains a history of the AOT commanding during the observation,
ObsBlockExecutionData, for expert diagnostics.

In the pipeline, the HifiUplinkProduct has several uses which can be turned into interactive tasks for
tailored data reductions.

The doUplink task in the Level 0 pipeline copies several of these parameters into the HTP and HIFI
Spectrum Dataset headers as MetaData. The copied parameters are often renamed (to be compatible
with earlier versions of software). For example, flyX and flyY are present in the HifiUplinkProduct,
while the equivalent mapWidth and mapHeight are present in the HTP and SDS headers. Other
copied parameters and their equivalents can be found in the URM description for the doUplink pipeline
task. This task operates on Level 0 HTPs and is not configurable, the User should normally not need
to re-run this on data produced in HIPE or SPG versions 7 or later.

DoGridding (see Chapter 15) convolves the timeline of spectral map datasets into a spectral cube,
using the attitude information which has been assigned to each dataset from the Pointing Product (in
the Level 0 doPointing task) and counting the scan lines and readouts to set the map dimensions and
pixel scales. The default dimensions should closely match those which can be reconstructed from
HifiUplinkProduct parameters mapLines and mapLineStep, which specify the number of scan
lines and their angular separation, and mapReadouts and mapReadoutSep, which specify the
number of map points and their distance within each scan line. This is how the map pixel sizes are
constrained, and it is important to construct the cube in this way in the default pipeline to be consistent
with the requested pattern and for evaluating noise performances. The reconstructed attitude of the
spectra at each map point (deviating from the ideal grid) is taken into account in the convolution. The
User may adjust the pixel sizes or map dimensions and other task parameters in HIPE for over- or
under-sampling, adjusting the WCS, etc, depending on scientific needs.

MkRms is a task which measures baseline rms noise in an observation, and compares the result to
the expected noise as estimated in HSpot. The measurement depends somewhat differently on observ-
ing mode and requires several reference and noise performance parameters from the HifiUplinkProd-
uct (spectral scan noise is predicted at a reference frequency selected by the AOT logic, for ex-
ample). The key input parameters taken from the HifiUplinkProduct are noiseMinUsb, noise-
MaxUsb, noiseMinLsb, noiseMaxLsb, noiseMinWidth, noiseMaxWidth, tmbRefer-
ence, noiseRefFrequency, and oneGHzReference. The output of this task is populated in

85

Tour of a HIFI ObservationContext Build 15.0.3244

tables and as metadata, and can be trended. Further information on these parameters is found in the
description column of the HifiUplinkProduct, and in the URM mkRms entry on how they are used.

Horizons Product

Housekeeping

Data providing information about the state of the spacecraft during an observation. Further details are
found in doHkCheck.

MissingTM

This product contains information of missing TM (Telemetry) packets after ingestion in the HSC. It
has been designed to contain the minimum information required to unambiguously identify the missing
TM packets. It is generated per Operational Day (OD).

MissionTimeLine

This product packs the information provided within the EPOS summary file: pointing requests data,
reaction wheel profile data, ground station coverage and DTCP data, and delta-V manoeuvre data. It
is generated per OD. Not yet available.

Out-Of-Limit (OOL)

The HPMCS SCOS-2000 BEHV performs behaviour checking for all parameters specified in the MIB
OCF table. This information furnished to the HSC by means of DDS auxiliary TM data products. The
Out-of-limits product shall pack all the information provided therein. It is generated per OD.

OrbitEphemeris

The predicted and reconstructed products have identical format and contain time-dependent S/C state
vector information as provided by FDS as Orbit Ephemeris Message (OEM) data. It is generated per
OD.

OrbitEventsProduct

These products have identical format and contain the predicted/reconstructed orbit events data fur-
nished by Flight Dynamics (FDS) in the (short term) orbit events file. Events include Acquisition/loss
of TM/TC signal at the ground station and eclipse events information. It is generated per OD.

Pointing

The pointing product contains time-dependent spacecraft attitude information and will be built using
information provided in the Attitude History File (AHF) furnished by the Flight Dynamics System
(FDS). It is generated per OD.

Siam

This product contains the Spacecraft/Instrument Alignment Matrices transforming vectors in the Her-
schel spacecraft reference frame to/from vectors in the different instruments' frames. The SIAM prod-
uct is valid for a given period of time in the mission until a new measurement is done, and the product
is updated.

SREMCalProduct

The Standard Radiation Environment Monitor (SREM) detects and counts electrons, protons and cos-
mic rays with a coarse spectral resolution and some 20 degrees angular resolution. This product con-
tains the calibrated accumulation and acquisition data, including the proton/electron count rates in the
three detectors, fitted particle spectra and total dose in the internal RadFET. It is generated per OD.

SREMRawProduct

86

Tour of a HIFI ObservationContext Build 15.0.3244

Contains raw SREM accumulation and acquisition data, including readings from the different channels
of detectors and internal RadFET, temperature and voltage data, etc. It is generated per OD.

TeleCommandHistory

This product contains information of telecommand history as furnished by the Herschel MCS by means
of DDS service. It is generated per OD.

TimeCorr

The Time Correlator component within the HPMCS maintains the correlation between the spacecraft
on-board time and ground time, providing interfaces to correlate OBT to UTC and vice versa. The
Time Correlation product should contain all the relevant information produced by the Time Correlator
component and stored in the SCOS-2000 Time Correlator Coefficient packets. It is generated per OD.

UpLinkProduct

The UplinkProduct is a default table produced in the SPG, and is obsolete for HIFI data reduction
purposes. For all parameters relating to the planning and expected performances of HIFI observations
on an obsid and observing mode basis, the User should refer to the HifiUplinkProduct.

3.6. HIFI Quality Context
This Context contains information about the Quality Flags of different severity, described in Sec-
tion 10.4. A viewer for QualityControl products can be obtained via the QualityContexExplorer, or
printing the quality report found from the ObservationContext:

report1=obs.refs["quality"].product
print report1

or

report2= obs.getQuality()
print report2

The Quality Control Report also contains the state, if failed, the observation failed the quality assess-
ment. An empty quality report indicates no problems in processing.

3.7. HIFI TrendAnalysis Context
This Context contains HifiCalibrationDatasets, i.e., products useful for tracking systematic changes
in instrument response over time. These are:

1. CombTrend Context (only WBS)

The CombTrend Context represents the statistics of particular quantities (line, resol, zero, and po-
sition); for line, resol, and position, the statistics over 11 comb lines that are seen in every CCD for
each backend (WBS-H and WBS-V), for the zeros, the statistics over all channels. The four entries
(mean, stddev, min, max) denote average, standard deviation, minimum, and maximum of the par-
ticular quantity, respectively. Line is the peak of the Gaussian fit to the comb lines in counts, i.e., on
a scale from 0 to 1013. Resol is the full-width-half-maximum of the Gaussian fit to the first comb
line in a CCD. Zero is the zero level of the CCD, i.e., without any input in units of counts. Position
is the channel number of the position of the Gaussian fit to the first comb line in a CCD zero.

2. FpuTrendProduct Context

The FpuTrendProduct Context contains a table with values of some HK parameters from the Focal
Plane Unit (FPU) in function of time for a specific observation. The Columns of this table have

87

Tour of a HIFI ObservationContext Build 15.0.3244

as name the HK mnemonics. If the input FpuTrendTable is missing a SEVERE message is raised:
"Trend table is null. No check is possible".

3. LoTrendProduct Context

The LoTrendProduct Context contains a similar table as the FpuTrendProduct focussed on HK
parameters from the Local Oscillator Unit (LOU). Both the FpuTrendProduct and the LoTrend-
Product content are used in the Level 0 pipeline in order to flag possible out-of-limits on specific
HK parameters. When this occurs, a dedicated quality flag will be raised and added to the quality
product (see Section 10.4).

4. SpurTable Context (only WBS)

The SpurTable Context contains a table of the spurs detected in the calibration cold load spectra.
This search is done at the end of the Level 0.5 pipeline in the WBS. It assumes a saturation level
of "800 counts" in the WBS raw intensity scale at Level 0.5 (pre-bandpass calibration), and will
return flagged areas as 1.5x broader than the detected faulty regions. This saturation level can be
adjusted by the User. Next, the task looks for Gaussian-like features in the flagged region. Resulting
spurs are categorised with the following names: "Positive Spur" (a spur that is brighter than the
continuum in the cold load), "Negative Spur" (a spur that is fainter than the continuum in the cold
load - note that they are very rare), "Saturated" (intensities are above the saturation threshold - see
above), "Err: out of range". In this latter case, the flag indicates that the data is corrupted in a given
range, but that the algorithm could not determine a good fit to a Gaussian. In any of the spur cases,
an appropriate flag is set to the data-set (see Chapter 10). For more information about the algorithm,
see the description of the mkSpur pipeline step.

5. Statistics Context

The Statistics Context contains a series of tables with computation of the first momentum of the
observed spectra (mean and standard deviation) as well as the median. It is provided for each spec-
trometer, each subband of a given spectrometer, and for the datasets at Level 1 and Level 2. At
the present time, only saturated pixels are excluded from the computation. Additional flags such as
line masks or spur flags will be taken into account in the future.

6. TMpage Context

The TMpage Context contains diagnostic tables for every LO tuning that was performed during the
observation. This information is mostly of interest for instrument scientists, and offers a dump of
a selection of LOU HK parameters during pre-defined steps of the tuning process, at time stamps
finer than the sampling rate offered for the periodic HK compiled in e.g. the FpuTrendProduct or
the LoTrendProduct contexts.

7. Tsys Context

The Tsys Context contains the TsysTrendTable per backend and per subband, and provides the LO
Frequency, the central IF, the observation time, and (nominal) resolution for the backend, and the
Double-Side-Band System noise temperature and associated standard deviation computed from the
calibration load datasets. The corresponding spectra can be visualised in the calibration product,
under the pipeline-out > Tsys context (see section Section 3.3).

88

Build 15.0.3244

Chapter 4. What was done to my
data?

Last updated: 26 October, 2015

4.1. Introduction
Data retrieved from the HSA has been processed via the HIFI pipeline. Each step is described in detail
in the HIFI Pipeline Specification document. In this chapter, we briefly describe what has been done
to the data at each stage of the pipeline.

In the following sections, we show pipeline flow diagrams from the HIFI Pipeline Specification docu-
ment. The data input and output from each pipeline step up to the end of Level 2 is always a HifiTime-
line Product (HTP). The Level 2.5 pipeline expects input to be HTP but the output at the end of the
pipeline can be a different type of product, for example cubes (SpectralSimpleCubes) are produced
for mapping observations.

89

What was done to my data? Build 15.0.3244

4.2. Level 0Level 0

Figure 4.1. Level 0 pipeline flow diagram

90

What was done to my data? Build 15.0.3244

Following the formation of an HTP, the Level 0 pipeline does the following to create a Level 0 HTP:

• doBadLo

Checks for LO settings that are known to be bad and flags that data.

• doHkCheck

Checks that the housekeeping parameters stored in the data are within the threshold limits deter-
mined by the ICC. If parameters are found to be out of limits then quality flags are raised, see Sec-
tion 10.4 for information about which quality flags can be raised, and the threshold conditions.

• doPointing

Associates the pointing information from the satellite with HIFI data. Note that HIFI is pointed such
that the coordinates requested in HSpot fall between the H- and V- beams, this is known as the
synthesised aperture. The pointing information for each polarisation can be found in the longitude
and latitude columns of the datasets, while the pointing information for the synthesised aperture is
found in the columns "longitude_cmd" and "latitude_cmd".

• doTimeCorr

Corrects the observation time of a scan to be consistent between the WBS and HRS. Scans at Level
0 from the WBS generally are formed from one integration, whereas scans from the HRS can be
comprised of several integrations. If a correction was necessary then the description field of the
obsTime is appended with "corrected".

• doUplink

Copies items from the Uplink Product that describe how the observation was carried out into the
data and metadata of HTPs and HifiSpectrumDatasets in the HTP, these items are taken
from the parameters calculated by HSpot when you set up your observation. This is particularly
useful for mapping observations because the doGridding task uses the information copied into
the metadata in order to correctly run the gridding routine.

• cleanDF

Task which sets the IGNORE_DATA rowflag when bad data are known to exist. The known bad
data are in a calibration entry.

Level 0 data, which has units of channel numbers and counts, is the most raw that you will see your
data. The Level 0 pipeline produces Level 0 data from the completely raw (or Level -1) data frames,
housekeeping information, and telemetry information. This raw data is not available to you within the
Observation Context so the Level 0 pipeline is not a part of the HIFI pipeline available to you in HIPE.

As you cannot re-run the entire Level 0 pipeline yourself, you are not able to take advantage of changes
to the Level 0 pipeline until a bulk re-processing occurs at the HSA. However, it can be possible for
you to avoid waiting for a new bulk re-processing by re-running some of the Level 0 pipeline tasks that
occur after data has been combined into a HifiTimelineProduct (HTP). For example, a change in how
the pointing information is applied to that data could require the doPointing step to be re-run. Note
that you must always run doPointing with defaults (aside from the path and name of the new pointing
product), and more specifically, you should never run doPointing with useGyro = true option.

The most common situation for re-running doPointing would be when new/improved pointing prod-
ucts are available for observations downloaded from the archive (HSA) which have not yet been bulk
re-processed with the latest pointing information.

If it is required to re-run steps from the Level 0 pipeline, you can expect to either be informed in the
appropriate place in this manual, by the Helpdesk, and/or on the HIFI Instrument and Calibration
page .

91

What was done to my data? Build 15.0.3244

Re-running Level 0 pipeline steps requires you to work on the HTP rather than the Observation Con-
text. Below we give two examples for re-running the doPointing step.

Re-run the doPointing task for all spectrometers, and re-insert the result back into the Obser-
vation Context.

Import doPointing task
from herschel.hifi.pipeline.level0 import DoPointingTask
#
Initialise ChopperPosition
from herschel.hifi.pipeline.generic.utils import ChopperPosition
ChopperPosition.initialize(obs.calibration, obs.getStartDate())
#
Fetch the chopper throw calibration table
chopperThrow=obs.calibration.getCalNode("Downlink").getCalNode("Generic").\
getProduct("chopperThrows").getByStartDate(obs.getStartDate(),
 "ChopperThrows").getProduct().getTable()
#
obsid="13421xxxxx"
#
to get data from HSA use this
obs = getObservation(obsid, useHsa=True)
to recover it from a local store use this
obs = getObservation(obsid, poolName="MyPoolName")
#
doPointing=DoPointingTask()
lev0=obs.getProduct("level0")
#
This script fails if you do not have data from all spectrometers so, in the
line below, list the spectrometers you DO have data from in your observation
for htpname in ["WBS-V", "WBS-H", "HRS-H", "HRS-V"]:
 htp=lev0.getProduct(htpname)
 htp=doPointing(htp=htp,useIntegration=1, aux=obs.auxiliary,
 chopperThrows=chopperThrow)
 lev0.setProduct(htpname,htp)
obs.setProduct("level0",lev0)
#
The next command runs the pipeline, and overwrites your variable "obs"
obs=hifiPipeline(obs=obs, fromLevel=0, upToLevel=2.5, cal=True, save=False)
#
#Save observation, saveCalTree saves the calibration too, which is needed if you
want to reprocess the data again
saveObservation(obs, poolName="NewPointing", saveCalTree=True)

Reprocess an observation with a new pointing product.

This example assumes that the pointing product to be used is available as a FITS file on disk.

Initialise ChopperPosition
from herschel.hifi.pipeline.generic.utils import ChopperPosition
ChopperPosition.initialize(obs.calibration, obs.getStartDate())
#
Fetch the chopper throw calibration table
chopperThrow=obs.calibration.getCalNode("Downlink").getCalNode("Generic").\
getProduct("chopperThrows").getByStartDate(obs.getStartDate(),
 "ChopperThrows").getProduct().getTable()
#
Fetch the new pointing product
mypointing = simpleFitsReader("pointing_od_XXXX.fits")
#
Reprocess pointing at level0 and replace in obs context
As, above, only list the spectrometers that are available in your observation
 context
for htpname in ["WBS-H", "WBS-V","HRS-H","HRS-V"]:
 htp=lev0.getProduct(htpname)
 htp=doPointing(htp=htp, useIntegration=1, aux= obs.auxiliary,
 chopperThrows=chopperThrow, pointing=mypointing)
 lev0.setProduct(htpname,htp)

92

What was done to my data? Build 15.0.3244

 obs.setProduct("level0",lev0)

4.3. Level 0.5

Figure 4.2. HRS pipeline flow diagram

Figure 4.3. WBS pipeline flow diagram

93

What was done to my data? Build 15.0.3244

Level 0.5 data is not found in the ObservationContext obtained from the HSA but you can recreate it
yourself using the hifiPipeline task if something seems to have gone wrong with the frequency
calibration of your data.

Level 0.5 data have been frequency calibrated and had instrumental effects, e.g., non-linearities in the
WBS, removed. The spectra are in the IF scale, and split into subbands.

4.4. Level 1
Level 1 spectra are both frequency and intensity calibrated, although some effects of both the obser-
vatory and the observing mode are still to be removed. Level 1 is considered by the HIFI ICC to be
as far as automatic processing of data is "safe", it is expected that human interaction above Level 1
will improve the results of the pipeline.

Figure 4.4. Level 1 pipeline flow diagram

checkDataStructure, checkFreqGrid, checkPhases

The initial three steps of the Level 1 pipeline are checks that the data have the structure, content and
form the patterns that are expected from the observing mode. The checkFreqGrid step also groups
datasets according to LO (local oscillator) tuning, and checks for any possible frequency drifts in the
data.

doFilterLoads

An optional pipeline step that smooths the measurement of the loads to prevent the standing waves
that are present from being propagated to the science data. For usage, see Section 12.2.

mkFluxHotCold

Hot/Cold load measurements are used to obtain both, the receiver (or system) temperature and the
bandpass for each "hc" dataset in the original timeline product, and included in a calibration product
(of type CalFluxHotCold). The bandpass is used for the intensity calibration, the system temperature
and, possibly, for the determination of the channel-dependent weights to be included in the spectra.
If channel weights are not to be determined by the system temperature, then this step of the pipeline
can be moved to anywhere before the doFluxHotCold step.

doChannelWeights

94

What was done to my data? Build 15.0.3244

Fill values into the weights column, per subband. The default behaviour is to make use of the receiver
temperature from mkFluxHotCold. Other possibilities include weighting by integration time, or by the
variance of the spectra within a given (moving) window.

doRefSubtract

Reference measurements taken from blank sky (in DBS modes), from an internal load (in Load Chop
modes) or taken at a different LO frequency (in Frequency Switch modes) are subtracted from the
source measurements (science datasets) in order to eliminate instrumental drifts from the source mea-
surements.

This step constitutes one half of the double subtraction scheme typical for HIFI and by the end of it,
the science datasets are replaced by the differenced spectra.

For the Frequency Switch modes, the shifted and the un-shifted spectra are overlayed (with opposite
signs) by doRefSubtract and, reflecting the fact that each of these phases represent half of the observa-
tion, the integration time reported in the HTP is half of that reported in HSpot. The pair of shifted and
unshifted spectra need to be 'folded' using the doFold task, the integration time will then be doubled
as reported in Hspot.

mkOffSmooth

Average and smooth (on the frequency scale) the flux data from the OFF measurements. The calcula-
tion is processed on a per dataset basis so that a baseline is constructed for each OFF dataset. These
baselines will be subtracted in the DoOffSubtract step.

The default operation of this step is to first take the average over all the spectra included in the OFF
dataset and then to smooth the data using a Gaussian filter (a box filter is an alternative). Other options
available are to apply a polynomial fit after averaging the OFF datasets, or to only take the average of
the OFF datasets. There are many options available when taking the average and these are described
in the mkOffSmooth section in the HIFI Pipeline Specification document.

doOffSubtract

The calibrated baseline(s) calculated in the mkOffSmooth step are subtracted from the ON measure-
ments of load chop, frequency switch, and position switch modes (on a row-by-row basis for the posi-
tion switch modes). In the case of DBS modes, the ON and OFF positions, which both contain science
data, are averaged on a scan-by-scan basis. Note that if you want to reprocess your observation without
doOffSubtract, you must run doCleanUp with the option retain=“science” in order to only propagate
ON and OFF spectra up to Level 2.

doFluxHotCold

The calibrated intensity scale obtained in the MkFluxHotCold task - the bandpass - is applied to the
flux data. This transforms the intensity scale to Kelvin units (TA

'). All science data (dataset with type
'science') found in the given product are adjusted in this way.

In the case of Frequency Switch and Load Chop observations, the reference subtracted data are inten-
sity calibrated prior to OFF subtraction, which results in a better calibrated continuum, and so this step
is performed between doRefSubtract and mkOffSmooth.

doVelocityCorrection

Corrects the frequency scale for the velocity of the spacecraft and possibly of the source. A relativistic
approach is adopted when correcting for the motion of the spacecraft relative to SSB or LSR or, in
the case of SSOs, relative to the SSO. For non-SSOs, the motion of the sources relative to the LSR
or SSB is treated classically.

Possible target rest frames to transform to are "HSO" (Herschel Space Observatory), "GEOCEN-
TRIC", "SSB", or "BARYCENTRIC", "LSR" or "SOURCE". By default, the task transforms to the
"LSR" frame for non SSO's and "SOURCE" for SSO's. A description of the definitions of these frames
and their relation to each other is Chapter 25.

95

What was done to my data? Build 15.0.3244

doHebCorrection

Applies spline models and fit results of standing waves (stored in the HIFI calibration) that are found
in the HEB mixers (bands 6 and 7). The task also creates a TableDataset which contains all the model
parameters generated. The correction is performed on Level 1 spectra (type 'science': on-target spectra
by default, and also off-target spectra if input parameter offsource=True).

mkFlagSummary

Creates a summary table with all the row and channel flags that have been set in the given timeline
product. It loops through all SCIENCE ON data, collects this flag information, and puts this into a
suitable summary table.

4.5. Level 2

The Level 2 pipeline attempts to remove the remaining effects due to the Observatory and the observing
mode. It is expected that these steps will need to be repeated to improve upon the default settings and/
or that undesirable features such as standing waves or spurs will need to be removed.

Figure 4.5. Level 2 pipeline flow diagram

mkRef

For DBS Modes this task calculates the difference in emission between the two chop positions. The
resulting spectra give(s) a rough idea of whether or not the proposer chopped onto a region with
emission.

96

What was done to my data? Build 15.0.3244

doCleanUp

This step removes all data from the timeline product that are not of type 'science' (sds_type) and that
correspond to 'ON' measurements. Furthermore, science datasets belonging to the same LO tuning
group, and/or the same raster point, and/or the same scan line number, are merged to form new datasets.

doAntennaTemp

This step corrects for all telescope dependent parameters except the coupling of the antenna to the
source brightness distribution, i.e. it translates to a TA

* scale where TA
* = TA

'/eta_l with forward ef-
ficiency eta_l.

doMainBeamTemp

This is an optional step that could be used in place of doAntennaTemp and converts to main beam
temperature. It changes the label for the intensity axis to "Main Beam Temperature DBS", or to "Main
Beam Temperature" if the sideband gains correction has been applied.

mkSidebandGain

This step provides the sideband gains coefficients dependent on detector band, sideband, LOF-scale,
and IF-scale. These coefficients will subsequently be applied in the doSidebandGain task. In you want
to work with only the default coefficients 0.5, you can skip this task and call doSidebandGain without
passing a coefficents via the cal task parameter.

doSidebandGain

Divides the flux (at this stage typically an intensity) by the sideband-specific, detector-band specific,
LOF- and IF-dependent gain coefficients. The gains applied to the data are written to the metadata
of the Level 2 spectra and are denoted by usbGain and lsbGain for the upper and lower sidebands,
respectively.

Intensity scales

HIFI is a double sideband (DSB) instrument. In consequence, application of sideband
gains mean that the detected lines are calibrated to single sideband (SSB) scale, while the
continuum contains contribution from both sidebands, and remains at the DSB scale. If
the gains are unity, then the continuum is at twice the SSB scale. Beware, however, that
the introduction of sideband gain coefficients at the low frequency end of band 2a, and in
band 5 mean that a different treatment is required in these cases, see Chapter 16.

convertFrequency

In this step of the pipeline, the spectra are transformed from the IF frequency scale to sideband fre-
quencies. For detector bands 1-5 this is defined by:

f_usb = f_LO + f_IF and f_lsb = f_LO - f_IF

For bands 6 and 7, it is:

f_usb = f_LO + CF - f_IF and f_lsb = f_LO - CF + f_IF

where the conversion factor, CF, is given by 10.4047 GHz for horizontal and 10.4032 GHz for vertical
polarisation.

At the same time, the units are changed from MHz to GHz.

This step is not a dedicated pipeline step and is also provided for use in interactive analysis so that
data can be transformed to different scales, including the velocity scale.

mkFreqGrid

97

What was done to my data? Build 15.0.3244

This step creates a linear frequency grid that can be used by the doFreqGrid task to resample the
spectra. By default, the width between successive gridpoints is set to 0.5 MHz for WBS data, while
for HRS data, it is determined by inspecting the input spectra.

doFreqGrid

Resamples all the HIFI spectra to the frequency grid specified as input task parameter. By default,
the grid determined in the mkFreqGrid step is used. The resampling scheme is set as a trapezoidal
integration scheme in combination with a linear interpolation scheme. By default, the flux values in
the output grid are resampled using an Euler scheme.

doHpbw

Task to add the assumed half-power beam width (hpbwAssumed) parameter in the metadata of the
HTP and the HifiSpectrumDatset. This task is applied to all mapping AOTs.

doAvg

Computes the average over different scans that belong to the same LO tuning group (frequency sur-
veys), the same raster column and row (in raster maps), or the same line number in OTF maps. Fur-
thermore, science data from ON or OFF are not mixed. Various different options for how to do the
average, and for pre-selecting the scans to be averaged are available but the default in the standard
pipeline is to return a single dataset for each of the conditions described above.

checkPlatforming

Platforming is seen as offsets between neighbouring WBS subbands and/or curvatures within sub-
bands. Platforming can be addressed using the standard fitBaseline task (see Chapter 13) and
by applying a low order polynomial to each WBS subband. Note that platforming is an artifact of the
WBS. If you correct your spectra with fitBaseline specifically for platforming, you should not
apply the same correction to the HRS data. Also be aware that if there was a significant continuum in
the WBS data, it will be removed by fitBaseline. The standard pipeline checks for platforming
between subbands within a HifiTimelineProduct. If platforming is detected, a Quality Flag, Platform-
ing present in overlapping subbands is raised.

mkRms

Computes the mean, rms, and medium of the level 2 data.

doChannelFlags

Flags data where spurs are known to exist. This task uses data from the calibration tree to flag the data.

mkUncertaintyTable

Generates a product containing a table of uncertainty values for Sideband ratio, Optical Standing
Waves, Hot/Cold Load Coupling, Hot/Cold Load Temperature, Pointing, Planetary Model, and Beam
Efficiency.

4.6. Level 2.5
The default Level 2.5 pipeline (that is used to create products in the HSA) is observing mode depen-
dent.

• Point modes

HTP are stitched, folded (if Frequency Switch) and converted to simpleSpectrum format. HRS
spectra are stitched together using the fillGaps option set to True so any gaps between subbands
are filled with NaNs. The mkRms task is run on the data to calculate the rms noise, the output is
stored in the Statistics node of the Trend Analysis product.

98

What was done to my data? Build 15.0.3244

• Mapping modes

The Level 2 HTP are stitched and Frequency Switch data are folded. The HRS subbands are stitched
only if they overlap in frequency (doStitch is called using fillGaps=False) in order to avoid
NaNs in the cubes. In this stitching process, the subband numbers will be re-ordered by incrementing
frequencies. Also, note that folding in HRS subbands can lead to invalid channels in the case that the
HRS subband is small compared to the frequency throw. Pay attention to the resulting line profiles
and compare them to the WBS.

The doGridding task is run on the resulting HTP, producing a cubesContext containing
cubesContexts for each polarisation and sideband combination. If the map was taken with a
non-zero rotation angle, then another set of cubes, cubesContextRotated, are created with
the rotation angle applied.

The cubes are created with no baseline correction done prior to gridding, and it is expected that
in many cases you will need to go back to the Level 2 HTP and clean the data prior to re-running
doGridding, this can be done using the interactive Level 2.5 pipeline, see Section 5.4.

The mkRms task is run on the cubes in order to calculate the rms noise in each pixel, the result is
stored in the Statistics node of the Trend Analysis product.

• Spectral Scans

The doDeconvolution task is run, producing a Context called myDecon that contains an output
of doDeconvolution for each spectrometer used in the observation (normally, this is the WBS-
H and WBS-V). No baseline correction is done prior to deconvolution, and it is expected that in
many cases you will need to go back to the Level 2 HTP and clean the data prior to re-running
doDeconvolution, this can be done using the interactive Level 2.5 pipeline, see Section 5.4.

The mkRms task is run on the deconvolved spectra in order to calculate the rms noise and the result
is stored in the Statistics node of the Trend Analysis product.

99

Build 15.0.3244

Chapter 5. Running the HIFI pipeline
Last updated: 4 December, 2015

5.1. Introduction to the Pipeline
HIFI data is automatically processed through the HIFI pipeline before it can be accessed from the the
Herschel Science Archive (HSA). The HIFI pipeline is used for processing data received from one
or more of the four HIFI spectrometers into calibrated spectra or spectral cubes, and comprises five
stages of processing:

1. Manipulate data taken from the satellite into time ordered Data Frames (a HifiTimelineProd-
uct, or HTP) for each spectrometer. This is done in the Level 0 pipeline and results in the Level
0 data Product, which is the least processed data available to the scientific community.

2. Remove backend instrumental effects - essentially a frequency calibration. There are separate
pipelines for the WBS and HRS spectrometers, and the result is a Level 0.5 Product. You will not
see this Product in the Observation Context unless the generation of a Level 1 product fails. How-
ever, you can generate it for yourself when reprocessing.

3. Application of observing mode specific calibrations, i.e., subtraction of reference and OFF posi-
tions, and intensity calibration using Hot/Cold loads. This is done by the Level 1 pipeline, and
resulting Level 1 Products are sets of frequency (IF) and intensity (TA') calibrated spectra.

4. The Level 2 pipeline removes further instrumental effects by converting to antenna temperature
(TA*), applying sideband gain corrections, and converting to sky frequency. Spectra at Level 2 are
averaged according to LO setting and position.

5. The Level 2.5 pipeline combines the Level 2 products into final products for each observing mode:

• Point mode spectra are stitched, folded (in the case of Frequency Switch), and converted to
SimpleSpectrum format. HRS data are stitched only in the case that subbands overlap in
frequency.

• Mapping mode Level 2.5 HTP contain spectra that are stitched and folded (in the case of Fre-
quency Switch), a cubesContext is also produced at Level 2.5 containing cubes constructed
from the stitched and folded (if applicable) spectra. Stitching of HRS data is done as for point
mode observations. In the case of mapping observations carried out with a non-zero rotation
angle, a cubesContextRotated is also produced, which contains cubes generated from the
Level 2.5 HTP and with the rotation angle applied.

• The deconvolved single sideband spectra is produced at Level 2.5 for Spectral Scan observations.

There are several reasons why you may wish to run data through the HIFI pipeline yourself. For this
reason, the HIFI pipeline is available in HIPE.

In theory, Level 2 and Level 2.5 products can immediately be used for scientific analysis. Howev-
er, they are produced without correction for baseline issues (see Chapter 13) or standing waves (see
Chapter 12). Furthermore, you may wish to change the temperature scale or reference frame of the
data (see Section 18.1). You can introduce these steps into the pipeline using the Interactive Level 2.5
pipeline, see Section 5.4.1.

In some cases, data may need to be looked at more carefully before scientific analysis can be done.
You may wish to take advantage of the Customiseable Pipeline, see Section 5.4.2, to re-run all, or part
of the pipeline in order to omit tasks or to change task defaults. Alternatively, you may wish to provide
your own pipeline algorithm, or examine the results of each step of processing in order to improve
data quality. Finally, you may wish to reprocess data in order to take advantage of new developments
to the pipeline or calibration. To these ends, the Observation Context that is obtained from the HSA
contains, along with the Level 0-2.5 data Products, everything you need to reprocess your observations

100

Running the HIFI pipeline Build 15.0.3244

- calibration products, satellite data - as well as quality, logging, and history products, which you can
use to identify any problems with your data or its processing.

The following sections explain how to re-run the pipeline using the hifiPipeline task. For a full
review of all tasks used by the pipeline, please see Chapter 4.

5.2. How to run the HIFI Pipeline
Warning

Although it is possible to modify parameters values and add certain tasks to be pro-
cessed by the hifiPipeline, via the Customize Pipeline and the Interactive Level 2.5
Pipeline, please note that the order in which the tasks are to be performed is very impor-
tant. The expert panel, accessed by pressing the go to expert mode... button at the top
of the GUI also contains other options for running the pipeline. These are usually only
of interest to HIFI ICC calibration scientists and are not typically relevant in the context
of reprocessing data for science purposes. The order of the tasks shown in the GUI (and
the flow diagrams shown in Chapter 4) constitute the default flow of the tasks. You may
change the order only if you have a deep understanding of the pipeline. Wrongly changing
the order may lead to obscure error messages in the Console window, and the pipeline
not completing to the end. The tasks of the pipeline are described in details in the HIFI
Pipeline Specification Document if you wish to learn in-depth details of each tasks.

The HIFI ICC recommends that the data should be processed using the HIPE version that you are using
for data analysis to ensure that you do not run into data-software compatibility problems. However, it
is not anticipated that you will have problems if you keep within one HIPE version, e.g. perform data
analysis in HIPE 13 on data that was pipelined with HIPE 12.

The hifiPipeline task links together the five stages of the pipeline described above and it can be
used to reprocess Observation Contexts up to any level, from any level, for any choice of spectrome-
ter(s) and polarisation(s). The pipeline can be run via a GUI or the command line.

Opening the hifiPipeline GUI:

• Click once on an observation context in the Variables pane and the hifiPipeline task will
appear in the Applicable Tasks folder, double click on it to open the Task dialogue in the Editor
View.

• Alternatively, open the hifiPipeline task by double-clicking on it under the Hifi Category in
the Tasks View.

Figure 5.1. HIFI pipeline task: default view

Running the hifiPipeline task:

The default (or basic) dialogue in the GUI allows you to re-process data in an observation context.
It also allows you to:

101

Running the HIFI pipeline Build 15.0.3244

• Pass any version calibration to the pipeline, see Section 5.3 for details on passing a new calibration
version to the pipeline.

• Configure the pipeline to your own specifications, see Section 5.4.2 for information about customis-
ing the pipeline and Section 5.4.3 for information about configuring the pipeline algorithms.

• Change the order of tasks and introduce new ones in the Level 2.5 pipeline with the Interactive
Pipeline, see Section 5.4.1.

• Enable or disable the algorithms to process the OFF spectra in the observation or calculate the rms
noise in the Level 2 and/or Level 2.5vdata.

The default set-up of the pipeline is to reprocess data from Level 0 to 2.5 for all four spectrometers (or
as many as were used in the observation), using the calibration that can be found in the Observation
Context and the default pipeline algorithms.

• The way the data is to be reprocessed is defined in the Inputs section:

• If the hifiPipeline task was opened from the Applicable Tasks folder then the Observation
Context selected in the Variables View will automatically be loaded into the Task dialogue, and
you will see its name by the observation context bullet, which will be green. Alternatively, drag
the name of the observation context to be reprocessed from the Variables view to the Observa-
tionContext bullet.

• Select the spectrometers you wish to process data for by checking the desired combination of
instrument(s) and polarisation(s). By default, the box for a given spectrometer is checked only
if data is present at Level 0.

• Select which levels to (re-)process 'from and to' via the drop-down menus. By default the pipeline
will process Level 0 data up to Level 2.5 but you can choose any start and end point you wish.
The lowest level that you can re-process from is Level 0. An option to process from Level -1 is
available but it is meant for use by the HSA and the ICC. Processing from Level -1 to Level 0 (the
Level 0 pipeline) involves the combination of the unsorted raw data and housekeeping frames,
which you do not have access to.

• Enable or disable the algorithms to process the OFF spectra in the observation with the processOff
parameter. If enabled, the OFF spectra will be processed up to Level 2 (sky frequency and antenna
temperature) and stored in the Calibration Tree in the Pipeline-out node. By default the algorithm
is enabled, to disable it, uncheck the processOff box.

• Enable or disable the algorithm to calculate the rms noise in the Level 2 and/or Level 2.5 data
with the computeRms option. If the computeRms option is enabled, the mkRms task is enabled
in both the Level 2 and the Level 2.5. You may choose to leave both actions enabled, or disable
one of them. The mkRms task can be run in the Level 2 pipeline and/or the mkRms algorithm can
be run in the Level 2.5 pipeline. The resulting tables are stored in the Trend Analysis node in the
Observation Context. By default, this task is run during bulk reprocessing at the HSA but is turned
off in HIPE because it can be time intensive. To enable the algorithm, check the computeRms box.

• The remaining options are for passing new calibration to the pipeline or for customising the
pipeline, and are discussed in Section 5.3 and Section 5.4.

• In the Outputs section, choose the name of the observation context that will be produced or use the
HIPE default, obs.

• Click on Accept to run the pipeline. The status ("running" if all is well, error messages if not) and
the progress of the pipeline are given in the Info section at the bottom of the Task dialogue. The
command to run the pipeline is echoed in the console. You will also see more informative messages
about the status of the pipeline written in the console and terminal.

102

Running the HIFI pipeline Build 15.0.3244

The expert panel, accessed by pressing the go to expert mode... button at the top of the GUI contains
other options for running the pipeline. These are usually only of interest to HIFI ICC calibration sci-
entists and are not typically relevant in the context of reprocessing data for science purposes.

Below are some examples of running the hifiPipeline task from the command line. It is assumed
that an Observation Context called Myobs has been loaded into the session.

Reprocess an ObservationContext up to Level 2 for all spectrometers,
without writing to memory to decrease processing time:
MyNewobs = hifiPipeline(obs=Myobs, save=False)
#
Reprocess Myobs from Level 0.5 to Level 1, for all spectrometers:
MyNewobs = hifiPipeline(obs=Myobs, fromLevel=0.5, upToLevel=1, save=False)
#
Now reprocess MyNewobs (which now contains data only up to Level 1) but only for
 the WBS.
WBS-H and WBS-V are the horizontal and vertical polarisations, respectively:
MyEvenNewerobs = hifiPipeline(obs=MyNewobs, apids=['WBS-H', 'WBS-V'])
#
What is an apid? "Application Program IDentifier": it is what the pipeline calls
 spectrometers.
#
You can retain Level 0.5
obs = hifiPipeline(obs=obs, upToLevel=2, removeLevel0_5=False)

Pipeline behaviour to note:

• The original ObservationContext (in HIPE, not on your hard disk) is overwritten with the results
of running the pipeline task. As a consequence, levels higher than those you reprocessed to will be
removed from the original Observation Context. In contrast, HTPs for all spectrometers are retained
in the observation context regardless of what what was selected but only the data for spectrometer(s)
you selected will be modified.

When using the GUI, a new Observation Context variable is always created, even if you choose the
output to be identically named to the input as HIPE will automatically append _1 to the repeated
variable name. However, in the command line you can ensure that no new variable is created in
one of two ways:

Assuming an observationContext called 'obs'
#
1. Choose the output name to be the same as the input
obs = hifiPipeline(obs=obs)
#
2. Do not specify an output variable name at all
hifiPipeline(obs=myObs)
#

Both approaches have the same result, just pick the one that makes most sense to you.

If you want to compare the effects of running the pipeline you will either need to reload the original
Observation context or make a copy of products (spectra or HTP) before running the pipeline:

Extract an HTP (here WBS-H-USB) and make a copy for comparison
htp = htp = obs.refs["level2"].product.refs["WBS-H-USB"].product
htp_orig = htp.copy()

• If you try to re-process from a higher level data than exists in the Observation Context, then the
hifiPipelineTask will automatically select the highest existing level. For example, if you try
to re-process from Level 0.5 to 1 but the ObservationContext only contains a Level 0 product then
the pipeline will automatically run from Level 0 to Level 1.

103

Running the HIFI pipeline Build 15.0.3244

• By default, the pipeline runs without saving the new observation context on disk. This is done to
reduce the amount of time it takes to run the pipeline but is at the cost of forcing the pipeline to use
more memory in HIPE in order to avoid writing to disk.

If you prefer to save the output automatically then you can switch the save option on by checking
the box in the expert mode, or in the command line:

obs = hifiPipeline(obs=obs, save=True)

Note that unless you specify a pool to write to, using the palStore option (see below), then the
observation will be written to .hcss/lstore/pipeline-out.

• When running the pipeline from the command line, the exact ordering of the parameters does not
matter.

• If the pipeline is not behaving as you expect (keeping old values, for example) try resetting it:

hifiPipeline = hifiPipelineTask()

• Please note that the addition of Level 2.5 to the pipeline has made it more memory intensive. We
have found that a 2 Gb machine is capable only of processing small observations (and data reduction
may have to be carried out in a fresh HIPE session). Even a 4 Gb machines may have trouble
processing larger maps and Spectral Scans. A more realistic memory allocation would be 6 Gb. We
remind you of the option to request processing on demand from the HSA. See also Chapter 27 for
hints on dealing with memory problems.

Saving the output:

There are several methods you can use to save your reprocessed observation in a pool (also known as
a local store). See the Data Analysis Guide, chapter 1 for more information about pools.)

• Right click on the output ObservationContext obs and select "Send to Local store".

• Alternatively, you can use saveProduct in the command line:

#
#To save MyNewObs to pool "reprocessed":
bg("saveProduct(product=myObs, pool='reprocessed', tag='My reprocessed data')")

Tagging the observation can help to quickly search for the correct version of the observation for
a future HIPE session.

• In addition, when you run the pipeline, you can specify which pool the output should be written
to. In the console type,

name="My-pipeline-out"
pool=ProductStorage(LocalStoreFactory.getStore(name))

and drag pool to the palStore bullet in the GUI.

Or completely in the command line:

Specify the pool to which the pipeline should write output:
name="My-pipeline-out"
pool=ProductStorage(LocalStoreFactory.getStore(name))
MyNewobs = hifiPipeline(obs=Myobs, palStore=pool, save=True)
#

104

Running the HIFI pipeline Build 15.0.3244

Using this option will results in the pipeline take longer to run.

Running the pipeline for multiple observations:

The script below will retrieve a list of Observation Contexts from pools, reprocess them, then save
the reprocessed data in another pool.

list = [1342xxxxxx, 1342yyyyyy, 1342zzzzzz]
for obsid in list:
 obs=getObservation(obsid)
 obs = hifiPipeline(obs=obs, save=False)
 pool = '%i_new' %(obsid)
 saveObservation(obs, poolName=pool)

The script assumes that the original Observation Contexts are stored in pools with the name of the
observation number, i.e., observation 1342190798 is stored in a pool with name 1342190798, and in
this case, the output pool in 1342190798_new.

5.3. How to process with new (or different)
calibration data

Data that you retrieve from the HSA is processed with calibration data appropriate for the version of
the pipeline used to populate the HSA during Standard Product Generation (SPG). You can identify
the pipeline version by looking at the SPG Version in the Observation Context Summary; the SPG
version corresponds to the version of HIPE used. Note that when you reprocess yourself, the SPG
Version gets updated. You can also look at the build version of the last pipeline task reported in the
HistoryTasks of the History Product to check the last version of the pipeline applied to the data.

Figure 5.2. Checking the version of the pipeline used at the HSA

• Where can I find information about calibration updates?

Updates to the HIFI calibration data are generally concurrent with the release of each major version
of the HCSS-HIFI software. It is possible to have updates to the calibration data in between major
releases of the software as the software and data are independent of each other. Information about
calibration versions and their contents can be found on the HIFI Instrument and Calibration page
, which is updated whenever new calibration is available.

• How do I find the calibration version used to process my data?

The metadata item calVersion can be found in all calibrated products (Level 1 and 2), and the
version number has the format HIFI_CAL_version_number.

105

Running the HIFI pipeline Build 15.0.3244

Figure 5.3. Checking the calibration version used prior to HIPE 8 (top) and from HIPE 8 (bottom).

• Which calibration version should I use?

There is no need to use different calibrations for different science goals with HIFI data. Instead, it is
recommended to keep data version, calibration version, and software version compatible with each
other. For example, this means using HIPE 13.0 to work with data that has been processed in HIPE
13.0, with calibration that was released with HIPE 13.0. This can be done by downloading HIPE
and data from the HSA following bulk reprocessing, or by reprocessing the data yourself with the
latest calibration version available after each HIPE release.

However, you may wish to use an older calibration version, for example, in order to more directly
compare recently acquired data with older data, and it is possible to pass older versions of the cal-
ibration to the pipeline. Consult the HIFI Instrument and Calibration page to understand the dif-
ferences between the different calibration versions. However, whilst every effort is made to ensure
backwards compatibility, using old calibration with newer software can cause inconsistent results.

• How do I re-process with a new (or different) calibration version?

The default action of the pipeline is to reprocess the observation using the latest calibration that is
already stored in the observation context. However, you can configure the pipeline to allow you to
pass an older calibration version to it, or to access the latest calibration version held in the HSA,
which requires an internet connection. This can be done with the following command (there is no
way to do this in the GUI):

cal = configureHifiPipeline(useHsa=True)

In the GUI, you should then:

• drag cal from the Variables pane into the palStore bullet in the GUI,

• check the hifical box,

106

Running the HIFI pipeline Build 15.0.3244

• select the calibration version you want from the drop-down menu, which automatically selects the
latest calibration version available from the HSA from the list of all available calibration versions

You can then set up and run the pipeline as desired.

A completely command line example is below:

obs = getObservation("1342205520")
cal = configureHifiPipeline(useHsa=True)
obs_1 = hifiPipeline(obs=obs, cal=True, palStore=cal, calVersion="HIFI_CAL_18_0")

If you do not configure the pipeline but set cal=True then the pipeline will send a message to the
console warning you that new calibration could not be updated, and reprocessing commences using
the calibration available in the Observation Context. If you omit the calVersion, then the latest
calibration version at the HSA will be used.

Configuring the pipeline as above also configures the pipeline to save output after each level is
completed to a default location, which is .hcss/pipeline-out, when the save=True option is used
(or the save box is checked in the expert pipeline panel):

obs = getObservation("1342205520")
cal = configureHifiPipeline(useHsa=True)
obs_1 = hifiPipeline(obs=obs,fromLevel=0.0,upToLevel=2.0, palStore=cal,
 save=True)

If you forget to configure the pipeline before running with save=True, and also do not provide a
pool yourself for the pipeline to write to, then the pipeline runs to completion but without saving
anything. You can then save the output yourself.

• Downloading the calibration pool from the HSA

Accessing the HSA every time you wish to reprocess data with a new calibration version may not
be very efficient and requires that you have an internet connection. It is also possible to download
the latest calibration available at the HSA into a local pool, which can be stored on your disk. This
avoids the need for an internet connection every time you run the pipeline and makes reprocessing
of multiple observations much more efficient.

The following command will get the latest calibration from the HSA and store it in a pool called
hifi-cal (location .hcss/lstore/hifi-cal), which is the default location for the pipeline to obtain cali-
bration data when not using the HSA. You only need to do this again when you want to update the
calibration from the HSA. The length of time it takes to download the calibration pool depends on
your internet connection; be aware that it is not a quick process.

hifical = getHifiCal(useHsa=True)

To pass this pool for use in the pipeline:

store=ProductStorage(["pipeline-out","hifi-cal"])
obs_new = hifiPipeline(obs=obs, palStore=store, cal=True)

The "pipeline-out" is required as a precaution because of a subtlety in how HIPE deals with pools;
the first pool registered is writeable. By default, the pipeline will write its output to pool and you do
not want to risk polluting your calibration pool with a processed observation. Therefore, we specify
a pool for the pipeline to write out to. In fact, it is the same output pool that is used in the pipeline
configuration above.

107

Running the HIFI pipeline Build 15.0.3244

Note that you do not need to download different versions of the calibration tree in order to apply
different calibration versions to your data, the calibration tree contains all the past calibration ver-
sions already.

• Getting calibration products

The calibration contained within an ObservationContext can be obtained with the following:

cal = obs.getCalibration()

These calibration products will only apply to this observation and only represent a part of the HIFI
calibration tree. The contents of the calibration tree are described in Section 3.1.

To get the full HIFI calibration tree from the hifi-cal pool:

from herschel.ia.obs.cal import CalTreeFactoryManager
from herschel.hifi.cal import HifiCalTreeFactoryPalImpl
factory = CalTreeFactoryManager.getInstance()
store = ProductStorage("hifi-cal")
factory.setProductStorage(store)
registry = factory.getRegistry()
user release version of HIFI calibration tree
calroot = registry.checkout()
all versions of the calibration tree contained in the storage
state = registry.state

• Re-pipelining with a new Auxiliary product

An additional option, aux=True, allows to reprocess data with updated auxiliary information, e.g.
data from the satellite regarding timing and position of the observation. This option is intended for
the use of HIFI calibration scientists and is described here for the sake of completeness. This option
requires connection to a dedicated data-base that is distinct from the HSA, which hosts the same
version of the auxiliary products used in the latest bulk reprocessing.

obs = getObservation("1342205520")
cal = configureHifiPipeline(useHsa=True)
obs_1 = hifiPipeline(obs=obs, cal=True, aux=True, palStore=cal)

5.4. Modifying the pipeline
You may wish to modify the pipeline for the following reasons:

• To allow existing data processing tasks to be included as part of the pipeline

For example, you may wish to include baseline or standing wave removal prior to gridding mapping
data or deconvolving spectral scans, or you might want to convert the data to Jy at the end of the
pipeline. This can be done using the interactive Level 2.5 Pipeline, see Section 5.4.1.

• To omit steps from the pipeline or to use optional steps in the pipeline

For example, you may wish to omit the averaging step at the end of the Level 2 pipeline or to turn
on the optional doFilterLoads Level 1 pipeline step to help mitigate standing waves coming
from the calibration loads. This can be done for Levels 1 and 2 using the Customize Pipeline tab
in the hifiPipeline GUI, see Section 5.4.2.

In the Level 2 pipeline, you could choose to use doMainBeamTemp to convert to main beam
temperature instead of the default antenna temperature. This can be done by editing the pipeline
algorithm scripts found in the Pipelines menu in HIPE, see Section 5.4.3.

108

Running the HIFI pipeline Build 15.0.3244

• To calculate the RMS noise in your data

In the SPG environment (the pipeline run to populate the HSA), the pipeline computes the rms noise
in Level 2 and Level 2.5 data with the mkRms task. However, the task can take significant CPU
time to run. For this reason, the rms calculation is turned off by default in the Interactive Pipeline
(the pipeline you work with in HIPE). The mkRms task is enabled via the hifiPipeline option
computeRms. Once the option computeRms is enabled, you may choose to run mkRms in Level
2 and/or Level 2.5.

The mkRms task can be used in both the Level 2 and Level 2.5 pipelines. At Level 2.5, the mkRms
task is used as part of an observing mode specific algorithm, in addition, calculations are made for
data converted to Main Beam temperature and also for combined H and V polarisation.

If you want to calculate the rms noise in your data yourself, you must run the pipeline with the
computeRms option set to True. To do so, check the computeRms box in the pipeline GUI. In
the command line, use:

obs = hifiPipeline(obs=obs, computeRms=True)

Checking the computeRms box in the pipeline GUI will cause the mkRms boxes in the Customize
Pipeline and Interactive Level 2.5 Pipeline sections in the GUI to be checked. The mkRmsAlgo
box in the Interactive Level 2.5 Pipeline will also be checked. This means that the calculations are
automatically done at Level 2 and Level 2.5 but it is possible to limit the calculations to be done
only to one Level or the other by unchecking the appropriate mkRms box.

The various options and parameters that can be modified in the mkRms are described in the mkRms
in HIFI User's Reference Manual entry in the HIFI User's Reference Manual. It is also possible to
modify the mkRms algorithm in the Interactive Level 2.5 pipeline. This is described in Section 5.4.3
below.

The resulting tables of statistics are stored in the Statistics node of the trendAnalysis Product in the
Observation Context, and can be used for comparing with expected noise performance. Please note
that if you choose to reprocess part of your data, the Statistics node will be updated to reflect the
data reprocessed and a copy of the statistics from the unprocessed data will still be present in the
Statistics node. This is because the original statistic data i.e the one created with SPG is already
present in the trendAnalysis Product and is not erased.

If you wish to remove all statistics information from the trendAnalysis Product before reprocessing
with hifiPipeline, we show an example in this following script:

obs is your observationContext
To remove the existing statistics from Level 2.5

map=java.util.HashMap(obs.refs["trendAnalysis"].product.refs["Statistics"].product.refs)
for ref in map:
 if(ref[0:8]== "Level2_5"):

 obs.refs["trendAnalysis"].product.refs["Statistics"].product.refs.remove(ref)

here, ref[0:8] corresponds to the number of characters for 'Level_2_5'
note that you could equally have used: if ref.startswith("Level2_5"):
at this point there are no statistics for Level 2.5 in obs

obs=hifiPipeline(obs=obs, fromLevel=1, upToLevel=2, computeRms=1)

and at this point there are only statistics up to Level 2.0 in obs

If, instead, you run the following commands

map=java.util.HashMap(obs.refs["trendAnalysis"].product.refs["Statistics"].product.refs)
for ref in map:
 if(ref[0:6]== "Level2"):

109

Running the HIFI pipeline Build 15.0.3244

 obs.refs["trendAnalysis"].product.refs["Statistics"].product.refs.remove(ref)

at this point all statistics of Level 2.0 and 2.5 in obs are removed

obs=hifiPipeline(obs=obs, fromLevel=2, apids=["WBS-H"], computeRms=1)

at this point there are only statistics for WBS-H Upper/Lower bands in Level
 2.5.

Finally, if you would like to remove the lot, regardless of the level ...

for ref in map:
 obs.refs["trendAnalysis"].product.refs["Statistics"].product.refs.remove(ref)

• To use alternative options in the default steps of the pipeline

One example includes choosing a different order Polynomial to fit, or a different interpolation
method in the mkOffSmooth step of the Level 1 pipeline in order to improve baselines in the data.
This can be done using the Customize Pipeline tab in the hifiPipeline GUI, see Section 5.4.2,
or, for those more comfortable with scripting, by editing the pipeline algorithm scripts, see Sec-
tion 5.4.3.

• To introduce a task you have written into the pipeline

This is expected to be of interested only to more expert users and can be done by creating a task
to pass to the interactive Level 2.5 pipeline, see Section 5.4.1, or by editing the pipeline algorithm
scripts, see Section 5.4.3.

5.4.1. Using the interactive Level 2.5 pipeline
The default Level 2.5 pipeline (that is used to create products in the HSA) is observing mode depen-
dent, and this is reflected in the Interactive Level 2.5 Pipeline GUI.

• Point modes

HTP are stitched, folded (if Frequency Switch), and converted to simpleSpectrum format. HRS
spectra are stitched together using the fillGaps option of doStitch set to True so that any
gaps in the subbands are set to NaNs. The tasks listed in the Interactive Level 2.5 Pipeline GUI
are doStitch, doFold (only for Frequency Switch observations), and convertSingleHi-
fiSpectrum

• Mapping modes

HTP are stitched, folded (if Frequency Switch), and gridded. HRS spectra are stitched together only
if the subbands overlap in frequency (by calling doStitch with fillGaps=False) in order to
avoid NaNs in the cube. The tasks listed in the Interactive Level 2.5 Pipeline GUI are doStitch,
doFold (only for Frequency Switch observations), and doGridding. Note that in the Level 2.5
Interactive Pipeline, doGridding automatically applies the rotation angle used in the observation
to the gridding. This is a contrast to the pipeline used to populate the HSA, which creates non-rotated
cubes and, in the case of maps carried out with a non-zero rotation angle, also a set of rotated cubes.

• Spectral Scans

The data are deconvolved using the doDeconvolution task, which is listed in the Level 2.5
Interactive Pipeline GUI.

• All observing modes

The mkRmsAlgo algorithm, which uses the mkRms task is run on the Level 2.5 data. For each
type of observing mode, the mkRmsAlgo and mkRms tasks are listed in the Interactive Level 2.5
Pipeline GUI.

110

Running the HIFI pipeline Build 15.0.3244

The interactive Level 2.5 Pipeline allows you to set up the tasks, automatically included in it, as you
wish prior to running the pipeline. It also allows you to introduce other tasks into the pipeline, with
the requirement that the output of one task be able to be passed to the next task in your customised
Level 2.5 pipeline.

By default, the interactive Level 2.5 pipeline tab is inoperative when the pipeline GUI is first opened.
To use it, check the box to the right of "Interactive Level 2.5 Pipeline" near the bottom of the hi-
fiPipeline GUI, and open the tab by clicking on the arrow to the left. Tasks already included
in the Level 2.5 pipeline can also be opened by clicking on the arrow to the left of the task name,
and the task options can be modified. See Chapter 14 and Chapter 15 for information about setting
up doDeconvolution and doGridding, respectively. Note that upon checking the "Interactive
Level 2.5 Pipeline" box, these tasks will be initialised with their default settings: these may not be
the same as in the standard pipeline. For example, doGridding will produce only cubes with the
flyAngle applied when run this way, but in the standard pipeline, it would produce cubes with the
flyAngle applied, and cubes to which no rotation is applied.

Other tasks that accept and pass HTPs can be added to the Level 2.5 pipeline. To find tasks that are
applicable to HTPs, click on an HTP in the Variables view or in the Observation Context tree, and look
under Applicable in the Tasks View. You can also pass tasks that loop through HTPs in an Observation
Context, such as doDeconvolution, fitBaseline, fitHifiFringe and convertK2Jy.
These can be found by clicking on an Observation Context in the Variables view or in the Observation
Context tree before looking under Applicable in the Tasks View.

To pass a task to the Level 2.5 pipeline, drag it from the Tasks View to the green bullet in the tab,
see Figure 5.4. The tasks can be re-ordered by dragging them up and down the list, and can be set up
as desired after clicking on the arrow to the left of the task name. Note that adding tasks to the list
will remove any changes you made to a panel already in the list so it is best to add all the tasks you
want to use first, and then set them up.

Figure 5.4. Using the Level 2.5 Interactive Pipeline GUI

As usual, the command to run the pipeline with your customised Level 2.5 pipeline will be echoed
to the console and can be copied to insert into scripts. The output to the console will also include the

111

Running the HIFI pipeline Build 15.0.3244

commands to customise the Levels 1 and 2 pipelines, unless you unchecked that option in the GUI. If
you did not modify the Levels 1 and 2 pipelines then you can safely remove these by deleting params
= { ... }.

Writing your own task to provide to the Level 2.5 pipeline

You can provide your own task to run the Level 2.5 pipeline. The example below shows the framework
of how to do that:

from herschel.ia.task import Task
from herschel.ia.task import *
from herschel.ia.gui.kernel import ParameterValidatorAdapter,
 ParameterValidationException
from herschel.ia.all import *

class HtpPrimeInputValidator(ParameterValidatorAdapter):
 def validate(self, val):
 if not isinstance(val, HifiTimelineProduct):
 msg = "The prime input is a %s. It must be a %s." % (val.__class__,
 HifiTimelineProduct)
 raise ParameterValidationException(msg)

class HifiPipelineTemplateTask(Task):
 """
 @jhelp A task to demostrate how to write a task that is compatible with the
 the hifi interactive pipeline.

 @jcategory HIFI/Analysis

 @jalias hifiPipelineTemplate

 @jparameter htp, IO, HifiTimelineProduct, MANDATORY, None
 The number of the observation context to be compared

 @jparameter otherTaskParameter, INPUT, String, OPTIONAL, 'empty'
 Example of a non-prime task parameter

 @jexample How to register this task in HIPE and use it
 # Import your task if it is contained in the software build
 from herschel.hifi.scripts.users.share.HifiPipelineTemplateTask import *
 # Register your task in HIPE, and move task to the interactive pipeline (GUI)
 hifiPipelineTemplate = HifiPipelineTemplateTask()
 # To execute your task on the command-line
 output = hifiPipelineTemplete(obs=xxxx, otherTaskParameter='myInput')

 @jhistory 2012-02-13 KE Initial version
 """
 def __init__(self):
 self.setName("hifiPipelineTemplate")
 self.setDescription("A task to demostrate how to write a task that is " +
 "compatible with the the hifi interactive pipeline")
 # HifiTimelineProduct - htp
 p = TaskParameter()
 p.name = 'htp'
 p.type = TaskParameter.IO
 p.valueType = HifiTimelineProduct
 p.nullAllowed = 0
 p.defaultValue = None
 p.description = 'The obsid of an ObservationContext'
 p.mandatory = 1
 p.parameterValidator = HtpPrimeInputValidator()
 self.addTaskParameter(p)
 # Non-prime task parameter
 p = TaskParameter()
 p.name = 'otherTaskParameter'
 p.type = TaskParameter.IN
 p.valueType = String
 p.nullAllowed = 0
 p.defaultValue = 'empty'
 p.description = 'example of a non-prime task parameter'

112

Running the HIFI pipeline Build 15.0.3244

 p.mandatory = 0
 self.addTaskParameter(p)
 ##
 def execute(self):
 print self.getName() + " is being executed."
 htpCopy = self.htp
 print htpCopy
 #self.htp = HifiTimelineProduct()
 #self.htp.setDescription("This is a test output")
###
hifiPipelineTemplate = HifiPipelineTemplateTask()
#output = hifiPipelineTemplate(htp=htp, otherTaskParameter='myInput')
#print output

5.4.2. Customising the Level 1 and 2 pipelines
The Customize Pipeline section of the hifiPipeline GUI can be used to change the defaults used
in the pipeline algorithms, and to omit steps from the Level 1 and 2 pipelines.

• Unhide the Customize Pipeline section by clicking on the arrow, all of the steps in the Levels 1 and
2 pipelines are displayed.

• If an Observation Context is loaded into the hifiPipeline GUI then doPipelineConfig-
uration will read the observing mode from the instMode (not the obsMode) metadata item,
and the steps that are not applicable for that observing mode will be greyed out.

To find the value of the instMode metadata, you can either directly look in the Observation
Context metadata, or use the following in the command line:

obsmode = obs.meta.get("instMode").value

• By unchecking the tick box by each pipeline step name, you can omit that step when you run the
pipeline.

• By unhiding the panels in the GUI, you can see the parameters used in each step with the default
settings for that observing mode, which you can modify as you prefer. Tooltips found by hovering
over parameter names give indications of the options available to you, while more information
is available in Chapter 4. The pipeline steps are described in detail in the Pipeline Specification
Document .

• The command to run the pipeline as you have configured it is echoed to the console, allowing you to
transfer your customised pipeline command to a script. This is a very simple way to put a customised
pipeline into a script but you should be aware that this will only work for other observations of
the same observing mode as the configuration is dependent on the observing mode and a different
configuration must be created for a different mode.

• You can also customise the pipeline directly from the command line (without copying the echo to
console) using doPipelineConfiguration, although the format is somewhat different than
that echoed to the console. The echo to the console from the pipeline includes all the default settings
for the observing mode but when using doPipelineConfiguration, it is only necessary to
include the settings for the tasks that you wish to modify. In the example below, the doAvg step
is omitted:

This passes the instMode metadata value to the pipeline configuration
config = doPipelineConfiguration(obs)
Now change the pipeline configuration to skip doAvg
config.setParameter('doAvg','ignore', True)
obs_1 = hifiPipeline(obs=obs, params=config)

And in this example, you may want to add doFilterLoads to the configuration:

113

Running the HIFI pipeline Build 15.0.3244

This passes the instMode metadata value to the pipeline configuration
config = doPipelineConfiguration(obs)
Now change the pipeline configuration to add doFilterLoads
config.setParameter('doFilterLoads','filterMethod','cubic_splines')
obs_2 = hifiPipeline(obs=obs, params=config)

5.4.3. Editing the pipeline algorithms
The scripts for the algorithms of each stage of the pipeline and the algorithm for calculating the rms
noise, mkRmsAlgo, can be found in the Pipeline → HIFI menu in the HIPE toolbar. These scripts
are kept automatically up to date and they have been made as clear and well-commented as possible
in order that you be able to modify them. However, it is strongly recommended that you look at the
Pipeline Specification Document to understand what the pipeline does, and what alternatives are
available for each pipeline step.

• Edit the pipeline algorithm script (optional), and save it on disk. You can then pass the modified
algorithm to the pipeline by specifying the location of the saved script in the appropriate algo field
of the GUI. You can browse for your saved script by clicking on the folder icon.

• You can also pass the path to the saved algorithm script in the command line, e.g.,

obs = hifiPipeline(obs=obs, level2Algo="/home/me/MyScripts/
MyLevel2PipelineAlgo.py")

• Alternatively, you can make use of the fact that the pipeline algorithm scripts define a function (
def TaskName (Parameters):), and pass the function name to the pipeline. To do this you
must first compile your new pipeline algorithm by running the script with the double arrows (>>)
in the HIPE toolbar. In the example below, the function has been called MyLevel1Algo:

Include your own algorithm for the Level 1 pipeline, for all spectrometers,
 from Level 0 to 1:
obs = hifiPipeline(obs=obs, fromLevel=0, upToLevel=1, level1Algo=MyLevel1Algo)
#

5.4.4. Running the Pipeline step by step
• If you choose to modify or customise the pipeline, it can be helpful to see directly and quickly what

changes will be made to the data. Running the pipeline, or one part of the pipeline, step by step
allows you to inspect the results of each step and change the default parameters of the pipeline.
You will find extended information of every steps the pipeline perform in Chapter 4. If you wish
to create your own algorithm, which must be written in jython, for a part of the pipeline, then this
will likely be your first step.

• It is not expected that there will be much need to customise the spectrometer pipelines (up to Level
0.5), and indeed there are only a few steps of the spectrometer pipelines that have some options. It
is more likely that you may wish to play with how OFF and reference spectra are subtracted in the
Level 1 pipeline, although it is expected that the default settings should work well.

• To step through the pipeline, you must work directly on the appropriate level HifiTimeLine (HTP
- the dataset containing all the spectra, including calibration spectra, made during an observation
for a given spectrometer). So the first thing you must do is to extract the HTP you want to work
on from your Observation Context:

• Drag an HTP from the Observation Context tree in either the Context Viewer or Observation
Viewer into the Variables view, and rename it if you desire by right clicking on the new variable
and selecting "rename".

114

Running the HIFI pipeline Build 15.0.3244

• In the command line, the formalism to extract an HTP is

htp = obs.refs["level2"].product.refs["HRS-V-USB"].product

"level2" and "HRS-V-USB" should be replaced by the level and backend combination desired.

• When you select an HTP in the Variables view in HIPE, you will notice many tasks with names
like DoWbsDark, mkFreqGrid. These are the names of all the steps in the HIFI pipeline; mk...
signifies a step where a calibration product is being made, Do... is a step where a calibration is
applied. You can step through the pipeline using these tasks, you will need to refer to the HIFI
Pipeline Specification Document for the order that the steps should be applied in. Alternatively, you
can use and modify the scripts that are supplied with the software from the Pipeline menu in HIPE,
as described above. To learn about moving about and running scripts, see the HIPE Owners Guide .

• For information on the steps of each level of the pipeline (their names, the order to run them in, and
what options you can change) see the HIFI Pipeline Specification Document.

115

Build 15.0.3244

Chapter 6. Viewing Spectra
Last updated: 28 April, 2015

6.1. Introduction
HIFI spectra can be easily visualised using the Spectrum Explorer graphical interface, which is de-
scribed in detail in the Herschel Data Analysis Guide. For spectra, see the How to display spectra
section of the Spectral Analysis chapter, and for spectral cubes, see the How to display the spectra
in cubes section of the Spectral analysis for cubes chapter. Here, we briefly describe the use of the
Spectrum Explorer with an emphasis on its features for HIFI data.

You can also create plots using scripting methods, which is helpful to check output from data reduction
scripts and to make figures for papers. There are two packages available to use. SpectrumPlot allows
you to plot SpectrumDatasets with just a few commands but has relatively limited display options.
PlotXY, on the other hand, requires you to get your spectrum into Numeric1d format before plotting
but once that hurdle is passed it is possible to make sophisticated figures. The Plotting chapter in
the "Herschel Data Analysis Guide" covers this topic in detail. Here we provide examples, details and
tips tailored to HIFI data.

6.2. How to look at HIFI spectral data
HIFI spectra, spectral cubes, and HTP can be conveniently viewed in the Spectrum Explorer.

6.2.1. Spectra
To view a spectrum in the Spectrum Explorer, click on a SpectrumDataset in the Variables pane
or in the Observation Context tree in the Observation Viewer with the right mouse button, and select
Open With → SpectrumExplorer. This will open the Spectrum Explorer in the space used by the Editor
View in HIPE. If the Spectrum Explorer is already selected as the default viewer, then a double-click
will suffice to open the spectrum in the Spectrum Explorer. The default viewer is denoted by a circle
to the left of the viewer name in the Open With menu, whichever was last chosen to view a given data
type will become the default viewer for that datatype.

To get to the spectrum in a HIFI Observation Context, you need to click on the data level of interest
(Level 0, 1, 2, or 2.5) and then the spectrometer of interest, spectra are stored within DatasetWrap-
pers called boxes, see Figure 6.1. Left clicking on a spectrum in the Observation Viewer opens the
Spectrum Explorer, and open within the Editor View but keeps the Observation Context tree visible
to the left, see Figure 6.1. This allows you to visualise the contents of the Observation Context more
quickly. In order to have more space to work, you can enlarge the Spectrum Explorer to fill the entire
Editor View by clicking on the arrow in the top-right corner of the Spectrum Explorer.

116

Viewing Spectra Build 15.0.3244

Figure 6.1. Opening the Spectrum Explorer on a HIFI Level 2 spectrum

Beneath the plot in the Spectrum Explorer is the Data Selection Panel. Each spectrum within the
plotted SpectrumDataset is displayed on a different row in the Data Selection Panel, and each
subband is represented by a different column. Note that each subband is considered to be an individual
spectrum. You can plot all the spectra in a dataset by pressing the All button at the top left of the
Data Selection Panel, and remove them all by pressing it again. All the spectra in a row or column
can be plotted by clicking on the number of the row/column, and removed by clicking on it again.
Individual spectra can be plotted by clicking in the box corresponding to it in the Data Selection Panel,
and removed from the plot by clicking again. If your dataset contains only one row of spectra then
they will be plotted immediately upon opening the Spectrum Explorer, while nothing will be plotted
until it is selected in the case of datasets containing multiple rows of spectra. The remaining columns
in the Data Selection Panel show the values of attributes in HIFI data, these can be sorted on and used
to filter what data is displayed in the plot.

You are directed to the How to display spectra section of the 'Herschel Data Analysis Guide' for the
complete documentation of the usage of the Spectrum Explorer.

6.2.1.1. HIFI Tool in Spectrum Explorer

The HIFI Tool extends the Spectrum Explorer to provide a convenient way to display different axes
on HIFI spectra (only, spectral cubes are not supported). Note that this is for display only, the data are
not converted. The tool is opened by clicking on the HIFI ICC icon in the Spectrum Explorer button
bar. A panel opens to the right of the plotted spectrum.

117

Viewing Spectra Build 15.0.3244

Figure 6.2. Opening the HifiTool in Spectrum Explorer on a HIFI Level 2 spectrum

To add a new axis or change an existing one, click on the axis location (top, bottom, left, right) in the
panel and click on the type of axis you want, then select the units from the menu that appears to the
right. For the top and bottom axes, you have the choice of the following axis types:

• IF (MHz)

• Upper or Lower Sideband (Hz, kHz, MHz, GHz, THz)

Only the 'other' sideband is offered, so if your data is USB then only LSB is offered.

• Velocity (m/s, km/s)

The calculation is done using convertWavescale and a pop-up box appears for you to enter
the reference frequency.

For the right and left axes you can choose to display flux density values. The calculation is done using
the convertK2Jy task and a pop-up box appears for you to enter the source size.

You can add as many axes as you wish. Each axis is identified in the panel with the following label
convention axis location_axis type_unit_axis number. To delete an axis from the plot, click on the
label in the panel and then click on the delete button at the bottom of the panel.

6.2.2. Spectral Cubes
HIFI cubes are found in Level 2.5. The Level 2.5 context contains a cubesContext, which itself
contains cube contexts for each spectrometer used in the observation (for both USB and LSB), and
these contain a cube (technically a SimpleSpectralCube) made of the stitched subbands, see
Figure 6.3.

Spectral cubes are opened in the Spectrum Explorer via a right mouse click in the same way as spectra,
see above. There are several useful options available for cubes in the Open With menu:

1. Spectrum Explorer is used for visualising spectra in cubes and gives access to the cube toolbox.

118

Viewing Spectra Build 15.0.3244

2. WCS Explorer allows you to see the cube header, which follows usual fits conventions.

3. Standard Cube Viewer allows you to inspect images of each layer of the cube (the same can be
done in Spectrum Explorer).

These three options are shown in Figure 6.3 and are found by right clicking on the SpectralSim-
pleCube variable (cube_WBS_H_USB_1 in the Figure). Below that are three datasets containing
the data for the image, the weights in the cube and the flags in the cube, these can be viewed with the
Dataset Viewer. Note that the default layer displayed in the Spectrum Explorer is the middle layer of
the cube, while the Standard Cube Viewer, by default, shows the last layer in the cube and shows it
on a very zoomed out scale - you will probably have to zoom to fit to see the image.

Figure 6.3. Opening the Spectrum Explorer on a HIFI spectral cube

Rather than the Data Selection Panel used for spectra in the Spectrum Explorer, as described above,
the selection panel for cubes shows an image of the cube. There is nothing particular to HIFI data
about the usage of the Spectrum Explorer with HIFI cubes and you are directed to How to display
the spectra in cubes for the full documentation of using the Spectrum Explorer with spectral cubes.
However, you should note that the pixel coordinates reported beneath the cube are reported as (Y, X)
rather than the more usual (X, Y).

6.2.3. HifiTimelineProducts (HTP)
Using the Spectrum Explorer to inspect the HifiTimelineProduct (HTP) can be a powerful way to get
an overview of your data, particularly for mapping observations. The HTP is opened in the Spectrum
Explorer using a right click on the variable name (in the Variables pane or in the Observation Context
tree), and selecting SpectrumExplorer from the Open With menu.

Nothing is plotted in the upper panel when opening an HTP in the Spectrum Explorer. The data are
displayed in the Data Tree in the selection panel, which is initially collapsed. Click on the plus sign to
the left of the variable name (which is the same as the reference to the data product) to expand the tree
without plotting anything, or click on the box to the right of the variable name which will plot all the
data but not expand the data tree. Be aware that plotting large amounts of data will take some time.

Once the contents of the Data Tree have been expanded, you will find a new row for each product in
the HTP. The columns (from left to right) show:

119

Viewing Spectra Build 15.0.3244

• First column: a '+' for collapsed data containing multiple spectra, or a '-' for expanded datasets.
Clicking on the symbol will expand or collapse that data tree.

• Second column: displays the variable name of the data, the default name given is that of the reference
to the product. You can rename the variable by double clicking on the variable name, the renamed
variable will be added to HIPE Variables pane. Double clicking on a variable name also causes a
red cross to appear next to the variable name, clicking on the red cross allows you to remove the
data (and all 'sub-data' belonging to it) from the Spectrum Explorer.

• Third column: displays the colour of the line (layer), if displayed. If collapsed data are displayed in
the plot, the box will be grey coloured. Clicking on this box will display or hide all the spectra in
this data set. On mouse-over, a displayed spectrum in the plot will be temporarily highlighted.

• Remaining columns: metadata in the data. As for the Data Selection panel, the columns can be
reordered horizontally or sorted according to the metadata value (see the Filtering and Sorting what
is viewed section in the 'Hesrchel Data Analysis Guide').

It can be helpful to widen the variable column in order to see the full reference to the product. Each
product within the HTP can be expanded in the same way, producing a row for each spectrum contained
in the product. This way of interacting with the data is quite different than in the Data Selection Panel
used for spectra. To illustrate, the first two rows of spectra in the first dataset in box_001 in the WBS-
H-USB is shown in both the Data Selection Panel and the Data Tree in Figure 6.4. The advantage of
using the Data Tree is that all of your data is available in one tab, allowing you to easily pick and choose
what to plot from all of the data in the HTP. Using the Spectrum Explorer and the Data Selection Panel
requires you to plot each dataset in a box separately. The disadvantage is that the Data Tree is less
intuitive to use and it is not possible to plot, say, all the spectra in one subband with one click.

Figure 6.4. Opening the Spectrum Explorer on a HTP: comparing the Data Tree and Data Selection Panel

Clicking anywhere in a row in the Data Tree will cause that row to be highlighted in yellow, and the
spectra in the product to be displayed in the Preview pane to the right of the Data Tree. If you do
not see a Preview pane then click on the 'Display the preview panel' icon (marked by a red arrow in

120

Viewing Spectra Build 15.0.3244

Figure 6.4) in the Spectrum Explorer button bar to activate it. Right clicking anywhere in the Data
Tree will give you a menu allowing you to:

• select/deselect, this is only offered if you have selected spectra in the plot

• expand/collapse all of the products in the Data tree

• display/hide all the spectra in the plot in the panel above the data tree

• copy the contents of a cell

The mosaic function, or raster panel, of the Spectrum Explorer is a useful tool to inspect large datasets.
It is opened by clicking on the solid grid icon in the Spectrum Explorer button bar, and will open a
new tab in the plot panel of the Spectrum Explorer from where you can select three ways to display
the data in your HTP:

• Grid: all of the spectra in the HTP are displayed in order from top to bottom-right as a series of
postage stamps. On mouse-over, a spectrum is displayed in the preview panel. You can adjust the
x and y ranges of the data are viewed over using the slide bars at the top of the panel. This is the
default mode the raster panel opens in.

• Raster: the spectra are displayed according to their position, RA and dec values are given on the
left and top axes, respectively. The x and y ranges of the data viewed can be adjusted as for the
grid view. Spectra that are from close-by sky positions may be plotted so close together that they
overlap but each plot moves to the top on mouse-over, and is displayed in the preview pane. You
can also zoom in and out on the raster display using the mouse wheel or track pad equivalent.

• Location: crosses mark the positions of spectra in the dataset, with RA and dec given on the left
and top axes. On mouse-over, the spectrum of each point is shown in the preview panel and you
can zoom in and out on the display using the mouse wheel or track pad equivalent.

You can reset the display with the reset button at the top right on the panel and return to the original
scale after zooming with a right-click.

Prior to HIPE 8 (and even for some older maps in HIPE 8), the gridding of spectral maps was not
optimal with the result that some cubes were created with pixels sizes different than that appropriate
for the way the observation was carried out. This could result in cubes with a different number of
pixels (and potentially map rows and columns) than calculated by HSpot. Using the Spectrum Explorer
mosaic function to inspect the positions of spectra in the map can be helpful in providing a quick
comparison with the cube produced by the pipeline.

121

Viewing Spectra Build 15.0.3244

Figure 6.5. Using the location option of the Spectrum Explorer mosaic to see the positions of spectra in
a map

6.3. Scripted plotting of spectral data with
PlotXY

PlotXY() is the basic package to plot arrays of data points in the HCSS, and it can be used to plot
HIFI spectra as well. It has a lot of options, making the plots highly configurable. Here is an example
of plotting a HIFI spectrum:

• Get the spectrum (technically a HifiSpectrumDataset) from an ObservationContext. You can right
click on the dataset in the ContextViewer and create a variable. Alternatively, you can adapt the
following to be appropriate for the level, spectrometer and sideband of interest:

ds = obs.refs["level2"].product.refs["WBS-H-
USB"].product.refs["box_001"].product["0001"]

• You need to extract the flux and frequency data separately in order to plot them against each other.
The following example will extract the flux and frequency from the first subband (Segment) of the
first spectrum (PointSpectrum)in a dataset:

freq = ds.getPointSpectrum(0).getSegment(1).getWave()
flux = ds.getPointSpectrum(0).getSegment(1).getFlux()

Note that numbering for the Segments begins at 1, while the numbering of the PointSpectra begins
at 0.

• The simplest possible plot:

out=PlotXY(freq, flux)

• When plotting multiple spectrum datasets, say 'sd1' and 'sd2' in one figure:

122

Viewing Spectra Build 15.0.3244

Get the wavelengths and fluxes to be plotted
freq1=sd1.getPointSpectrum(0).getSegment(1).getWave()
flux1=sd1.getPointSpectrum(0).getSegment(1).getFlux()
freq2=sd2.getPointSpectrum(0).getSegment(1).getWave()
flux2=sd2.getPointSpectrum(0).getSegment(1).getFlux()
#
Create the plot variable
p=PlotXY()
Define the layer variable
ll=[]
Optional: remove any non-numbers (NaN's, Infinites etc.)
valid=flux1.where(IS_FINITE)
Create layer for first plot
l=LayerXY(freq1[valid],flux1[valid])
Append to layer variable
ll.append(l)
Repeat the above for the 2nd plot to be overlaid
valid=flux2.where(IS_FINITE)
l=LayerXY(freq2[valid],flux2[valid])
ll.append(l)
Define the plot layers that have just been created
p.layers=ll

• And this is how some common features of the plot are modified.

p.setYrange([0, 1.5])
p.setTitleText("This is an example plot")

6.4. Scripted plotting of spectral data with
SpectrumPlot

All Herschel spectra types can be displayed with the SpectrumPlot package.

SpectrumPlot is built on PlotXY and so many of the features you would use in PlotXY you can
also use for SpectrumPlot. The main distinction of SpectrumPlot is that it allows you to plot
spectra directly, without needing to extract the Wave and Flux arrays separately before plotting.

Below are two simple examples.

Plot using Spectrum Plot
#
Get data
obs = getObservation("1342190183")
L2_wbs_h_u = obs.refs["level2"].product.refs["WBS-H-USB"].product.refs \
["box_001"].product["0001"]
L2_wbs_v_u = obs.refs["level2"].product.refs["WBS-V-USB"].product.refs \
["box_001"].product["0001"]
L2_hrs_h_u = obs.refs["level2"].product.refs["HRS-H-USB"].product.refs \
["box_001"].product["0001"]
#
#--
Example 1:
Get the segments of one spectrum (L2_wbs_h_u) and plot all the same colour
#
spec1 = L2_wbs_h_u.getPointSpectrum(0).getSegment(1)
spec2 = L2_wbs_h_u.getPointSpectrum(0).getSegment(2)
spec3 = L2_wbs_h_u.getPointSpectrum(0).getSegment(3)
spec4 = L2_wbs_h_u.getPointSpectrum(0).getSegment(4)
#
Plot
splot = SpectrumPlot()
splot.add(spec1)

123

Viewing Spectra Build 15.0.3244

splot.add(spec2)
splot.add(spec3)
splot.add(spec4)
#
Remove the fourth spectrum
splot.remove(spec4)
#
Set colours
Note, layers are labelled with indices from 0 up (first layer has index 0)
splot.getLayer(0).setColor(java.awt.Color.RED)
splot.getLayer(1).setColor(java.awt.Color.RED)
splot.getLayer(2).setColor(java.awt.Color.RED)
#
Limit the X range
splot.setXrange([575.5, 577.0])
#
Clear all annotations, then set one and a title
splot.clearAnnotations()
splot.addAnnotation(Annotation(576.5,3, "My Annotation", \
color=java.awt.Color.BLUE, fontSize=14))
splot.setTitleText("Title")
#
Save plot as png
splot.saveAsPNG("/Users/carolynmccoey/Desktop/splot.png")
#
#
#---
Example 2:
Plot the line in all three spectra, using different line styles
#
Note that Spectrum Plot treats each subband
splot = SpectrumPlot()
splot.add(L2_wbs_h_u) # Layers 0-3 (4 subbands). Line is in subband 3 (layer 2)
splot.add(L2_wbs_v_u) # Layers 4-7 (4 subbands). Line is in subband 3 (layer 6)
splot.add(L2_hrs_h_u) # Layer 8 (1 subband)
#
Set line styles
splot.getLayer(2).setLine(0)
splot.getLayer(6).setLine(3)
splot.getLayer(8).setLine(2)

The first example will produce the following plot:

124

Viewing Spectra Build 15.0.3244

Figure 6.6. Plot produced with SpectrumPlot

125

Build 15.0.3244

Chapter 7. Converting positions in
data to offsets

Last updated: 28 April, 2015

7.1. Introduction
You may wish to inspect the position of your data relative to the requested position of the map centre,
or in the case of Solar System Objects (SSOs) relative to the target position. The DoOffset task
allows you to convert the values in the longitude and latitude columns in your datasets from absolute
values to values relative to the requested positions (raNominal and decNominal in the Observation
Context metadata). The task will also convert the relative values back to absolute positions again. You
have the option to temporarily modify the longitude and latitude values or overwrite them.

7.2. Using the doOffset task
The DoOffset task will calculate positions relative to the values of the requested RA and dec, ra-
Nominal and decNominal, found in the metadata. Alternatively, you can pass values of RA and dec,
in decimal degrees, to the task to be used to calculate the offset positions from.

In the case of a moving target (Solar-System object), the resulting offset coordinates are in a coordinate
system co-moving with the target, centred on the nominal target position. For fixed targets the offset
coordinates are centred on the nominal map centre. Therefore, this task allows you to inspect the
offsets in all types of data from the requested position.

If you supply RA and dec values to the task it will write these values to the metadata of the resulting
HTP as ra_centre and dec_centre. These metadata items will be used to calculate positions if you use
the task again to convert the coordinates from offsets to absolute values, or vice versa.

The task works on HTPs and datasets, see the script examples below:

obs = getObservation(1342227194, useHsa=True)
htp = obs.getProduct("level2").getProduct("WBS-H-USB")
#
Create a new htp2 with longitude and latitude values relative to offset
 coordinate,
the original htp is not overwritten:
htp2=doOffset(htp=htp, overwrite=0, relative=1)
#
Now convert the positions back to absolute coordinates:
htp3=doOffset(htp=htp2, overwrite=0, relative=0)
#
To convert the positions (back) to relative values, and overwrite the positions in
the original HTP:
doOffset(htp=htp3, overwrite=1, relative=1)
#
If you now change the data back to relative positions, you will want to overwrite
the original HTP again:
doOffset(htp=htp3, overwrite=1, relative=0)
#
You can supply your own values of RA and dec, here 59.756165 and -71.1675896074
from which to calculate the offset positions:
Note that if ra-centre and dec_centre are present, they will be used instead:
htp2b=doOffset(htp=htp, overwrite=0, relative=1,ra=59.756165, dec=-71.1675896074)
#
#
The task will also work with datasets, here we convert the positions in the first
dataset in the HTP to relative values:
ds=doOffset(ds=htpv[1], overwrite=0, relative=1)

126

Converting positions in data to offsets Build 15.0.3244

#

You can also use the GUI to operate the task. DoOffset will appear under Applicable in the Tasks
View when you click on an HTP. To convert data to relative positions, check the relative box. To
overwrite the original HTP with the new positions, check the overwrite box. You can supply an RA
and dec, in decimal degrees, from which to calculate the offset positions in the text fields.

Viewing the converted HTP or dataset in the location view of the Spectrum Explorer will allow you
to see the offsets of each position in RA and dec, Figure 7.1 and Figure 7.2 show the positions in htp
(absolute) and htp2 (relative), respectively.

Figure 7.1. Absolute positions

Figure 7.2. Relative positions, in a coordinate system co-moving with the Solar-System target

127

Build 15.0.3244

Chapter 8. Understanding and using
HIFI beam information in your data

Last updated: 6 February, 2015

8.1. Beam Metadata
Information about the HIFI beam and related information can be found in the SpectrumDataset
metadata. The most useful for understanding what beam parameters and efficiencies have been applied
to your data, as well as the efficiencies used in converting temperature scales are tabulated below.

Metadatum Description Introduced/modi-
fied by

Comment FITs keyword

apertureEfficiency Telescope aperture
efficiency

doFluxHot-
Cold

 ETAA

aGeom Telescope geomet-
ric aperture area

doFluxHot-
Cold

 AGEOM

forwardEfficiency Telescope forward
efficiency (recom-
mended calibra-
tion value)

doAnten-
naTemp/do-
MainBeamTemp

Only generated if
user supplies val-
ues for efficiency

ETALCAL

forwardEff Telescope forward
efficiency (applied
value)

doFluxHot-
Cold

 ETAL

mainBeamEffi-
ciency

Telescope main-
beam efficiency
(recommended
calibration value)

doAnten-
naTemp/do-
MainBeamTemp

Only generated if
user supplies val-
ues for efficiency

ETAMBCAL

beamEff Telescope main-
beam efficiency
(applied value)

doFluxHot-
Cold

 ETAMB

hpbw Azimuthally-aver-
aged half-power
beam width

doFluxHot-
Cold

 HPBW

temperatureScale Temperature scale
in use

doAnten-
naTemp/do-
MainBeamTemp

values T_A* or
T_mb

temperatureScale-
Origin

 convertK2Jy Used by con-
vertK2Jy in or-
der to be able to
make the conver-
sion back to the
original tempera-
ture scale. Values
T_A*, T_mb or
T_Aprime

128

Understanding and using HI-
FI beam information in your data

Build 15.0.3244

8.2. Tools to obtain and use the HIFI beam
model

getHifiBeam

The HIFI 2D beams are stored in the HIFI Calibration tree as tables for two frequencies per mixer. As
detailed in the beam release note, they need to be scaled to the appropriate frequency and rotated by
the telescope roll angle at the time of the observation. Two auxiliary functions, getHifiBeam and
getHifiBeamAveraged are provided in herschel.hifi.pipeline.util.

getHifiBeam generates a SimpleImage containing the 2D beam profile scaled to a given fre-
quency and rotated to a given position angle. There are two equivalent ways of calling getHi-
fiBeam:

• getHifiBeam(band, backend, freq, posAngle, cal)

where the user manually provides band (e.g., 1b), backend (e.g., WBS-V), frequency in GHz, tele-
scope roll angle (posAngle, which can be found in the metadata) in degrees, and a reference to
a calibration tree containing the beam models (cal); or,

• getHifiBeam(ds, cal, useLoFreq=True)

where band, backend, frequency, and position angle are retrieved from the passed dataset ds. If the
parameter useLoFreq is set to True, the beam is calculated for the LO frequency, otherwise the
average frequency of the spectrum is used. A reference to a calibration tree containing the beam
models is still required and can be obtained from an observationContext (obs) as follows:

cal = obs.getCalibration()

You must use an observation that has been processed at the HSA with HIPE 13 (and onwards) in
order to get the beam models.

The resulting SimpleImage can be used seamlessly using tasks such as imageMultiply.

getHifiBeamAveraged

getHifiBeamAveraged is analogous to getHifiBeam but deals with the azimuthally averaged
beam instead of the full 2D beam. It generates a TableDataset containing the azimuthally averaged
beam and the encircled-energy fraction (EEF) as a function of radial distance, scaled to the frequency
of interest. There are two ways to call getHifiBeamAveraged, identical to those for getHi-
fiBeam, except that posAngle is not required (nor accepted by the function; the symmetrised beam
is independent of roll angle).

Beam models from FITS files

The 2D beam models contained in the calibration tree are spatially cropped to an extent of roughly 10
HPBW across (i.e., from roughly -5 HPBW out to ~5 HPBW in each linear dimension). This should
be sufficient for most scientific purposes. If you require full-size beam models, you are referred to the
FITS files available from the ESA Ancillary Data Product page.

This approach will also come in handy if you do not have access to a recent calibration tree, or if you
do not wish to use it for whatever reason.

Like their counterparts contained in the calibration tree, the beam models contained in the FITS files
need to be scaled and rotated appropriately. A script getHifiBeam.py performing the task of both
the above-mentioned getHifiBeam and getHifiBeamAveraged can be found in the HIFI Use-
ful Scripts menu of the HIPE Scripts menu; it can also be downloaded from the HIFI Instrument and
Calibration web page (direct link). This script returns both a SimpleImage and a TableDataset.

129

Build 15.0.3244

Chapter 9. Understanding the
uncertainty table information in your
data

Last updated: 4 November, 2015

9.1. Uncertainty model
The HIFI flux calibration uncertainty is broken-down between the various components entering the
general calibration equation (see Ossenkopf 2003, ALMA memo no. 442.1). For each component,
the uncertainty is given as coefficients of a polynomial describing the possible dependency on the
Intermediate Frequency (IF). In almost all cases, however, the uncertainty is flat over the IF and only
the first coefficient is non-zero.

Uncertainties are LO-frequency dependent and given in percentages. Note that some uncertainties
apply directly to the Level 2 or Level 2.5 products calibrated in Ta*, while some others will only
apply to data converted into a certain intensity scale (see Chapter 18) - see the following section for
more details.

Figure 9.1. Table containing the uncertainty model (values are in percentages) (for the V polarisation in
this example)

9.2. Flux calibration uncertainty budget
The contribution from each of the uncertainty components considered in the uncertaintyModel tables
is propagated in the final uncertainty budget table using LO-frequency interpolation. Again, an IF-
dependent description is considered by means of propagating the polynomial coefficients present in
the input model. Additionally, the uncertainties are also directly computed at representative locations
of the IF, namely:

• for the WBS, the uncertainty is computed at the IF centre (uncertaintyIfMid), and at the two IF edges
(uncertaintyIfLow and uncertaintyIfHigh). For each case, it corresponds to the mean uncertainty in
a window of 100 MHz wide.

130

Understanding the uncertain-
ty table information in your data

Build 15.0.3244

• for the HRS, the uncertainty is computed in the centre of the IF for each individual HRS subband
(uncertaintyIfMid_1, uncertaintyIfMid_2, etc)

The uncertainty table separates contribution from components assumed to be uncorrelated, from those
that should be treated either in a systematical manner, or that will apply to a particular flux scale
conversion.

• the uncertainties related to the sideband ratio, the optical standing waves, and the internal load prop-
erties are assumed to be independent and are added in quadrature into the uncertainty component
called SumUncorrelatedUncertainty. Note that those are the uncertainties applied to data calibrated
in the Ta* scale.

• the planetary model error is a systematic error and is assumed to be constant at all HIFI frequencies

• additional uncertainties related to the extraction of the respective beam and aperture efficiencies
(on top of the planetary model used in their derivation) are provided. They should not be considered
together, instead they will apply depending on whether a conversion to Tmb scale or to flux scale
is considered (see Chapter 18).

The uncertainty product is computed for each spectrometer, polarisation, and sideband, as well as for
each LO frequency tuned in the observation. For spectral maps in particular, only one uncertainty
budget table is provided per spectrometer, polarisation, and sideband because no distinction is made
between the respective pixels of the map.

Figure 9.2. Table containing the uncertainty budget (values are in percentages) (for the V polarisation in
this example)

131

Build 15.0.3244

Chapter 10. Flags in HIFI data
Last updated: 29 February, 2016

10.1. Introduction to flags
Flags (also called masks) are identifiers of specific issues with the data, such as saturated pixels or
a possible spur, that can affect the quality of the final product. Flags are applied by the pipeline and
used to identify potentially problematic data, and to make a caution during its processing.

A data flag has a defined name and a value, which specifies the nature of the flag. These flags are
divided into two categories depending on whether they apply to an individual channel (pixel), or to
a complete Dataframe. They are called channel flags and column rowflags, respectively. There are
also Quality Flags which are found in the Quality Product in the ObservationContext and are used to
provide you with means to make a quick assessment of the quality of your data. They are described
in Section 10.4.

10.2. Channel flags
Channel (or pixel) flags apply to individual pixels and are added as a column in the HTP. Their names
are also added to the metadata of a dataset during processing, and this is used for the history of the
pipeline. It also means that you can tell that, e,g., the WBS pipeline has been applied if you see things
like "isMasked" and "checkZero" in the metadata.

For each pixel, there are 32 flags which can be set. The definition of the currently used mask bits and
values in HIFI data is given below. For bit n, the value is computed according to value=2n. For
scripting, it is recommended that instead of using the bit values, you avail yourself of the software
names defined in the HifiMask class. The section on Chapter 11 has more details.

Flag Name Bit Software Name Description

Bad pixel 0 HifiMask.BAD_PIXEL Indicates a failed pixel on a
WBS CCD. Not used in HRS.

Saturated pixel 1 HifiMask.SATURATED If this bit is set, the sample was
saturated.

Not observed 2 HifiMask.NOT_OBSERVED If this bit is set, the sample is
not observed. See Note 1.

Not Calibrated 3 HifiMask.NOT_CALIBRATED If this bit is set, the sample is
not calibrated. It is set on pix-
els that also have the SATURA-
TION bit set. See Note 2.

Not used 4 Not used

Glitch detected 5 HifiMask.GLITCHED Indicates a WBS data point af-
fected by a cosmic ray.

Dark pixel 6 HifiMask.DARK_PIXEL If this bit is set, the sample is
used to measure the dark.

Spur candidate 7 HifiMask.SPUR_CANDIDATE If this bit is set, the sample is
a candidate to be a spur. It is a
'candidate' since not all things
flagged by the spurfinder are
necessarily spurs.

Spur warning 8 HifiMask.SPUR_WARNING This bit is set to indicate that
spurs have been observed at

132

Flags in HIFI data Build 15.0.3244

Flag Name Bit Software Name Description
similar LO tunings for those
channels, although it does not
necessarily imply that a spur
is actually present in this par-
ticular observation. This flag
is essentially a warning, and
therefore is not honoured by the
fitHifiFringe, fitBaseline, de-
convolution or gridding algo-
rithms.

line 28 HifiMask.LINE User set flag to denote a line.

Bright line 29 HifiMask.BRIGHT_LINE User set flag to denote a bright
line.

Ignore data 30 HifiMask.IGNORE_DATA User set flag to ignore data.

NOTE 1 : The NOT_OBSERVED bit is typically used to represent data computed via interpolation or
extrapolation. At Level 2, this is common at the end-points of a subband where the resampler has to
extrapolate beyond the observed frequency range by under 1 pixel in order to ensure that the data sets
are all the same size. It is also used at Level 0 and 0.5 to represent data that really are not observed.
This occurs when the IF of HIFI covers a region narrower than the 8192 pixels that the CCD does.
By design, the IF is well matched to the CCD, hence the number of unobserved pixels is very small.
They are culled from the spectra in Level 1 and beyond.

NOTE 2 : The NOT_CALIBRATED bit is set for saturations in addition to the SATURATED bit.
Saturated regions (such as strong spurs) can migrate in IF over time. This leads to a possible scenario
where, when averaging data, a 'good' region from one spectra overlaps with a 'bad' region from another.
The NOT_CALIBRATED flag is logically 'or-ed' between the good and the bad data, which means
that the final output will properly reflect that the data in this overlap region should not be trusted.

NOTE 3 : Bits 28-30 are special because they are set by you and not the pipeline. The 'line' and 'bright
line' will be used by fitBaseline, fitHifiFringe, and the doDeconvolution tools. The
ignore data flag allows you to mask out bad spectral regions which can then be ignored by the pipeline.

NOTE 4 : It is possible to replace a flagged value with a NaN (Not a Number) or another value (e.g.
fitted with an algorithm) using the removePixel task. In addition, if the mask is homogeneous for
all scans within a dataset, it is possible to remove the channel(s) from the HTP.

from herschel.hifi.pipeline.product import HifiMask
from herschel.hifi.pipeline.util.tools import RemoveFlaggedPixelsTask

replace bad pixels with NaN (default behaviour)
removePixel(htp=htp, mask=HifiMask.BAD_PIXEL)

interpolate over bad and saturated pixels
removePixel(htp=htp,
 mask=[HifiMask.BAD_PIXEL,HifiMask.SATURATED],mode='interpolate')

remove flagged channels (
removePixel = RemoveFlaggedPixelsTask()

10.3. Column rowflags
Column rowflags (the "rowflag" column in the HIFI spectrum TableDataset) apply to the complete
DataFrames (DF) or rows in a HifiSpectrumDataset (HSD).

For bit n, the value is computed according to value=2n. The first 5 bits are about the packets from
which the DataFrame (DF) is reconstructed, and are unlikely to ever occur.

133

Flags in HIFI data Build 15.0.3244

Below is a table showing the current names and values of HIFI rowflags. As for the channel flags,
there is a class defined to make scripting with rowflags easier.

Flag Name Bit Software Name Description
PacketOrder 0 RowMask.PACKET_ORDER Error in the packet order while

constructing the DataFrame.

PacketLength 1 RowMask.PACKET_LENGTH Error in the packet length while
constructing the DataFrame.

TooMuchData 2 RowMask.TOO_MUCH_DA-
TA

More data than can be fit in a
DataFrame.

FirstPacket 3 RowMask.FIRST_PACKET Error in the start packet while
constructing the DataFrame.

NoBlocks 4 RowMask.NO_BLOCK No block information present
while constructing the
DataFrame.

Spare 5 Not defined

Spare 6 Not defined

Spare 7 Not defined

UnalignedHK 8 RowMask.UNALIGNED_HK HK could not be aligned with
DataFrames. When the columns
"df_transfer" and "hk_transfer"
in the TableDataset are differ-
ent, bit 8 is set.

noChopper 9 RowMask.NO_CHOPPER No valid Chopper information.
Set when the flagbit is zero in
the DFs, extracted from the HK
packets if possible.

noComChop 10 RowMask.NO_COM_CHOP No valid Commanded Chopper
information. Set when the flag-
bit is zero in the DFs, extract-
ed from the HK packets if pos-
sible.

noFreqMon 11 RowMask.NO_FREQ_MON No valid Frequency Monitor in-
formation. Set when the flag-
bit is zero in the DFs, extract-
ed from the HK packets if pos-
sible.

noLoCodeOffset 12 RowMask.NO_LO_OFF No valid LO code offset infor-
mation. Set when the flagbit is
zero in the DFs, extracted from
the HK packets if possible.

noLoCodeMain 13 RowMask.NO_LO_MAIN No valid LO code main infor-
mation. Set when the flagbit is
zero in the DFs, extracted from
the HK packets if possible.

MixerCurrentDeviation
(ref)

14 RowMask.MCD_REF Difference in mixer currents ex-
ceeds tolerance when applying
DoRefSubtract.

MixerCurrentDeviation
(off)

15 RowMask.MCD_OFF Difference in mixer currents ex-
ceeds tolerance when applying
DoOffSubtract.

134

Flags in HIFI data Build 15.0.3244

Flag Name Bit Software Name Description
MixerCurrentDeviation
(load)

16 RowMask.MCD_HOT Difference in mixer currents ex-
ceeds tolerance when applying
DoFluxHotCold or MkFluxHot-
Cold.

NoHotColdCalibration 17 RowMask.NO_HOT_COLD Division by the bandpass has
not been carried through.

SuspectLO 18 RowMask.SUSPECT_LO LO Frequency is listed in the
Bad Frequency Table. Data is
not necessarily corrupted.

Spare 19 Not defined

IgnoreData 20 RowMask.IGNORE_DATA User has the option to set this
flag. Some tools (e.g. doDecon-
volution) will honour it.

BadData 22 RowMask.BAD_DATA Corrupted data in this da-
ta-frame. Data will be ignored
when building the Level 2 prod-
ucts.

BbidCorrection 28 RowMask.BBID_CORR Correction of BBID. No longer
relevant. (It was during ground-
based testing, but the onboard
software has been corrected
since.)

Example of a HIFI spectrum TableDataset, which contains the "rowflag" column
with a value of 256 (28= UNALIGNED_HK), and a few other rowflag columns.

Figure 10.1. Row flags in a HIFI spectrum

10.4. Quality Flags
Last updated: 3 November, 2015

Quality flags can be raised during standard processing of HIFI data from every processing stage of the
pipeline, from the initial creation of the HifiTimelineProduct (Level 0), through to the final product of
Level 2 processing. Quality flags indicating potential issues with the data are collected in the Quality
Report. Thus the quality report is, by definition, a list of issues identified as have gone wrong, and
an empty quality report indicates that there is no potential problem with the observation. Note that

135

Flags in HIFI data Build 15.0.3244

quality flags are raised in a conservative fashion and the presence of quality flags in the quality report
does not mean that your data is inadequate for your purposes. A quality report is found from the
ObservationContext:

report1=obs.refs["quality"].product

print report1

The quality report can also be found via the HSA Science Archive, and via the QualityContext Explorer
under the "quality" product. To check possible problems with the data, check the Quality Flag Report,
the JQCLogProductPanel with the flag "level SEVERE", and the possible comments.

Figure 10.2. Example of a Quality flag Report

Relevant and pertinent data quality information is also visible in the Quality Control Summary Report.
The summary report can be accessible though the quality summary field of the QualityContext via the
Quality Context Explorer. The type of flags displayed here are so-called public flags.

The quality flags are organized into categories from class 1 to 3 by how severe the impact they may
have on the science. In general, a lower quality category indicates a more severe problem:

• Class 1 flags: indicate that the data is partially or totally unusable for science.

• Class 2 flags: refer to data that is usable for science, but that in some cases could still be affected
by residual instrument artefacts.

• Class 3 flags: refer to data that is usable for science with no particular further action.

136

Flags in HIFI data Build 15.0.3244

Below is a list of the current available quality flags for the HIFI pipeline for every class. The format
below gives flag name, consequences for science data, and action to follow.

Class 1 Flags

Quality Flags Consequences for science data Action

All COMBs have failed to be
fitted

The frequency calibration is in-
accurate

Do not use data

At least one Science data has
been affected from failing fre-
quency calibration due to a
COMB fit failure

Data is probably not properly
frequency calibrated

Do not use data

Bbtype not known The corresponding data may not
be properly processed

Do not use data

Data measured from hot and
cold loads not sufficient for hot/
cold calibration

Part of or all the data could not
be properly calibrated due to
missing information, and so the
quality of the end product can
be degraded and/or cannot be
trusted.

Do not use affected data

Failure in HifiSpectrumDataset
construction

Data could not be properly pro-
cessed and should probably not
be used

Do not use the data

Fast Quantization Distortion
Correction processed. Not opti-
mal

HRS data have probably not
been properly processed

Do not use the data

FPU Check: Cold load tempera-
ture is Out Of Limit

Range: [4, 20 K]. Cold load
temperature out of specification

Do not use the data

FPU Check: Hot load tempera-
ture is Out Of Limit

Range [90, 110 K]. Hot load
temperature out of specification

Do not use data

FPU Check: Level 0 Tempera-
ture is Out Of Limit

Range [1.5, 2.5 K]. Serious
problem with the thermal envi-
ronment or with the readout

Do not use data

Hot/cold calibration not suc-
cessful

Data may not have been proper-
ly calibrated

Do not use data

Inacceptable maximum drift in
the frequency grid detected

The frequency scale is probably
wrong

Do not use data

Intensity calibration not or not
for all spectra carried through

Part of the data could not be
properly calibrated due to miss-
ing information, and so the
quality of the end product can
be degraded and/or cannot be
trusted.

Do not use data

LOU has been potentially deac-
tivated for one active band

Data are likely to be useless Do not use data

Max number of command ac-
ceptance or execution failures
found in the telemetry

Indicative of a failure during the
execution of the observations.
The integrity of the data cannot
be guaranteed.

Use only unaffected data or data
with acceptable quality

More ON- than OFF-datasets
found in the data - not all ON-
datasets could be processed
with OFF-dataset(s)

Part of the data could not be
properly calibrated due to miss-
ing information, and so the
quality of the end product can

Check if part of the data is us-
able. If applies, correct baseline.

137

Flags in HIFI data Build 15.0.3244

Quality Flags Consequences for science data Action
be degraded and/or cannot be
trusted.

No Power Correction could be
processed

HRS data have probably not
been properly processed

Do not use HRS data

No Quantization Distortion
Correction could be processed

HRS data have probably not
been properly processed

Do not use HRS data

Observing mode not recognised
- consult the pipeline configura-
tion xml file

The concerned HRS-H data are
likely to be lost due to the data
corruption

Do not use data

One or more ASICs configura-
tion problems in HRS-H

Data could not be properly pro-
cessed and should probably not
be used

Do not use the affected HRS
data

One or more ASICs configura-
tion problems in HRS-V

The concerned HRS-V data are
likely to be lost due to the data
corruption

Do not use the affected HRS
data

Pattern observed for the LoFre-
quency not as expected in all
datasets

Possible problem with LO tun-
ing

Do not use data

The LOU was disabled during
this observation, science data
are likely unusable

Data are likely to be useless Do not use data

Class 2 Flags

Quality Flags Consequences for science data Action
Erroneous scan counts in cali-
bration data-frames

Some COMB may not be pro-
cessable, leading to potential
COMB failure

None, unless additional flags
such as the COMB or ZERO
ones are raised. In that case the
frequency calibration can be af-
fected.

Failure in LO tuning status Possible LO tuning problem,
however for the vast majority
it is due an artifact of the slow
readout in FastChop mode.

Probably none, however double
check integrity of spectra

Failure to associate pointing
values to the spectra

The science data will not have
proper attitude information

Data are usable but their as-
trometry cannot be trusted

FPU Check: IF Amplifier val-
ues are Out Of Limit

Range: [-1.5 V, +0.5 V]. The
baseline quality could be de-
graded

If applies, clean baseline arte-
facts

FPU Check: Mixer current is
Out Of Limit

Range: [I_leak + 5μA, 2 x
nom_value] for SIS, [30μA,
55μA] for HEB. Some of the
data could be noisier than the
nominal performance.

Use with caution if combined
with other data

FPU Check: The variance of the
mixer current is out of limit

The baseline quality could be
degraded

If applies, clean baseline arte-
facts

FPU Check: Mixer Magnet
Current is Out Of Limit

Range: [nom_value x 0.96,
nom_value x 1.04]. The base-
line quality could be degraded

If applies, clean baseline arte-
facts

Less data found than expected Although the impact has been
mitigated for most affected cas-

Check noise and baseline. If ap-
plies, correct baseline

138

Flags in HIFI data Build 15.0.3244

Quality Flags Consequences for science data Action
es, the resulting data noise and
baseline quality could be de-
graded.

LO multiplier current deviates
from zero, which is indicating
of possible LOU impurity

Data may be affected by spurs
or, more rarely, purity issues.
Range: It depends of the band
and frequency. See table below.

Mask artifacts where applies
and pay particular attention to
unexpected line location

louCurrentMin

Band Frequency [GHz] louCurrentMin[mA] louCurrentMin[mA]

1a 540.0 -0.01 1.7976

1a 554.0 -0.01 1.7976

3b 937.0 -1.7976 -0.0060

3b 955.0 -1.7976 -0.0060

7a 1710.0 -1.7976 -0.0060

7a 1720.0 -1.7976 -0.0060

7a 1750.0 -1.7976 -0.0060

7a 1764.0 -1.7976 -0.0060

7b 1719.0 -1.7976 -0.0060

7b 1912.5 -1.7976 -0.0060

Quality Flags Consequences for science data Action
Max number of channels
marked as BAD due repeated
saturations

Science data are potentially sat-
urated

Check for saturation in the data
and flag if needed

Max number of TM Runtime
error found

IF the HI_runtime_err in the
level0 quality is different from
LOTUNE_NOBRCKT, data
could be missing but this will
show in other higher severity
level flags.

Check the HI_runtime_err in
the level0 quality

Maximum number of saturated
pixel detected in a single spec-
trum

Science data are potentially sat-
urated

Check for saturation in the data
and flag if needed

More data found than expected Although the impact has been
mitigated for most affected cas-
es, the resulting data noise and
baseline quality could be de-
graded.

Check noise and baseline. If ap-
plies, correct baseline.

No off baseline could be calcu-
lated

This is expected in NoRef
modes. In others, indicates an
anomaly in the data processing.

If applies, correct baseline

No off baseline subtraction car-
ried through since no off base-
line data available

The noise and/or the baseline
quality may not be as intended

Check noise and baseline. If ap-
plies, correct baseline

No or not sufficient velocity in-
formation available

The frequency scale is probably
still in the observatory frame,
not in the LSR

Frequency calibration needs to
be redone off-line

139

Flags in HIFI data Build 15.0.3244

Quality Flags Consequences for science data Action
Not all phase checks could be
carried through, or completed

Amount of Data is different
than the expected observation.
It could lead to degraded base-
line quality

If applies, correct baseline

ON/OFF datasets not in expect-
ed sequence (...-ON-OFF-ON-
OFF-... or ...-ON-OFF-OFF-
ON-ON-....

The noise and/or the baseline
quality can be degraded

Correct residual baseline distor-
sion if applicable

One of the two polarisations is
noisier than the other by more
than SQRT(2) %. Their noise
ratio is given in the value col-
umn.

The two polarisations cannot be
averaged in order to improve
the noise

Discard one of the two polarisa-
tions in your data if necessary

Out of limit in Zeros spectra Saturation may apply to some
spectral ranges

If applies, mask saturated chan-
nels

Platforming present in overlap-
ping subbands

The baseline levels between
consecutive subbands in over-
lapping channel ranges differ
by an amount larger than 1.3
times the noise in this range.
Lines could fall in the overlap-
ping channels and their profiles
could be distorted.

Re-adjust baseline levels by us-
ing non-stitched (level 2) data

Problem in the calibration-tree:
APE data not present in calibra-
tion tree. APE check not per-
formed.

Usually refers to data taken in
a non-standard configuration or
while the instrument was OFF

If instrument or LOU band was
OFF, do not use the data, other-
wise ignore flag

Reference subtraction not pro-
cessed - maybe identification of
phases not successful

The noise and/or the baseline
quality may not be as intended

If applies, correct baseline

Some data has been lost while
computing the average over
many datasets

The noise and/or the baseline
quality may not be as intended

Use with caution if combined
with other data

Some ON/OFF dataset pairs
found with unequal number of
rows

The noise and/or the baseline
quality may not be as intended

If applies, correct baseline

Spectrum contains saturated
dark

Science data are potentially sat-
urated

Check for saturation in the data
and flag if needed

Spur lines detected in the cold
spectra

There are spurs in the data Check that most of the spurs are
already flagged in your data and
absent from deconvolved spec-
tra. Flag further otherwise.

Suspicious quality of the atti-
tude reconstruction

The gyro-based pointing recon-
struction was considered inad-
equate and the simple pointing
reconstruction was used instead.

If data in Bands 1 or 2, none (if
the anomalous pointing flag has
been raised with a systematic
offset of the observation by > 3
x APE, either a pointing prob-
lem or an error in the altitude
reconstruction). If data in Bands
3 - 7 and flag ≤ 0.4, interpreta-
tions based on relative astrom-
etry may be unreliable to any

140

Flags in HIFI data Build 15.0.3244

Quality Flags Consequences for science data Action
quantifiable level. For observa-
tions in Bands 3 - 7 which have
the “gyroAttSuspicious” flag set
to True and the gyroAttQuali-
ty > 0.4, be cautious when in-
terpreting weird line ratios. For
rest of observations, None.

The computed noise rms ex-
ceeds the predicted one by more
than SQRT(2). Their ratio is
given in the value column

The noise in the data may be
larger than normally achieved at
a particular frequency

Check for other flags that may
reveal other anomalies. Veri-
fy that the spectra or portion of
spectra are not affected by spurs
or abnormally high noise.

The deconvolution could not be
performed on at least one polar-
ization

Indicates that the deconvolution
algorithm failed to converge
and create the corresponding
level 2.5 product

None - in principle none of
the HIFI obsids should be con-
cerned anymore

The frequency throw is large
compared to the HRS band-
width

Folded line profiles in the HRS
data may be distorted

Compare with the WBS data to
figure out whether folded HRS
spectra have been affected

The intended and the comput-
ed pointing differ by more than
three times the APE (the ratio is
given in the value column)

The data have been taken slight-
ly OFF from the intended posi-
tion

Take into account the reported
position offset when interpret-
ing the data

The noise ratio of the two polar-
isations exceeds that expected
from the measured Tsys ratio by
more than 10 %. Their ratio is
given in the value column.

One of the two polarisations is
under-performing and may suf-
fer from very poor noise and
baseline

Discard concerned polarisation
if the data are unfit

Unable to apply the HEB elec-
tric standing wave correction to
H polarisation

The polarisation H could not be
corrected

If residual electrical standing
wave remain, clean baseline

Unable to apply the HEB elec-
tric standing wave correction to
V polarisation

The polarisation V could not be
corrected

If residual electrical standing
wave remain, clean baseline

Class 3 Flags

Quality Flags Consequences for science data Action

A Zero scan could be impacted
by a High Energy Cosmic Ray

None, unless additional flags
such as the COMB or ZERO
ones are raised. In that case the
frequency calibration can be af-
fected.

None

At least a Zero is out of limit None as long as not all ZEROs
are failed

None, unless additional flags
such as the COMB or ZERO
ones are raised. In that case the
frequency calibration can be af-
fected.

At least one COMB could not
be fitted

None as long as not all COMBs
are failed

None, unless additional flags
such as the COMB or ZERO
ones are raised. In that case the
frequency calibration can be af-
fected.

141

Flags in HIFI data Build 15.0.3244

Quality Flags Consequences for science data Action
Bad (corrupted) hc data discard-
ed

Data have been cleaned from
corrupted data-frames

None

Bad (corrupted) science data
discarded

Data have been cleaned from
corrupted data-frames

None

FPU Check: chopper measured
values differ from the com-
manded

Range: [nom_offset - 0.05 V,
nom_offset + 0.05 V]. This is a
HK downlink issue but data are
not affected by this flag.

None

FPU Check: Diplexer Current is
Out Of Limit

Range: It depends of the
band. One or more science da-
ta-frames are using a mis-tuned
diplexer, leading to insensitive
and/or mis-calibrated data.

None. In cases where an instru-
ment issue occurred this issue
has been already taken into con-
sideration

FPU Check: Diplexer Resis-
tance is Out Of Limit

Range: [nom_value x 0.8, nom-
inal_value x 1.2]. Usually no
impact on data.

None

FPU Check: Mixer Magnet Re-
sistance is Out Of Limit

Range: [nom_value x 0.8,
nom_value x 1.2]. Usually no
impact on data.

None

FPU Check: Mixer Voltage is
Out Of Limit

Range: : [nom_value - 100μV,
nom_value + 100μV]. Usually
no impact on data.

None

Frequency checks and/or fre-
quency grouping failed

Usually no impact on data None

HD247194 (HL_ptv_checksum)
out of limit

It applies to a parameter used at
ESOC for real time uplink. No
science data impact.

None

HM025193 (HWH_Laser1_C)
out of limits

Usually limited to the obsid
where the laser is switched on

None

HM029191
(HF_AH1_MXBIAS_V) out of
limits

Usually limited to the obsid
where the band is switched on

None

HM120191
(HF_AV1_MXBIAS_V) out of
limits

Usually limited to the obsid
where the band is switched on

None

Max percentage of Bbids cor-
rected according to commanded
Bbids

Only applicable to pre-launch
data - no impact on flight data

None

Max percentage of Dataframes
which have unaligned HK

This has no consequences on
the data

None

Max percentage of DFs having
no chopper information

Usually no impact on data None

Max percentage of DFs having
no commanded chopper infor-
mation

Usually no impact on data None

Max percentage of DFs having
no frequency monitor informa-
tion

Usually no impact on data None

Max percentage of DFs having
no LO Code main information

Usually no impact on data None

142

Flags in HIFI data Build 15.0.3244

Quality Flags Consequences for science data Action
Max percentage of DFs having
no LO Code offset information

Usually no impact on data None

Max percentage of DFs having
zero values in the HRS Correla-
tion Factors

One or more data-frames have
corrupted correlation function at
Level 0

None - this should have been
taken care of by the pipeline

Maximum number of spikes de-
tected in a Comb

Spikes may be present in comb None, unless additional flags
such as the COMB or ZERO
ones are raised. In that case the
frequency calibration can be af-
fected.

Number of distinct buffer
values not as expected in all
datasets

Buffer read out may have been
slower than actual chopper ro-
tation speed. Usually no impact
on data.

None

Number of distinct Chopper
values not as expected in all
datasets

Chopper readout may have been
slower than actually rotation
speed. Usually no impact on da-
ta.

None

Number of distinct LOF values
not as expected in all datasets

In most cases this is because of
timing issues in the OBSW in
fast chop mode and the impact
on data is null.

None

Pattern observed for the buffer
not as expected in all datasets

Buffer read out may have been
slower than actual chopper ro-
tation speed. Usually no impact
on data.

None

Pattern observed for the Chop-
per not as expected in all
datasets

Chopper readout may have been
slower than actually rotation
speed. Usually no impact on da-
ta.

None

Problem occurred while com-
puting channel-dependent
weights. No weights added.

Negligible None

Remaining bad (corrupted) sci-
ence data at Level 2

One of more data-frame in the
level 2 was corrupted and has
been flagged as such. Those da-
ta have been discarded from the
level 2.5 products.

None

Unordered or duplicate
DataFrames found

When this occurs this should
show as corrupted DF symp-
toms, treated elsewhere

None

WM409565 (HifiL-
CU_R_L54_I) out of limits

No impact on the science data None

WM508565 (Hi-
fiHRH_L1632_I) out of limits

No impact on the science data None

WM608565 (HifiHRV_L67_I)
out of limits

No impact on the science data None

143

Build 15.0.3244

Chapter 11. How to add and remove
flags

Last updated 1 May, 2015.

11.1. Introduction
While chapter Chapter 10 provides an overview of all the flags (channel flags, column rowflags, and
quality flags) used to identify affected data, this chapter teaches you how to inspect your data to
identify if any of it has been flagged by the pipeline. You will also learn how to set and clear flags
both for a data point, and over a range.

Note

Although we provide a range of methods to flag data, we recommend that you use the task
flagTool (see Section 11.5).

11.2. How to understand what flags are in
your data

The pipeline may have raised a flag (or some flags) in your datasets during the different levels of
processing. Using the Spectrum Explorer, you can view channel flags in your spectrum by clicking
on the blue flag icon in the button bar at the top of the Spectrum Explorer window.

Figure 11.1. To view channel flags in your spectrum, click on the blue flag icon (highlighted by the red oval)

Coloured bars appear over the spectrum in the regions where data is flagged. The colour mapping
applied to the flags is random. You can also see what kind of flags were applied by moving the mouse
over the spectrum - the information is given in the bottom left of the plot window in form of [row,
segment, channel, flag name] (see the next two figures).

Alternatively, you can right click in the window of the spectrum, then select view, and then flags.

144

How to add and remove flags Build 15.0.3244

Figure 11.2. To view channel flags in your spectrum by using a pointing device such as a touchpad or a
mouse

Figure 11.3. The region flagged is colour-coded

Column RowFlags are not directly overlaid on the Spectrum Explorer since, by definition, they affect
the entire spectrum. Rowflags are stored in extra columns within your dataset, and are shown as a
table with the Spectrum Explorer. In Figure 11.2, you see an example of this table underneath the
spectrum, with columns for LO frequency, longitude, Band, etc. Scrolling over, you will find the
'rowflag' column.

A flag value may just be a single bit with an already defined value (see Chapter 10), e.g. rowflag = 256
corresponds to bit = 8 (Unaligned_HK) (i.e. value=2n), or it can also be a combination (by addition)
of two or more flag values, e.g. rowflag = 262400 is a combination of the rowflag Suspect_LO: bit =
18, value = 262144, and the rowflag Unaligned_HK: bit = 8, value = 256.

To determine if a particular bit is set, you can employ the mask classes defined in Chapter 10. For
example, to test if a particular rowflag has the UnalignedHK bit set, you can type:

print RowMask.UNALIGNED_HK.isSet(rowflagvalue)

A script to test all rowflags is given below:

from herschel.hifi.pipeline.product import RowMask
#
Extract the fourth spectrum from level 1 WBS-H in the
Observation context
#
ds=obs.getProduct('level1').getProduct('WBS-H').get(4)
#
Extract the rowflags and print out which are set:

145

How to add and remove flags Build 15.0.3244

#
flags=ds['rowflag'].data
print 'PACKET_ORDER: ',RowMask.PACKET_ORDER.isSet(flags)
print 'PACKET_LENGTH: ',RowMask.PACKET_LENGTH.isSet(flags)
print 'TOO_MUCH_DATA: ',RowMask.TOO_MUCH_DATA.isSet(flags)
print 'FIRST_PACKET: ',RowMask.FIRST_PACKET.isSet(flags)
print 'NO_BLOCK: ',RowMask.NO_BLOCK.isSet(flags)
print 'UNALIGNED_HK: ',RowMask.UNALIGNED_HK.isSet(flags)
print 'NO_CHOPPER: ',RowMask.NO_CHOPPER.isSet(flags)
print 'NO_COM_CHOP: ',RowMask.NO_COM_CHOP.isSet(flags)
print 'NO_FREQ_MON: ',RowMask.NO_FREQ_MON.isSet(flags)
print 'NO_LO_OFF: ',RowMask.NO_LO_OFF.isSet(flags)
print 'NO_LO_MAIN: ',RowMask.NO_LO_MAIN.isSet(flags)
print 'MCD_REF: ',RowMask.MCD_REF.isSet(flags)
print 'MCD_OFF: ',RowMask.MCD_OFF.isSet(flags)
print 'MCD_HOT: ',RowMask.MCD_HOT.isSet(flags)
print 'NO_HOT_COLD: ',RowMask.NO_HOT_COLD.isSet(flags)
print 'SUSPECT_LO: ',RowMask.SUSPECT_LO.isSet(flags)
print 'SPUR_DETECTED: ',RowMask.SPUR_DETECTED.isSet(flags)
print 'IGNORE_DATA: ',RowMask.IGNORE_DATA.isSet(flags)
print 'BBID_CORR: ',RowMask.BBID_CORR.isSet(flags)
print 'PERM_USER_FLAG:',RowMask.PERM_USER_FLAG.isSet(flags)
print 'TEMP_USER_FLAG:',RowMask.TEMP_USER_FLAG.isSet(flags)

11.3. Safe Usage of Flags
Channel Flags. Bits 0-7 of the HifiMask definitions (see Chapter 10) are reserved for use by the
pipeline. Nothing will prevent you from setting and clearing these flags in your data, but there may be
consequences if flags are manipulated at Level 0 or 1, and then the data is re-pipelined up to Level 2.
For example, the Bad Pixel flag, when set, means that the data is completely ignored by the pipeline.
The spur candidate bit on the other hand, is simply carried through from level to level without affecting
how the pipeline treats the data. This may change in the future, and therefore it is recommended that
you employ bits 29 and 30 as much as possible when flagging data by channel. Bit 29 is meant to
represent data which should be ignored. Bit 30 is a temporary flag that will discard data only for
dedicated functionalities (e.g. baseline fitting, etc...).

Row Flags. Bits 0-19 of the 'RowMask' definition (see Chapter 10) are reserved for use by the pipeline.
Again nothing prevents you from setting or clearing them, but results when re-pipelining may not be
predictable. You are encouraged to use bit 20 IGNORE_DATA to flag spectra that are bad. Currently,
only the deconvolution task honours the IGNORE_DATA flag.

11.4. Setting and Clearing Flags with Spec-
trumExplorer

In the Spectrum Explorer button bar, you will find a button called select one or more datapoints which
will allow you to flag one or more data points (see Figure 11.4).

Figure 11.4. Data point selection from the Spectrum Explorer button bar (highlighted in the red circle)

Note

Flagging data involves adding more information to it, so you are actually overwriting your
data. The flagging task will do this so long as the data is in memory. However, if it comes

146

How to add and remove flags Build 15.0.3244

from a storage you must create a new variable and add the flags to it. When working with
an observationContext from storage this means you should create a new variable for your
dataset, flag it, and set the modified data back into the context. For the moment, this still
must be done manually. An example is shown at the end of this section.

To flag a range of data points:

• First, plot your spectrum dataset in SpectrumExplorer

• Select the select one or more datapoints button using a left-click

• Using the left-click again, click and drag a box around the region to be flagged. Take care to com-
pletely enclose all the points you wish to flag (see Figure 11.5).

• With a right-click, select Point selection / flag. A drop-down menu with an extended list of masks
will appear. At the bottom of the list, you will also find the choice manual, which allows you to select
a flag value not already present in the menu. If manual is selected, a small window requesting a flag
numerical value will appear. The numerical value of the flag should be calculated as value=2n,
where n is the bit value. For example, for bit 7 you would enter 128 and for bit 29 the value is
536870912. Once the value is set, click OK to continue. Note that if you selected data points in a
spectrum with more than one row (typical for Level 1 HIFI data), then you will be prompted for a
flag value for each of N rows in the spectra (see Figure 11.6).

• To verify your newly added flag(s), select the red flag button

• Before moving to a new region to be flagged you need to deselect the region you just flagged. This is
done by moving your cursor in the flagged region, right-click, and select Point selection / Deselect.
The flagged region will no longer be highlighted but by overing your cursor in the flagged region,
you will see the flag value written in the information box (lower left corner of the plot).

Figure 11.5. Selecting a region of the spectrum

Figure 11.6. Results from flagging the selected region

147

How to add and remove flags Build 15.0.3244

To flag a single data point:

• Select the select one or more datapoints button

• Then click on the pixel of interest, a circle will be drawn around that point

• Right click on the circle and proceed as above for flagging a range

Clearing flags from a point or a range is done by selecting manual and using 0 as the numerical flag
value.

Example: ObservationContexts and HTPs are passed by reference. Datasets are usually passed by
copy. Thus to modify a spectrum, you first need to extract it from an HTP. After you are done flagging
or working on the spectrum, it needs to be set back into the HTP. Since the HTP is a reference, this
change will immediately modify the parent ObservationContext in memory.

This procedure is an example of the method to extract a SpectrumDataset from a
 HifiTimelineProduct, flag some data points,
and then re-insert the SpectrumDataset into the ObservationContext in order to
 save it.

Create a variable of the HifiTimelineProduct

htp = obs.getProduct('level2').getProduct('WBS-V-USB')

Create a variable of the SpectrumDataset you need to flag: here, we extract from
 box_0001, spectrum 0007

sds7 = htp.get(7)

Follow the procedure described above to either flag a single data point, or a
 range of data points
on the SpectrumDataset sds7.

Re-insert your flagged SpectrumDataset into the ObservationContext via the
 HifiTimelineProduct

htp.set(sds7,7)

11.5. Setting flags interactively for many
spectra

The flagTool task allows you to interactively flag (via a graphical interface) rows and channels in
HIFI for a given spectrometer. The task provides a user friendly environment and allows you to easily
rerun the task and modify your masks. With the concept of an interactive table of datasets provided
with the plot (left side of the plot), it is visually easy to see where your flags are (per dataset and per
subband), and to choose which dataset to examine.

The flagTool task is applied on an ObservationContext (recommended) or a HifiTimelineProduct
(htp) and once selected, you will find flagTool in the Applicable Tasks menu where you can open
the GUI from there (see Figure 11.7). The ObservationContext (or htp) will then be loaded into the
product bullet. You can also open the GUI from the HIFI list of tasks under By Category. Please note
that we recommend using the flagTool task on an ObservationContext as opposed to a htp. This
is because the modifications applied on a htp is not conserved unless you re-insert the htp into the
ObservationContext. This can be achieved by using the following command line:

obs.getProduct(level).setProduct(backend, htp)

Capabilities.

148

How to add and remove flags Build 15.0.3244

• Natural zooming enabled in the plot window (by drawing a box (left-click), or by using the mouse
wheel (Mac trackpad: two-finger pinch, or two-finger drag across the pad))

• Easy channel flag switching (via four clickable choices situated at the top of the plot)

• Limited rowflag setting (SUSPECT_LO and IGNORE_DATA)

• Subband pseudo-gluing (the default) by choosing a dataset in the interactive table (left-click or
right-click)

• Single subband plotting by choosing the subband in the interactive table (left-click or right-click)

• Easy drawing of a mask region (by holding shift and left-click on the left border of a region and
dragging to the right border of the region)

• Category of flags to process (channel, rowflag, both (default))

• Embedded use of fitHifiFringe and fitBaseline for Level 2 data (via clickable choices
at the bottom of the plot)

• Interactive and Expert modes

(Mac users: If you are using a trackpad instead of a 3-button mouse, you need to configure your
trackpad for One Finger and Two Fingers. And, in order to emulate the middle-click mouse button,
you just use Ctrl + two-finger tap.)

You can select the spectrometer (HRS or WBS), the polarisation (H or V), and the sideband (LSB or
USB) to be processed by using the backend drop-down menu (e.g. WBS-H-USB, WBS-V-LSB, HRS-
V, WBS-H, etc...) in the GUI (for the command line syntax, see examples at the end of this section).
The level of the data to be processed must also be selected using the drop-down menu called level. Note
that for Level 1, the backend choices should be HRS-H, HRS-V, WBS-H, or WBS-V i.e. spectrometer
and polarisation. For Level 2, you must add the sideband choice. If your selection is wrong, e.g. if
you choose backend=WBS-H-USB, and level= level1, the task will end and you will see a descriptive
error message in the Console window. Simply reselect the proper level, are restart the task.

If you select the HRS backend, note that prior to HIPE 9.0, HRS data did not contain a flag column,
making it impossible to flag HRS spectra. If the flag column does not exist, the task will send a com-
ment Column name 'flag_1' not found in the console window and the task will not start. Therefore,
if you wish to flag HRS data, check that the SPG version (you can find this information in the Ob-
servationContext metadata) begins with 9.0 or higher. If it does not, you will need to reprocess your
observation from Level 0 using the pipeline from HIPE 9.0 onwards (see Chapter 5).

You are also able to choose to run flagTool with the flags category set to either channel only,
rowflags only, or with both categories (the default setting), i.e. by selecting both.

Figure 11.7. FlagTool task GUI

149

How to add and remove flags Build 15.0.3244

By default, flagTool display the first dataset, and all subbands at once, thus allowing you to process
all subbands of a dataset in one go. This feature allows you to process your data with significantly
reduced time, and to flag regions where two subbands connect. But you can also choose to plot one
subband at a time for a given dataset with one right-click (or left-click) in a subband box. It is fast
and easy to choose which dataset to process by selecting (right-click or left-click in the ds column)
a dataset in the interactive table on the left side of the plot (see Figure 11.8). Note that you work on
one dataset at a time i.e. that flagging ds 2, subband 3 will not be propagated to the other datasets.
Therefore, you need to examine all datasets to establish which ones need flagging.

Once the task is invoked, you will be presented with a datasets table containing, at least, column 1: ds
(dataset), column 2: row, and column 3: LO value associated with the dataset. Then, prior to running
the task, if you chose category = channel, you will see additional columns associated with each
subband. If you chose category = rowflag, you will see column 1: ds (dataset), column 2: row,
column 3: LO value associated with the dataset, and additional columns with the name of all rowflags
raised (in at least one spectrum) in your datasets except UNALIGNED_HK since this rowflag is very
common in most datasets. In addition to the rowflags raised in your data, you will also see the two
rowflags SUSPECT_LO and IGNORE_DATA. Note that these two rowflags are the only rowflags
that you are permitted to modify. The rowflags raised by the pipeline are read only and will not be
editable. A cross (or a marker) will indicate that the rowflag is present in a given dataset. If you chose
category = both, you will see all columns from channel and rowflag displayed.

An interactive table listing all the datasets of an HTP is provided on the
left side of the plot. This example shows the category = channel table.

Figure 11.8. FlagTool datasets table and plot showing two flagged regions (coloured 'curtains') using two
different flags

150

How to add and remove flags Build 15.0.3244

Summary of the HTP being processed and a list of available actions appearing in the console.

Figure 11.9. FlagTool messages in the console

Interactive and Expert modes.

By default the interactive option is set to 'True'. If you wish to use flagTool in batch mode, you
can unselect ('False') this option. The interactive mode defines the verbosity of flagTool: if set to
'True', all actions on the flags are shown in the Console window.

By default, the expert option is set to 'False'. Expert mode set to 'True' affects only the row flags by
focusing only on the IGNORE_DATA flags. If combined with Interactive = 'False', the text in the
Console window is kept to its minimum.

Details of channel flagging.

The channel flagging technique consist of 1] choosing a flag type, and 2] defining a mask region. By
default, the flag will be set to LINE but you can choose a flag from a sets of four types of masks via four
clickable choices situated at the top of the plot. You have a choice of SPUR_CANDIDATE (value=
2^7 Orange), LINE (value=2^28 Pink), BRIGHT_LINE (value=2^29 Blue), and IGNORE_DATA
(value=2^30 Green). Once you start the task, the console will show a summary of the HTP being
processed, and will show a list of available actions (see Figure 11.9).

You define a mask region (i.e. a frequency range) by holding shift and left-click on the left border
of a region and by dragging to the right border of the region. The mask is then visible as a coloured
'curtain' (see Figure 11.8). To undo the most recent flag, use the Undo button at the bottom of the plot.
Note that the Undo button only works right after you have assigned a mask, and if you have not moved
to a new dataset. But, if you need to undo any masks, you can use one left-click within the coloured
'curtain'. If you choose a flag type and apply it but then decide that you need to re-assign a different
type to the region, or if you need to modify the region, you must first disable the mask with a one left-
click within the coloured 'curtain', choose a flag type, and then re-define the mask region.

To understand the implication of those flags, we strongly suggest that you consult the chapter covering
flags in HIFI (see Chapter 10).

You may also zoom in and out by drawing a box around the region of interest or by using the mouse
wheel (Mac trackpad: two-finger pinch, or two-finger drag across the pad). Using the right-click will
allow you to use the default menu of PlotXY.

151

How to add and remove flags Build 15.0.3244

If a flag is set, flagTool will:

• draw a mask in the plot window with the colour associated with the flag

• colour the corresponding cell in the datasets interactive table with the colour associated with the flag

• flag all masked channels with the corresponding flag value

• create the corresponding mask in the maskTable

Note that SPUR_CANDIDATE and IGNORE_DATA prevail upon LINE and BRIGHT_LINE. As
a consequence, the flag value of the channels you flagged as both SPUR_CANDIDATE (or IG-
NORE_DATA) and LINE (or BRIGHT_LINE) will only be SPUR_CANDIDATE (or IGNORE_DA-
TA).

As you progress in flagging your data, please pay attention to the comments available from the Console
window. Some warnings may be important about the choice of flags you may have used. Once you
are done flagging your datasets, you may quite the task (Quit option at the bottom of the plot).

Handling rowflags.

The purpose of listing, in the interactive table, all rowflags raised by the pipeline (except for UN-
ALIGNED_HK), is to allow you to have a clear overview of potential problems in your data. As
mention earlier, the only two rowflags that you should, if necessary, modify are SUSPECT_LO and
IGNORE_DATA. You may raise a flag, or remove one raised by the pipeline if you judge that the
quality of the dataset is good. A simple click will allow you to either select or deselect a rowflag in
a given dataset.

MaskTables: Linemasks and Rowmasks files.

FlagTool stores the channel flags masks and row flags masks in mask tables. Channel flags masks
are saved in the variable Linemasks and row flag masks are saved in the variable Rowmasks. You
can find both of them in the HTP you processed, and view your masks by selecting the variable (see
Figure 11.10). Mask tables have the same format and the same characteristics as TableDatasets so
you should not be disoriented. They are specific data structures to handle masks and provide useful
functions as we will see.

Figure 11.10. FlagTool Linemasks table

If the Linemasks and Rowmasks products are already present in an ObservationContext, you will see
these masks already in the data and you can modify them (remove or select a different mask) and/or
add new masks by just running the task again.

FlagTool also automatically creates a backup FITS file in your working directory from a channel
flag mask table for every 5 masks that you set. This feature was implemented in order to avoid losing
an extensive flagging session due to an unexpected termination of HIPE. The backup file will be
named backup_obsid_backend.fits. If your flagging session was less than 5 masks then you will not
see this backup file.

152

How to add and remove flags Build 15.0.3244

Note

You may not be able to use mask tables created from older HIPE versions due to an in-
compatibility in the table format. Work is in progress to implement a functionality to allow
compatibility between the old and the new format.

While you can handle the mask tables like any other TableDataset (drag and drop, Send to FITS file...)
flagTool provides you with specific functions to add, load, remove, and save channel flag and row
flag mask tables.

The three operations that alter the mask tables (add, load, remove) use the same syntax:

<operation> MaskTables({backend: maskTable})

They should be called before the process method because they take into account the mask table pro-
vided, and analyze it before flagging the data.

Add new masks from a mask table

 ft = FlagTool()
 ft.addMaskTables({backend: maskTable})
 ft.process(obs, backend)

Only the difference between the mask table in the data and the mask table provided is taken into
account. If the new mask table contains a mask that is not in the data, this mask will be added to the
data:

How addMaskTables work

In the data In the maskTable Masks to be added Final maskTable
A A A

B B

 C C C

D D

E E

Load all the masks from a mask table

 ft = FlagTool()
 ft.loadMaskTables({backend: maskTable})
 ft.process(obs, backend)

All the previous user row flags (if maskTable contains row flags) or all the channel flags (if maskTable
contains channel flags) will be removed and replaced by the new mask table provided:

How loadMaskTables work

In the data In the maskTable Final maskTable
A A A

B

 C C

D D D

E

153

How to add and remove flags Build 15.0.3244

Remove the masks contained in a mask table

 ft = FlagTool()
 ft.removeMaskTables({backend: maskTable})
 ft.process(obs, backend)

All the masks in your data that match the masks in maskTable will be removed:

How removeMaskTables work

In the data In the maskTable Masks to be removed Final maskTable
A A A

B B

 C

D D

E E

Note

• The rule about row flags: You can add or remove user row flags but not row flags set
by the pipeline (see Section 10.3).

• The rule about channel flags: You can remove any channel flag but you can only add
user channel flags (see Section 10.2).

Save the masks to a FITS file

The last operation (save) should be called after the process method, when the flagging is done, and
all the masks are updated in the mask table. It allows you to save your channel flag or row flag mask
tables to a FITS file:

 ft = FlagTool()
 ft.process(obs, backend)
 ft.saveMaskTables(filename)

saveMaskTables looks for Linemasks and Rowmasks in the HTP. If any of these 2 mask tables is found,
it is saved to a FITS file. Note that filename is optional. If it is provided, the file will be suffixed
by _Linemasks or _RowMasks. If you do not provide a filename, the file will be saved in your work-
ing directory under the name <obsid>_<backend>_Linemasks.fits or <obsid>_<backend>_Row-
masks.fits.

A simple use case to handle mask tables

An example will make things clearer. Let's imagine you were setting channel flags with flagTool
on the obsid 1342191559, on WBS-H-USB but something went wrong and your session was closed.
Don't panic. flagTool made a backup of your channel masks in your working directory. You just
have to reload your obsid and add these masks back into WBS-H-USB:

 # Load the observation context
 obs = getObservation(1342191559)

 # Create a FlagTool object
 ft = FlagTool()

 # Add the mask table named "backup_1342191559_WBS-H-USB.fits" into WBS-H-USB
 ft.addMaskTables({"WBS-H-USB": "backup_1342191559_WBS-H-USB.fits"})

 # Process WBS-H-USB
 ft.process(obs, "WBS-H-USB", level=2, category="channel")

154

How to add and remove flags Build 15.0.3244

FlagTool will read all the masks in the mask table backup_1342191559_WBS-H-USB.fits and set
the corresponding flags. Messages in the HIPE console will list all the masks added.

After you set all the flags you wanted, you will probably want to save your masks:

 ft.saveMaskTables(filename="finished_1342191559_WBS-H-USB.fits")

FlagTool appended _Linemasks to your filename because it found only Linemasks in WBS-H-USB.

One backend is finished. Let's do the same for WBS-V-USB. But this time, we want exactly the same
masks as in WBS-H-USB. You cannot use addMaskTables because it will only add the masks that
are not already in WBS-V-USB, which means that the masks you removed in WBS-H-USB will not
be removed in WBS-V-USB. What you want is to load all the masks as if no other masks previously
existed in the data. This is when loadMaskTables comes in handy:

 ft = FlagTool()
 ft.loadMaskTables({"WBS-V-USB": "finished_1342191559_WBS-H-USB_Linemasks.fits"})
 ft.process(obs, "WBS-V-USB", level=2, category="channel")

All the channel flags existing in WBS-V-USB are now removed and replaced by the masks in fin-
ished_1342191559_WBS-H-USB_Linemasks.fits.

Note

As you can imagine, loadMaskTables can be dangerous and must be used carefully be-
cause it removes all the channel flags including those set by the pipeline. However, this be-
haviour is coherent with what you can do interactively in flagTool because it will only
remove or add user row flags, preventing you from altering row flags set by the pipeline.

You are done! But if, for some reason, you had to remove some masks in WBS-V-USB, and let's say
that these masks are stored in spurs_in_1342191559_WBS-V-USB.fits, there is a command for that:

 ft.removeMaskTables({"WBS-V-USB": "spurs_in_1342191559_WBS-V-USB.fits"})
 ft.process(obs, "WBS-V-USB", level=2, category="channel")

FlagTool will read the masks in spurs_in_1342191559_WBS-V-USB.fits and remove them from
WBS-V-USB. Now you know everything about mask tables and how to handle them in flagTool.

FitHifiFringe and FitBaseline.

For a given dataset of Level 2, you may also choose to perform simultaneously fitHifiFringe
and/or fitBaseline. The default values are to NOT perform those options. FlagTool allows you
to define some of the main options of these two tools:

• For FitHifiFringe: (for more details on these options, see Chapter 12)

• nfringes: the number of sine waves to be fitted (default value: 1)

• fhfPlot (named plot in the original tool): sets if, and how the results should be plotted. The drop-
down menu allows you to select 0 (no plotting), 1, or 2. The default value is 2.

• For FitBaseline: (for more details on these options, see Chapter 13)

• order: the polynomial order for the fit

All other options relative to these two tools are set to their default value. This means that the option
doglue (used in both fitHifiFringe and fitBaseline) will be set to the flagTool default
i.e. to True. Some data show offsets between the subbands. If this is the case in your data, it is then
unwise to use fitBaseline within the flagTool task because you will want to fit your baselines
one subband at a time.

155

How to add and remove flags Build 15.0.3244

In order to apply fitHifiFringe or fitBaseline to the current dataset, select the correspond-
ing button at the bottom of the GUI. FlagTool will run fitHifiFringe or fitBaseline with
the options provided in the GUI. Note that the two fitting tools work exactly the same way as in stan-
dalone mode. Please refer to the corresponding documentation: Chapter 12 and Chapter 13.

Figure 11.11. flagTool using fitHifiFringe as an option

Figure 11.12. flagTool using fitBaseline as an option

FlagTool can also be used from the command line:

156

How to add and remove flags Build 15.0.3244

Flag WBS-H data at Level 1 - by default, the category is set to "channel" flags
flagTool(obs, "WBS-H", level=1)

Flag WBS-H-USB from the default Level 2
flagTool(obs, "WBS-H-USB")

Flag WBS-H-USB data using a polynomial of order=3 to fit the baseline
flagTool(obs, "WBS-H-USB", order=3)

Flag WBS-H-USB and use 2 sine waves for fitHifiFringe
flagTool(obs, "WBS-H-USB", nfringes=2)

Flag WBS-H-USB but do not display the plot for FitHifiFringe
flagTool(obs, "WBS-H-USB",fhfPlot=0)

Flag WBS-H-USB with the category rowflag
flagTool(obs, "WBS-H-USB", category="rowflag")

Flag both channel flags and rowflags in WBS-H-USB
flagTool(obs, "WBS-H-USB", category="both")

11.6. Setting and Clearing Flags with com-
mand line tools

When you set or clear flags with the Spectrum Explorer, the command-line version appears in the
console window and can be cut and paste for inclusion in a script. An example is shown below.
We recommend that you use the following four flags, and that you use the flag name (e.g. Hifi-
Mask.BRIGHT_LINE.value):

Flag
Name

Bit Software Name / Recommended syntax Description Flag value

Spur can-
didate

7 HifiMask.SPUR_CANDIDATE / Hifi-
Mask.SPUR_CANDIDATE.value

If this bit is set,
the sample is a
candidate to be a
spur. It is a 'can-
didate' since not
all things flagged
by the spurfind-
er are necessarily
spurs.

128

line 28 HifiMask.LINE / HifiMask.LINE.value User set flag to
denote a line

268435456

Bright line 29 HifiMask.BRIGHT_LINE / Hifi-
Mask.BRIGHT_LINE.value

User set flag to
denote a bright
line

536870912

Ignore data 30 HifiMask.IGNORE_DATA / Hifi-
Mask.IGNORE_DATA.value

User set flag to
ignore data.

1073741824

You cannot work from the observationContext therefore, you must create a variable
 when working
with flagPixels.
Here we first extract the HTP
htp = obs.refs["level2"].product.refs["WBS-V-USB"].product

and then extract dataset 0004 from the HTP i.e. this would correspond to
obs.refs["level2"].product.refs["WBS-V-
USB"].product.refs["box_001"].product["0004"]
sds=htp.get(0004)

157

How to add and remove flags Build 15.0.3244

Flag some data where mask is mask={subband:[channel_numbers]} with channel numbers
 listed one by one (note
that you cannot give a range of channels)
and where selection[3] represents the third spectrum (row) of the spectrum
 datasets i.e.
obs.refs["level2"].product.refs["WBS-V-
USB"].product.refs["box_001"].product["0004"].getPointSpectrum(3)
flagPixels(ds=sds, selection=[3], mask={3:[1239,1240,1241]},
 flag=HifiMask.BRIGHT_LINE.value)

Re-insert flagged dataset sds back into htp
htp.set(sds,4)

Followed by a re-insertion of the htp into the obsContext
obs.level["level2"].setProduct("WBS-V-USB",htp)

Command-line example if we choose flag & remove:

flagPixels(ds=sds,selection=[3], mask={3:[1679]}, setFluxToNaN=1,
 flag=HifiMask.BRIGHT_LINE.value)

This flagging task is not very user friendly. The mask represents pixel values within the spectrum.
Because it is easier to identify regions by frequency ranges, we recommend that you use the new task
flagTool (see Section 11.5).

Alternatively, you may wish to flag many spectra within an HTP where you have identified a problem
at a specific frequency range.

We first define the flagging routine using, as an example, the recommended
 "ignore" flag
"HifiMask.IGNORE_DATA" (see table above)

def flagData(htp,htpindex,freq1,freq2) :

 spectrum=htp.get(htpindex)
 spectrumType=spectrum.meta["sds_type"].value # determine type (COMB, HC, SCIENCE,
 TUNE)

 nrows=spectrum.getLength() # get number of spectrum in this dataset
 for dsidx in range(nrows) : # loop through them
 for sb in (spectrum.getSegmentIndices()): # loop through the subbands
 segment = spectrum.getPointSpectrum(dsidx).getSegment(sb)
 flag=segment.getFlag() # fetch the flags
 freq=segment.getWave() # fetch the frequencies
 idx=freq.where((freq>=freq1).and(freq<=freq2))
 if idx.length()>0 :
 flag[idx]=HifiMask.IGNORE_DATA.set(flag[idx]) # set the flag
 segment.setFlag(flag) # reinsert into the spectrum
 htp.set(htpindex,spectrum,spectrumType) # reinsert modified spectra back into the
 HTP
 return htp

START OF SCRIPT

read in your data using obs = getObservation("1342xxxxxx")
obs = getObservation("1342205481")

extract the Level 2 tree
lev2=obs.getProduct("level2")

from that, extract the HTP for the WBS-H backend
htpwbsh=lev2.getProduct("WBS-H-USB")

At this stage, you have a HTP that needs some cleaning.
#
Inspect the data and identify those affected datasets, then run the cleaning
 function flagData.

158

How to add and remove flags Build 15.0.3244

In our example, we wish to flag the spectra from 3 to 6 in the frequency range
 1900.49 to 1900.63

htpwbsh=flagData(htpwbsh,3,1900.49,1900.63)
htpwbsh=flagData(htpwbsh,4,1900.49,1900.63)
htpwbsh=flagData(htpwbsh,5,1900.49,1900.63)
htpwbsh=flagData(htpwbsh,6,1900.49,1900.63)

Now with everything flagged, re-insert the data (i.e. the HTP) back into the
 observation context "obs"

lev2.setProduct("WBS-H-USB",htpwbsh)
obs.setProduct("level2",lev2)

Using Spectrum Explorer, verify, in the obsContext, that the HTP was re-inserted
 into the obsContext and that
the flags were applied accordingly (see Section 11.2).

Level 2.5 'stitched' cube

Command line example to set a flag in a given spectrum of a Level 2.5 WBS 'subbands stitched' cube
(pipeline product). Here, the parameter selection is the pixel number within the cube. Pixel numbers
are labelled from 0 (lower-left corner), and increase from left to right and from bottom to top. Please
be aware, however, that flags with values above 32767 (short integer limit) will not be honoured by
the task in cubes as those latter are set as short integer arrays.

flagPixels(ds=obs.refs["level2_5"].product.refs["cubesContext"].product.refs["cubesContext_WBS-
V-USB"].product.refs["cube_WBS_V_USB_1"].product, \
selection=[31], mask={0:[1268]}, flag=HifiMask.SPUR_CANDIDATE.value)

11.7. Scripting Techniques for bulk clearing
of flags

It may happen that you will find an entire subband is flagged by either the pipeline or various tools
you use to process HIFI data. It may be necessary to clear these flags to ensure that tools such as
fitBaseline work properly. This is just one example of a case where it may be easier to write
a script to deal with flagging rather than doing it via command-line tasks or the spectrum explorer.
Below you will find a task that clears the glitch flag from ALL data within the provided HTP. It can be
modified to set/clear this or any other channel flag. Indeed the loop structure (loop through the HTP,
rows, and segments of spectra) has many practical applications and can be used in your own scripts.

Figure 11.13. The flagged subband is colour-coded in this example

This routine clears all flags in all datasets in a HTP and it is specific to the
 GLITCH flag.

159

How to add and remove flags Build 15.0.3244

In this example, we use observation "1342217724"

def clearAllFlags(htp):
 GLITCH = HifiMask.GLITCHED

inspect summary table to get the index of all data, then loop through them
 for htpindex in htp["summary"]["dataset"].data :

fetch the spectrum from the HTP
 spectrum= htp.get(htpindex)

get number of spectrum in this dataset
 nrows=spectrum.getLength()

loop through them
 for dsidx in range(nrows) :

loop through the subbands
 for sb in (spectrum.getSegmentIndices()):
 segment = spectrum.getPointSpectrum(dsidx).getSegment(sb)

fetch the flags
 flag=segment.getFlag()

clear the spur flag
 flag=GLITCH.unset(flag)

reinsert into the spectrum
 segment.setFlag(flag)

reinsert modified spectra back into the HTP
 htp.set(spectrum,htpindex)

END OF FUNCTION DEFINITIONS

START OF SCRIPT

obs = getObservation("1342217724")

extract the Level 2 tree
lev2=obs.getProduct("level2")

from that, extract the HTP for, e.g., the WBS-H and -U backends
htpwbsh = lev2.getProduct("WBS-H-USB")
htpwbshlsb = lev2.getProduct("WBS-H-LSB")
htpwbsv = lev2.getProduct("WBS-V-USB")
htpwbsvlsb = lev2.getProduct("WBS-V-LSB")

now clear all the "GLITCH" flags
clearAllFlags(htpwbsh)
clearAllFlags(htpwbshlsb)
clearAllFlags(htpwbsv)
clearAllFlags(htpwbsvlsb)

END OF SCRIPT

11.8. Scripting techniques for setting row
flags

HIPE comes installed with the UserFlagTask, which sets bit 21 to user-specified rows within
datasets. You can select other bits, or use the task to clear rather than set flags.

The task can be run on either a dataset, or an HTP and an index to a dataset. Example usage is given
below. For more information you are directed to the UserFlagTask in HIFI User's Reference Manual
HIFI URM (User Reference Manual) entry.

160

How to add and remove flags Build 15.0.3244

obs = getObservation("1342217724")
htp = obs.getProduct("level1").getProduct("WBS-H") # extract the Level 1 WBS-H tree

In this HTP, select the 4rth dataset, and flag out rows 0 and 1.
UserFlagTask()(htp=htp,sdsnr=4,dataframes=Int1d([0,1]))

Or, extract the dataset from the htp and operate on it:
sds=htp.get(4)

Clear the flags
UserFlagTask()(sds=sds,dataframes=Int1d([1,2]),erase=True)

Reinsert spectra in the HTP
htp.set(sds,4)

161

Build 15.0.3244

Chapter 12. Standing Wave Removal
Last updated: 15 September, 2015

12.1. Introduction to Standing Wave Removal
At many locations in the HIFI instrument, standing waves are generated. The standard (SPG) pipeline
and AOTs are designed to minimise the amplitude of these waves in Level 2 spectra. However, for
certain observing modes, some mixer bands, and some observation characteristics (sky signal strength,
signal-to-noise level) particular residual waves may still be present:

1. All bands: a 98 MHz wave from the cold black body to mixer cavity

2. All bands: a 92 MHz wave from the hot black body to mixer cavity

3. All bands: a 100 MHz wave from the local oscillator unit to mixer cavity

4. Diplexer bands (3,4,6,7): a 620 MHz wave from the diplexer rooftop to mixer cavity

5. HEB bands (6,7): a ~320 MHz wave from within the HEB mixers

Depending on the science application, the user may want to remove these waves. Different techniques
may need to be applied for the different waves. These are described in the next sections.

12.2. Modified Passband Calibration Method
The hot and cold load spectra that are taken during every observation and that are used for intensity
and passband calibration contain 92 and 98 MHz waves. In the standard pipeline they are divided into
the sky spectra. Thus it is desired to remove the waves from the load measurements beforehand. This is
possible by running the pipeline in a modified way and activating the DoFilterLoadsTask step:

Obtain a params object
htp = obs.level.get("level0").getProduct("WBS-H")
params = herschel.hifi.pipeline.generic.PipelineConfiguration.getConfig(htp)
Configure it
params.setParameter("doFilterLoads","ignore",False)
params.setParameter("doFilterLoads","filterMethod","cubic_splines")
Run the pipeline while passing the params object to it:
obs = hifiPipeline(obs=obs, fromLevel=0.0, upToLevel=2.0, params=params,
 apids=["WBS-H"])

12.3. Sine Wave Fitting Method (fitHifiFringe)

12.3.1. Introduction to fitHifiFringe
Periodic signals in HIFI Level 2 spectra can be removed with the sine wave fitting tool fitHi-
fiFringe. This tool allows for automatic or manual masking of lines before fitting a user-defined
number of sine waves. As it makes use of the general task fitFringe, details on the algorithms can
be found in the FitFringe manual .

The cookbooks (Chapter 2) demonstrate use of the tool on specific observations.

12.3.2. Running fitHifiFringe
FitHifiFringe is automatically registered to ObservationContexts and HifiTime-
lineProducts (i.e. when clicking on such variables in the Variable window of HIPE, fitHi-

162

Standing Wave Removal Build 15.0.3244

fiFringe shows up as an applicable task). However, you can also process SpectrumDatasets,
SimpleSpectrums, and HIFI spectral cubes (SpectralSimpleCubes) by opening the GUI (see
Figure 12.1) under All Tasks and then dragging the variable to the appropriate bullet. Alternatively,
run it on the command line as follows:

Figure 12.1. FitHifiFringe GUI

For ObservationContexts and HifiTimelineProducts:

result=fitHifiFringe(data=obs_in,nfringes=2,typicalPeriod=150., product='WBS-H-USB')

or for SpectrumDatasets:

result=fitHifiFringe(data=sds_in,nfringes=2,typicalPeriod=150.)

or for SpectralSimpleCubes:

result=fitHifiFringe(data=ss_in,nfringes=2,typicalPeriod=150.)

or for SimpleSpectrums:

result=fitHifiFringe(data=ss_in,nfringes=2,typicalPeriod=150.)

Note that in the latter case, the SimpleSpectrum input can be constructed from any spectrum of
type Spectrum1d as follows:

ss_in=SimpleSpectrum(spectrum1d)

This allows FitHifiFringe to be applied to a Single Sideband spectrum taken from the doDe-
convolution output product and to a spectrum extracted from a data cube using the extrac-
tRegionSpectrum task.

For HifiTimelineProducts, SpectrumDatasets, SimpleSpectrums, and Spectral-
SimpleCubes the output result is a list of products: a product that is identical to the input, but with
the fitted sine waves subtracted from the flux columns (result[0]) and the summary standing wave
tables (result[1]). These products are easily retrieved, for example:

result=fitHifiFringe(data=obs)
myNewObs=result[0]

163

Standing Wave Removal Build 15.0.3244

mySwTable=result[1]

Remember that because of the nature of an ObservationContext the original input will have the
sine waves subtracted as well. If you wish to compare before and after results, you will need to read
the input data separately into a different variable name.

When subBase=1 is selected, fitHifiFringe subtracts the fitted baseline (shape+continuum
level) together with the (multi-)sine fringe model. At the same time, a median baseline level is com-
puted (per spectrometer subband, or as a whole, depending on the input on doglue) and reported
in the output table swTab (see Figure 12.3). The parameter addMedianContinuum=True allows
you to re-add the median baseline value computed by the task in the baseline subtraction process. This
will allow you to benefit from baseline correction (shape) but preserve the overall continuum.

By default, fitHifiFringe produces two plots for each fitted spectrum. The first plot (not shown
here) shows the chi-square values as a function of sine wave period. The second plot (see Figure 12.2)
shows the input data, fitted sine waves, baseline, line mask, channel flags and output data for the user
to inspect. The orange line represents all data ignored in the fitting process: values of 0.0 for line
masks and values of 0.5 for channel flags. Before processing the next spectrum, you are asked for
confirmation through a pop-up GUI. For products with many spectra, you can also decide to continue
non-stop (without further plotting and pop-up GUIs).

Figure 12.2. Fitted sine waves, baseline, line mask, channel flags, and output data

The amplitudes, periods, phases, and chi-squares of the fitted sine waves are printed on the HIPE
console. In case the input was an ObservationContext, the table is saved in the context as indicated
in the screenshot below (see Figure 12.3):

164

Standing Wave Removal Build 15.0.3244

Figure 12.3. Table containing information resulting from the fitting

The following input parameters are allowed:

• data: input can be ObservationContexts (Level 1 or 2), HifiTimelineProducts
(Level 1 or 2), SpectrumDatasets (WBS or HRS), SimpleSpectrums (Waveunit needs to
be in GHz), and spectral cubes (SpectralSimpleCubes) (Waveunit needs to be in GHz).

• product: if the input is an ObservationContext, indicate which Level 2 product needs to
be processed. Options are: 'WBS-H-USB' (default), 'WBS-H-LSB', 'WBS-V-USB', 'WBS-V-LSB',
'HRS-H-USB', 'HRS-H-LSB', 'HRS-V-USB', 'HRS-V-LSB'.

Note that standing waves are automatically corrected in both sidebands of whichever spectrometer
you select so, for example, if you select 'WBS-H-USB' the standing waves will also be corrected
in the WBS-H-LSB.

• sds_index: index of a single SpectrumDataset in a product to process. The index can be
determined by listing the product in the Context viewer. This option is irrelevant if the input is
an sds. [DEFAULT: sds_index=-1, which means all SpectrumDatasets in a product will be
processed].

• nfringes: number of sine waves to be fitted. By default, nfringes=2 for HIFI bands 2,5,
nfringes=3 for bands 1,3,4,6,7, and nfringes=1 if the HIFI band cannot be determined.

• startPeriod: shortest-period standing wave (in MHz) to search for. By default, startPeriod=80
MHz for HIFI bands 1,2,3,4,5,6,7, and startPeriod=20 MHz if the HIFI band cannot be determined.

• endPeriod: longest-period standing wave (in MHz) to search for. By default, endPeriod=120
MHz for HIFI bands 2,5, endPeriod=200 MHz for HIFI band 1, endPeriod=1000 MHz for bands
3,4,6,7, and endPeriod=3000 MHz if the HIFI band cannot be determined.

• typicalPeriod: typical standing wave period (in MHz) in the data. This is used for the baseline
determination. Features with much longer periods are considered baseline structure and will not be
removed with sine waves. By default, typicalPeriod=95 MHz for HIFI bands 1,2,3,4,5, typicalPe-
riod=600 MHz for band 6, typicalPeriod=625 MHz for band 7, and typicalPeriod=150 MHz if the
HIFI band cannot be determined.

• plot=...: Sets if and how the results should be plotted.

• plot=0: no plotting at all.

• plot=1: two plots per scan: (1) period versus Chi^2 (2) the before/after plot and the subtracted
sine wave and the line mask. WARNING: If the observation contains many scans, many plot
windows will appear on the screen!

165

Standing Wave Removal Build 15.0.3244

• plot=2: as plot=1, but after each scan, show a pop-up window to process the next scan and delete
previous plot windows. One can also opt to continue without further plotting.

• [DEFAULT: plot=2]

• doglue=False, Determine SW on individual subband spectrum. This is desired for HRS, but often
not for WBS, as long period SW can only be determined on the combined spectrum. [DEFAULT:
doglue=True]

• automask=True: automatically mask datapoints using the sigma-clip algorithm described in the
SmoothBaseline manual. This mask is added to any user-defined mask ('usermask') that is provided
and any line flags (LINE or BRIGHT_LINE) that were defined before fitHifiFringe was
started (e.g., using flagTool). [DEFAULT: automask=True]

• usermask=..., mask frequency ranges in addition to the automatically determined mask ('au-
tomask') and any line flags (LINE or BRIGHT_LINE) that were defined before fitHifiFringe
was started (e.g., using flagTool). Example: usermask=[(537.0,538.0), (539,539.5)] marks the
ranges 537-538 GHz and 539-539.5 GHz [DEFAULT: only use automatically determined mask]

• avermask=True, determine the mask on the average of all scans and then apply this mask to
each scan. This reduces the amount of work for large maps a lot. It also should give more accurate
masks as the average spectrum has better signal-to-noise. Spectra with different LO settings will
not be averaged, so this option does not work for spectral scans. [DEFAULT: avermask=False, i.e.
determine mask on each indvidual spectrum]

• subBase=True, subtract the smooth baseline that was determined in the sine wave fitting process
from the input data (i.e., in addition to subtracting the fitted sine waves). Note that this can be
dangerous as the smooth baseline may include weak lines or wings of bright lines that were not
properly masked. [DEFAULT: do not subtract the baseline]

• flags=128, data points with these flag values will be excluded from the calculations. Multiple
flags are added, e.g., flags=384 means that data points with flag values 128 and 256 will be excluded.
Note that data with flag values 1, 2, 8, 64, and 1073741824 (=2**30) will ALWAYS be ignored.
[DEFAULT: 128 (=SPUR_CANDIDATE)]

• resolution=10, used to internally rebin the spectra in order to speed up the task. The default
of 10 MHz is sufficient for HIFI spectra, but should be reduced for processing of non-HIFI spectra
with standing wave periods less than about 30 MHz. [DEFAULT: 10 MHz]

• addMedianContinuum= True, allow the median continuum to be added back into the baseline
fit flux. [DEFAULT: False]

• saveInput=True, will save the fitHifiFringe parameter inputs to a calibration product
with a table dataset and metadata, and store this in the pipeline-out product, i.e. obs.refs["calibra-
tion"].product.refs["pipeline-out"].product.refs["fitHifiFringe"].product. This product can be gen-
erated only when the input data is an ObservationContext. The calibration product may be used in
later applications of fitHifiFringe to fix the task parameters, using the cal input parameter.
[DEFAULT: False]

• cal: An optional calibration product containing a fitHifiFringe product saved from a previ-
ous application of fitHifiFringe with saveInput = True. When a calibration product (e.g.
cal = obs.refs["calibration"].product) is supplied by drag and drop into the GUI, or at the com-
mand line, the task parameters are fixed by the contents of the fitHifiFringe product (changes
to task parameters in the GUI or command line will have no effect). If the calibration product lacks
the fitHifiFringe product, a warning message will pop-up when using the GUI, prior to exe-
cuting the task. If a calibration product is provided in a command line application of the task, and
it is missing the fitHifiFringe product, only a warning message is given, the cal variable is
then ignored, and the task will run with the default or current task parameter inputs. [DEFAULT:
Null (no cal input)]

166

Standing Wave Removal Build 15.0.3244

12.3.3. Example of using fitHifiFringe
In Level 2 data, standing waves are mixed with astronomical signals, and separating them from each
other requires the astronomer's judgment. fitHifiFringe is an interactive user tool to do this, and
a typical way of using it is described here.

To get started, the most important parameter to supply to fitHifiFringe is typicalPeriod.
This sets the shape of the baseline for the standing waves. Its value depends on the HIFI band that is
being processed. A reasonable default is automatically selected by fitHifiFringe. To optimise the value
for a particular observation, you have to either inspect the plot before applying fitHifiFringe,
or run fitHifiFringe once to get an estimate of the typical period(s). As an example, see the next
plot. This is a Load Chop observation in band 3A taken without a sky reference. The typical period
is about 100 MHz.

Figure 12.4. Example of a typical period (at about 100 MHz) in a Load Chop observation in band 3A (taken
without a sky reference)

Subsequently, run the tool by clicking on Accept. Alternatively, you can enter the following command
line:

result = fitHifiFringe(data=obs,product="WBS-H-USB",nfringes=1,typicalPeriod=100.0)

Here, only one sine wave is fitted to the data (nfringes=1). If one does not give this input parameter,
nfringes is automatically adjusted depending on the HIFI band. Two plots are generated: one with
the sine wave period Figure 12.5) as a function of chi-square, and one with before/after spectra Fig-
ure 12.6).

167

Standing Wave Removal Build 15.0.3244

Figure 12.5. Sine wave fitted using only one sine wave (i.e. nfringes=1)

168

Standing Wave Removal Build 15.0.3244

Figure 12.6. Resulting fit showing the before and after spectra

To optimise the fit, the following questions need to be answered by inspecting the plots:

• Does the smooth baseline (blue curve in the spectrum plot) look reasonable as a baseline for the
standing waves? You may need to zoom in to see, do this by drawing a box around the region of
interest with the left mouse button. In this example it looks OK. If it does not (e.g., if it follows the
waves), run fitHifiFringe again with a different value of typicalPeriod (if the input was
an ObsContext, you will need to read the original data from disk again).

• Are any lines properly masked? In this example, no lines are masked (the orange mask curve only
shows values of 1), but there is clearly a spectral line between 835.04 and 835.24 GHz. You can
mask this line by hand using the usermask input. Line masks are shown with values of 0.0 in
the orange line, and channel flags taken into account with values of 0.5. Only channels where the
orange line is 1.0 are taken into account in the calculations.

• How many peaks are present in the chi-square versus period plot? You may need to zoom in by
drawing a box with the left mouse button. In this case, a strong 96 MHz standing wave is found
(indicated by a vertical red line), but the spectrum shows, especially near the IF band edges, that the
fit is not so good. The chi-square plot does not show additional peaks, but the main peak is rather
broad. Increase the number of sine waves to be fitted (nfringes). Also, sometimes minima are
found at periods that are irrelevant for the science, e.g., with very long periods. The fit solutions
can be influenced by limiting the period search range better than the default 20-3000 MHz range.
Use the startPeriod and endPeriod parameters for this. Do not choose a very narrow range,
or otherwise the chi-square peaks cannot be determine accurately enough, or you might miss waves
that are hard to see by eye in the spectrum.

• The smooth baseline (blue line in the spectrum plot) is only used as a baseline for the standing
waves. It is not actually subtracted from the data. In some cases, such as in this example which

169

Standing Wave Removal Build 15.0.3244

shows a negative baseline level, it is actually a very reasonable baseline choice. You can subtract it
using the subBase=True option. Then you can omit fitting polynomial baselines at a later stage
(using fitBaseline).

• By default the WBS subbands are fitted at once. Sometimes the fit improves by fitting them indi-
vidually. In this case use the doglue=False option.

Taking the above considerations into account, the optimum fitHifiFringe parameters are:

result = fitHifiFringe(data=obs,product="WBS-H-
USB",nfringes=3,startPeriod=80.0,endPeriod=300.0,\
typicalPeriod=100.0,subBase=True, doglue=False, usermask=[(835.04, 835.24)])

The end result is shown here Figure 12.7):

Figure 12.7. Resulting fit using the optimum fitHifiFringe parameters

If it is desired to save these input parameter values, the option saveInput can be used, and a
fitHifiFringe product will be saved in the calibration tree of the observation context. In the same
example:

result = fitHifiFringe(data=obs,product="WBS-H-USB",nfringes=3,startPeriod=80.0,
 endPeriod=300.0, \
typicalPeriod=100.0,subBase=True, doglue=False, usermask=[(835.04, 835.24)],
 saveInput=True)

Later, if the output product result (or mynewObs = result[0]) is saved, the same fitHifiFringe
parameters can be retrieved from the data tree and reapplied, either to the same, or a different obser-
vation with similar standing wave characteristics:

myCal = obs.refs["calibration"].product
result2 = fitHifiFringe(data=obs2,cal=myCal)

Other considerations for removing standing waves with fitHifiFringe:

• The band 6 and 7 "HEB" waves are not pure sine waves: the phase drifts over the IF band pass. You
may still approximate fits by using a combination of 2-3 sine waves with periods around 320 MHz.

170

Standing Wave Removal Build 15.0.3244

For the WBS backends, fitting the waves per subband may give better results (doglue=False).
The next Section 12.4 deals with the Electrical Standing Wave correction in HEB bands.

• Waves in bands 3 and 4 show increasing amplitudes toward the IF band edges. Approximate fits
can be obtained by fitting a combination of sine waves, and sometimes by fitting per WBS subband
(doglue=False).

12.4. Electrical Standing Wave correction in
HEB bands

Last updated: 15 September, 2015

Bands 6 and 7 have Hot Electron Bolometer (HEB) detectors, which produce strong electronic standing
waves with characteristics that depend on the signal power. If the power on the source and reference
position is not the same, due to sky signal strength or instrument instabilities, the Level 2 spectra
will show residual waves. These waves have periods of ~320 MHz, but they are not pure sine waves.
Applying the fitHifiFringe task is not always satisfactory for science analysis. Therefore a new
technique is being developed that matches standing waves toward the target with a database of spectra
at different power levels.

12.4.1. Introduction
ESWs originate in the electric circuits of the Hot Electron Bolometer (HEB) bands 6 and 7. It was
hoped that the ESW would be stable enough to be calibrated out with the usual off-source subtraction,
which is also needed to remove the imprint of the telescope from the observation. However, the ESW
was changing so quickly that there were residuals, sometimes quite significant, left in the spectra.
Standard removal methods like FFT or sine fitting cannot work because the waves are not regular
enough in either amplitude or frequency.

A task was introduced in HCSS 12.0 to remove the troublesome electrical standing wave (ESW)
affecting spectra in HIFI bands 6 and 7 (the HEB bands). Since then, solutions for all HEB observations
have been prepared and placed in the HIFI calibration product, and in HCSS 13.0 are automatically
applied by the pipeline. The correction improves most observations. We are following-up the relatively
few cases that are not well-corrected and we will add the solutions in a future calibration release.

The pipeline task doHebCorrection applies the corrections stored in the HIFI calibration. It can
also remove already-applied solutions. It does not compute the solutions. The task HebCorrection,
which computes and applies the correction, has several useful features. The most important is the
automatic disregard of line emission or absorption in the spectrum by means of robust fitting. Another
is the option to plot individual PointSpectra for evaluation of the process. The task also creates a
TableDataset which contains all the model parameters generated. However, before we go into these
features, we will describe how the process of ESW removal is implemented.

12.4.2. Catalogue
In the database, there are very long stability calibration observations with numerous emission-free off-
source spectra. Creating differences from many permutations of these spectra produces many example
ESWs similar to those seen in normal data after on-off differencing, but before averaging. Thousands
of example difference spectra were generated and collected in a catalogue. One such catalogue of
ESWs is shown in Figure 12.8.

171

Standing Wave Removal Build 15.0.3244

Figure 12.8. Example of a WBS HEB Catalogue

From inspection of the figure, three properties are evidenced. Firstly, the ESWs are very similar indeed,
except for a multiplicative factor. Secondly, there are not only waves in the ESW but also a continuum
part. Thirdly, the continuum offset scales with the modulation amplitude, resulting in fact in both
positive and negative offsets, accompanied by an apparent phase inversion in the modulation.

12.4.3. Spline Model
We want to know whether our notion of a multiplicative family is indeed true. The example ESWs
were ordered according to their average absolute amplitude. We modelled the largest with a 72 knots
cubic splines model. This relatively large number of knots was chosen as the smallest that would still
catch all the finer details in the ESW. This largest one is our first splines model. The next example
ESW was modelled in two ways: with a 72 knots cubic splines (like before) and as a multiplication of a
previous splines model. If the latter is as good as the former, then this example ESW can be explained
as one of a family. Otherwise, the splines model is added to the list, and it starts a new family of models.
And so on, resulting in a list of example ESWs and splines models which are unique to the catalogue.

For all 8 HEB bands (6aH, 6aV, 6bH, 6bV, 7aH, 7aV, 7bH, and 7bV) we created catalogues and
applied this procedure. The unique example ESWs were normalised and split into a slowly changing
continuum part and a fast, waves-only part. The results are shown in Figure 12.9 and Figure 12.10 for
all 8 bands. Note that the number of families is quite different among the bands.

172

Standing Wave Removal Build 15.0.3244

Figure 12.9. WBS Band 6a and 6 b (H and V)

173

Standing Wave Removal Build 15.0.3244

Figure 12.10. WBS Band 7a and 7 b (H and V)

12.4.4. Removal
The ESWs are a leftover effect of the on-off subtraction in the pipeline just before reaching Level 1.
Most observations are aimed at some spectral line which might start to be visible in the individual
spectra at Level 1. There might also be a continuum belonging to the source, and of course ESWs
which must be removed without affecting the line or the continuum.

Continuum only.

We start with a simple case where there are no (visible) lines present. In Figure 12.11, there are 2
spectra, one with clear ESWs and one almost without. Note that the latter has a small continuum
between 0 and 1 K.

Figure 12.11. RDor Band 6a V-polarisation

174

Standing Wave Removal Build 15.0.3244

Both spectra were corrected for ESWs. First we define a background model, another cubic splines with
a few knots. This background model is added successively to a scaled version of each of the applicable
fast model splines. The combination is fitted to the data and the one with the largest evidence is chosen
as the best fit. No ESW at all is also a possibility when the evidence is largest for the background model
alone. The scale found in this procedure is the amplitude of the ESW, both the slow and the fast parts.
To correct the spectrum we subtract the slow and fast model splines multiplied by the scale factor.

In Figure 12.12, the procedure is displayed. The spectrum data is in black. Note that it has been
smoothed with a boxcar filter of 101 points to reduce the noise in the original. In red we find the
best fit for the background and one of the fast splines models. In green we find the scaled sum of
the selected fast model plus its associated slow model. Although here it looks almost the same as the
red line, it is not. It can be quite different. The gray parts are removed from the spectrum, resulting
in a corrected spectrum, displayed in blue. The lower part of each panel, labeled "weight", will be
addressed in the next section.

In Figure 12.12 (right panel), we show a spectrum that does not show any ESW. The fit of the back-
ground alone had the largest evidence; hence it was chosen and no correction was applied. Black is
blue.

Note that the corrected spectrum in Figure 12.12 (left panel) lies slightly above zero. It is now much
more like the spectrum without any ESW, i.e. Figure 12.12 (right panel) which did not need any
correction.

Figure 12.12. Example of a spectrum with ESW (left panel), and a spectrum with no ESW (right panel)

After correction, the 2 spectra fall nicely on top of each other (Figure 12.13).

Figure 12.13. Results after correction

Continuum with lines.

175

Standing Wave Removal Build 15.0.3244

Most observations are targeted on some line. The situation above should be more of an exception than
the rule. Let's look at another observation where there is also line flux to consider.

Again we present 2 spectra, one with quite some ESW (Figure 12.14 upper spectrum) and one where it
is doubtful (Figure 12.14 lower spectrum). In both spectra there is clearly a double-peaked line feature
around 7400 MHz.

Figure 12.14. Example of a spectrum with significant ESW (upper spectrum) and a spectrum with doubtful
ESW (lower spectrum)

There are two options to exclude the lines from the fit. One option is to mask regions manually us-
ing the exclude_if or exclude_sky parameters (pass IF frequencies using the former, or sky
frequencies using the latter (either USB or LSB, the task automatically masks both sides). The other
option is to use Robust Statistics to automatically down-weight the lines. The latter option will be
shown here. Robust statistics is an iterative scheme where outlying points are given less weight in the
fit. Usually it converges after a handful of iterations.

Figure 12.15 shows the results for the two spectra. The layout is as before. Now it is clear that the lower
part of each panel represents the resulting weights of the robust procedure. At most places it is near 1,
only at the positions of the lines does it dips to 0, meaning that the lines are excluded from the fit.

It is now also clear why the boxcar smoothing was done before fitting: it makes all features stand out
much more clearly. The ESWs in Figure 12.15 (left-panel) are now clearly defined as are the lines.
In fact, without smoothing, the lines are not prominent enough to start the robust procedure. Unless
smoothed, the lines "drown" in the noise.

Figure 12.15. Results of the spectra going through the procedure

After correction (Figure 12.16) the spectra are much more similar, although not completely. The
wavy parts of ESW have completely disappeared, but the continuum is not completely corrected. H
and V spectra can differ for reasons other than ESW, but large, relative baseline offsets are probably
due to imperfect correction. Have a look at the baselines of all the corrected spectra and decide if the

176

Standing Wave Removal Build 15.0.3244

variations look random (calibration uncertainty) or if there are outliers. A baseline offset relative to
other integrations and a residual wavy pattern indicate poor ESW correction.

Figure 12.16. Results after correction

12.4.5. Demonstration
From HCSS 13.0 onward, pre-computed corrections stored in the HIFI calibration tree are automat-
ically applied by the HIFI pipeline. Observations downloaded from the HSA processed with HCSS
13.0 or higher will most likely not require further electrical standing wave mitigation.

The Level 1 pipeline task doHebCorrection reads and applies the correction model parameters
from the HIFI calibration tree. The same task can remove an already-applied correction. If you want
to try re-running the ESW fit using the hebCorrection task as described below, you should first
remove the corrections applied automatically by the pipeline.

Example script to *remove* Electrical Standing Wave (ESW) corrections.
This is necessary if you plan to try re-correcting the ESW
yourself by masking spectral ranges, for example
#
Read an observationContext

obsid = 1342219332
obs= getObservation(obsid,useHsa=1)

undo the ESW correction

for backend in ['WBS-H', 'WBS-V', 'HRS-H', 'HRS-V']:
 htp = obs.getLevel1().getProduct(backend)
 htpUnCorr, tds = doHebCorrection(htp=htp, catalog=obs.calibration,
 undo=obs.calibration)
 obs.level["level1"].setProduct(backend,htpUnCorr)

metadatum 'hebCorrection' is set to True if data are ESW-corrected

print obs.refs["level1"].product.refs["WBS-
H"].product.refs["box_001"].product["0005"].meta['hebCorrection']

{description="Heb Standing Wave Correction has been done", boolean=false}

If you want to recompute Level 2 and higher products, run the pipeline as below.
But note, this is not necessary if you want to now attempt to re-fit the ESW
with the task hebCorrection, because it works by default on Level 1 data

obs = hifiPipeline(obs=obs, fromLevel=1.0)

The hebCorrection task will attempt to fit models of Electrical Standing Waves (ESW) to the
WBS science spectra at Level 1, and then produce corrected spectra. The HRS data, if present, will be
corrected using the solutions from WBS. The ESW models are stored in the HIFI calTree.

If you are dissatisfied with the ESW correction, you might improve the result by masking a spectral
range, if there is an unruly baseline or a spectral line of width/amplitude similar to an ESW. Excluding
a spectral range or ranges is the most effective parameter affecting the ESW fit that you can tune.

177

Standing Wave Removal Build 15.0.3244

The hebCorrection task corrects the observationContext you submit as parameter obs in-place;
the data will be changed. In addition, the output of the hebCorrection task is a TableDataset that
contains all the parameters used in the correction. It is recommended to save this table, as it can be used
to perform the correction again without redoing the CPU-intensive fitting. Another available output
is a list of plots showing the spectra pre- and post-correction, and the models fitted. The form of the
plots depends on the parameter plot. See the example script below for usage.

• plot = 0 no plots (default)

• plot = 1 erase previous plot when new one appears

• plot = 2 make plotlist

• plot = 3 every plot in its own window. (This might generate too many plot windows for your win-
dowing system. X11 has been known to crash)

The option to mask out spectral ranges is exclude_sky. The parameter value should be a Double1d
of even length containing [lowF1,highF1,lowF2,highF2,...] values of frequency ranges to exclude dur-
ing fitting. This option takes sky frequency ranges (either USB or LSB allowed, the task automatically
masks both sidebands). Robust fitting is still used by default, though if the unmasked baseline regions
are clean you can consider shortening runtime by turning it off with the robust option set to False.

Alternatively, you can specify the mask region on the Intermediate Frequency (IF) scale using the task
parameter exclude_if. The difference with exclude_sky is only in spectral scans: exclud-
ing_if will affect all spectra, whereas exclude_sky will only affect those with the appropriate
LO to bring those frequencies into the IF.

Read an observationContext

obsid = 1342196583
obs = getObservation(obsid, useHsa=1, useCache=0)

undo the ESW correction

for backend in ['WBS-H', 'WBS-V', 'HRS-H', 'HRS-V']:
 htp = obs.getLevel1().getProduct(backend)
 htpUnCorr, tds = doHebCorrection(htp=htp, catalog=obs.calibration,
 undo=obs.calibration)
 obs.level["level1"].setProduct(backend,htpUnCorr)

If, somehow, you are lacking the ESW model set in the calTree, uncomment this
 following line
obs.refs["calibration"].product.refs["Downlink"].product.refs["Generic"]. \
product.refs["hebCorrection"].product.refs["WBS-Splines"].product

you should download the observation again from the HSA!
#
Deprecated Alternative: the model set is available online:
wget http://herschel.esac.esa.int/twiki/pub/Public/HifiCalibrationWeb/
hebCorrectionModels_HICAL15.fits
It can be read into HIPE and passed to the task as a parameter:
catalog = simpleFitsReader('/path/to/hebCorrectionModels_HICAL15.fits')
tds = hct(obs=obs, offsource=True, catalog=catalog, plot=2)

Process (remove ESWs from) the observation with default input parameters
Data are corrected at Level 1

hct = hebCorrection
tds = hct(obs=obs, offsource=True, plot=2)

Have a look at the plots if interested

plotList = hct.plotList

Recreate the final pipeline products if you are satisfied with the correction at
 Level 1

178

Standing Wave Removal Build 15.0.3244

obs = hifiPipeline(obs=obs, fromLevel=1.0)

#Done!

The example script demonstrates the use of HebCorrectionTask on the relatively short observa-
tion 1342196583. There are two broad lines in the spectrum, see Figure 12.17 for the uncorrected
pipeline output.

Figure 12.17. Uncorrected pipeline output

Observation 1342196583 is an example of an observation that cannot be satisfactorily corrected with
the current version of the software; the fraction of such observations is not large, and we are improving
our models based on these exceptions.

After running the script above, the final spectra are as shown in Figure 12.18. In the figure, the flat-
test spectrum is the original, uncorrected WBS-H spectrum. The corrected H spectra (not shown) are
almost identical. The three spectra above are all WBS-V, in decreasing order of baseline level: (a)
uncorrected, (b) corrected with default input parameters, (c) corrected with manual excision of the
lines by means of the exclude parameter. Final spectra after running the script:

Figure 12.18. Final spectra after running the script

obs2 = getObservation(obsid, useHsa=1, useCache=0)

undo the ESW correction

for backend in ['WBS-H', 'WBS-V', 'HRS-H', 'HRS-V']:
 htp = obs2.getLevel1().getProduct(backend)
 htpUnCorr, tds = doHebCorrection(htp=htp, catalog=obs2.calibration,
 undo=obs2.calibration)
 obs2.level["level1"].setProduct(backend,htpUnCorr)

hct2 = hebCorrection

179

Standing Wave Removal Build 15.0.3244

tds2 = hct2(obs=obs2, offsource=True, plot=2, exclude_if=Double1d([6461., 6941.,
 7241., 7741.]))

Note that the frequency ranges are specified on the IF scale in MHz. The relation between IF frequen-
cies and sky frequencies, F, for bands 6 and 7 are:

LSB: IF = F - LO + 10.4 (all in GHz)

USB: IF = LO - F + 10.4 (all in GHz)

Using the manual line excision results in a different set of models being matched to the data. This can
be seen in Figure 12.19 and Figure 12.20, the output tables containing details of the fitted models. The
column titled calIndex_WBS-V (or calIndex_WBS-H) lists the best-fitting model found for the Level 1
spectrum; a value of -1 indicates no model was found preferrable over a null correction. In the default
inputs case, a correction to every WBS-V spectrum was performed, but in the manual line excision
run, only 7 of the 24 Level 1 spectra were corrected.

Figure 12.19. HebCorrection output table with default input parameters

Figure 12.20. HebCorrect output table with exclude parameter

180

Standing Wave Removal Build 15.0.3244

In fact, for this observation and the current model set, there is little to choose between the solutions
for default and manual-line-excision. We do not recommend turning off robust fitting. Although the
task will run faster, your observation will not be as well served.

181

Build 15.0.3244

Chapter 13. HIFI Baseline Removal
Last updated: 29 February, 2016.

13.1. Introduction
HIFI spectra produced by the Level 2 pipeline often show baselines that are offset, sloped, curved,
and/or rippled. In many cases, these are leftovers from instrumental instabilities inherent to hetero-
dyne techniques, and not completely removed by reference or sky subtraction in the HIFI pipeline.
Depending on the science application, you may want to flatten the baseline, either by subtraction, or,
in the presence of real continuum emission, by division. This can be done in HIPE at the Level 2 stage,
using the tasks described in the next sections.

13.2. The FitHifiFringe Task
Ripples (also known as standing waves or fringes) can be fitted with sine waves and subsequently
removed using the FitHifiFringe task, which is described in Chapter 12. In the sine wave fitting
process, a line clipping and smoothing algorithm produces a smooth version of the baseline. In addition
to subtracting the fitted sine waves, you may choose to subtract this smooth baseline, by setting the
sub_base option to True in FitHifiFringe. This is an efficient way to subtract baselines, but
it should be used with care as the smooth baseline shape could be affected by weak lines or wings
of broad lines that are not properly automatically masked. In such cases, you may first remove the
ripples using FitHifiFringe, and then use the FitBaseline task described in the next section
to mask lines manually, and fit the remaining baseline offsets and slopes using polynomials.

13.3. The FitBaseline Task
13.3.1. Introduction to FitBaseline

fitBaseline is a task that allows you to interactively fit, and subtract or divide out polynomial
baselines in HIFI spectra. The task loops over all spectra (individual or 'glued' WBS subbands or HRS
modules) available in HIFI ObservationContexts, TimelineProducts or SpectrumDataSets, and asks
you to mask as many emission lines as needed before fitting the polynomial. You can select different
polynomial orders for each spectrum, if needed. The line masks are stored in a table that can be used if
you want to redo the baseline fitting at a later time, e.g., when the observation has been re-processed
by a new version of the pipeline. At that time, you can un-mask lines, or change the polynomial order.
Also, all fitted polynomial coefficients, as well as all original and baseline subtracted spectra, are
stored so that you can review the fits after the fact. Finally, fitBaseline also allows you to replace
the 'theoretical' channel weights assigned by the HIFI pipeline with actual weights determined from
the channel-to-channel RMS noise after rectifying the baseline with the polynomial fit.

When subBase=1 and basemode=sub are selected, fitBaseline subtracts the fitted baseline
(shape+continuum level). At the same time, a median baseline level is computed (per spectrometer
subband, or as a whole, depending on the input on doglue) and reported in the output table fitProd-
uct / fitTable for each spectrometer subband. The parameter addMedianContinuum allows you to
re-add the median baseline level computed by the task in the baseline subtraction process. This will
allow you to benefit from baseline correction (shape) but preserve the overall continuum. Note that
this only performs well for basemode='sub' and not necessarily for basemode='div'. For the
latter, the baseline-corrected spectrum is normalised to 1, and with addMedianContinuum=True,
the corrected spectrum is multiplied by the median baseline level, to recover the original continuum
level.

182

HIFI Baseline Removal Build 15.0.3244

13.3.2. Running FitBaseline
By default, fitBaseline is referenced to ObservationContexts, i.e., it will show up as an applicable
task when you click on an ObservationContext variable. Double-click on fitBaseline, and the
following GUI (Figure 13.1) will show up:

Figure 13.1. FitBaseline GUI

You may also run the task on the command line:

fitBaseline(data=obs_in)

The original spectra in the obsContext obs_in are always overwritten by the baseline-subtracted spec-
tra, even if the task is called as:

obs_out=fitBaseline(data=obs_in)

For HIFI TimelineProducts, and WBS or HRS SpectrumDataSets, the input data are preserved and
output variables have to be defined:

htp_out=fitBaseline(data=htp_in)

sds_out=fitBaseline(data=sds_in)

You will always see 2 plots for each baseline that needs to be fitted (see Figure 13.2).

Figure 13.2. Original and Residual plots produced by fitBaseline

In interactive=True mode, the left plot is used to define masks by dragging (left-to-right, or right-
to-left) over regions to be excluded, using left-click. The mask is then visible as a curtain. Dragging

183

HIFI Baseline Removal Build 15.0.3244

back the curtain will remove the mask. When you're done with defining masks, click on the plot
window, but outside of the plot axes. The green line is then the fitted polynomial, and the right plot
displays the baseline subtracted spectrum, with the used masks in grey. You can zoom in on the plot
to assess the baseline fit in the usual PlotXY way - draw a box with the left mouse button around
the area you want to zoom in on. A selection window will pop up, in which you can opt to change
the order of the polynomial, or add or remove the masks. When you click on 'Continue', the next
dataset will be selected. 'Quit' will save the results so far. If the option restart=False, when you
run fitBaseline the next time, fitBaseline will start from where you left off before. You can
also select the option to continue with no further interaction with the option non-stop.

Please note that if the data contain SPUR_WARNING flags, the mask will be displayed (usually in
pink) but this flag is not being honoured because this is, as the flag name indicates, just a warning
that the data may suffer from a spur. If you feel that the data must be flagged after all, you must flag
the data yourself by using the flag IGNORE_DATA. The display of the SPUR_WARNING flag is
just indicative.

In Figure 13.2 we have also invoked addMedianContinuum=True to demonstrate this capability.
The sequence of commands that we have used in this example is:

obs_out = fitBaseline(data=obs, backends=['WBS-H-LSB'], doglue=True,
 addMedianContinuum=True)

When fitBaseline is finished, and an ObservationContext was selected as input, the new item
fitProduct will have been added, as can be seen in Figure 13.3. It contains, for each dataset, the
original, the baseline subtracted, the polynomial fit, and the mask spectra, which can all be inspected
using the Spectrum Explorer. In addition, under the Level 2 product list, a Linemasks table has been
created, as indicated in Figure 13.3. This table contains all information about the applied masks. If the
origin column has an entry of '-1', it means that this mask has been disabled. If it is '2' it means that
the mask was determined automatically, using the domask=2 option.

Figure 13.3. Example of a Linemasks table

13.3.3. Re-running FitBaseline
Masking the emission or absorption lines in an observation can be tedious and time consuming, in
particular for spectral scans. If you need to subtract the baselines again for a given observation (e.g.,
after pipeline reprocessing), the line masking does not need to be repeated, provided fitBaseline

184

HIFI Baseline Removal Build 15.0.3244

was applied to an ObservationContext. The previously created Linemasks table can be re-used. There
are two ways of doing this:

1. By storing the Linemasks table as a fits file to disk, and reusing it. The sequence of commands
is typically this:

fitBaseline(data=obs1)
linemask=obs1.refs["level2"].product["Linemasks"]
optional: simpleFitsWriter(product=linemask, file='linemask.fits')
optional: linemask=simpleFitsReader(file='linemask.fits')
fitBaseline(data=obs2, maskTable=linemask)

2. By providing the 'old' ObservationContext, and reusing its Linemasks table and FitProduct. The
sequence of commands is typically this:

fitBaseline(data=obs1)
optional: localStoreWriter(product=obs1,store="obs1store")
optional: obs1=getObservation(obsid1, poolName="obs1store")
optional: obs2=getObservation(obsid2, poolName="obs2store")
fitBaseline(data=obs2, obsContext=obs1)

The advantage of option 2 is that the previously used polynomial order is retrieved from the FitProduct,
and applied to the other observation. For option 1, you have to re-enter the polynomial orders.

13.3.4. FitBaseline Options
FitBaseline has a large number of user options, which are described here:

• data: input can be ObservationContexts (Level 1 or 2), HifiTimelineProducts
(Level 1 or 2), SpectrumDatasets (WBS or HRS), SimpleSpectrums (Waveunit needs to
be in GHz), and spectral cubes (SpectralSimpleCubes) (Waveunit needs to be in GHz).

• backends =.. : Backends to process. Subset of default list ['WBS-H-LSB', 'WBS-H-USB', 'WBS-
V-LSB', 'WBS-V-USB', 'HRS-H-LSB', 'HRS-H-USB', 'HRS-V-LSB', 'HRS-V-USB']. On the com-
mand line more options are allowed: 'WBS-V', 'WBS-H', etc., which imply that both the LSB and
USB products of a given back will be processed.

• order =.. : order of polynomial to fit, [DEFAULT: 2]

• domask =..

• 0: for no masking

• 1: for manual masking [DEFAULT]--ignored in interactive=False mode

• 2: for automatic masking

• movemasks =..

• 0: masks are only used for spectrum they are defined in [DEFAULT]

• 1: move masks between spectra of same sideband

• 2: move masks between spectra and sidebands by determining which sideband the masked line
is in

• doreuse = False: Do not use masks specified previously for the LSB datasets for the equivalent
USB datasets [DEFAULT: True]

• doglue = True: Fit all subbands in a spectrum simultaneously. Warning: if the WBS subbands are
offset with respect to each other this option should not be used. [DEFAULT: False]

185

HIFI Baseline Removal Build 15.0.3244

• restart = False: continue fitting baselines where you left off previously [DEFAULT: True, so
start from beginning]

• basemode =..

• 'sub': subtract fitted baseline from original spectrum (resulting continuum is 0) [DEFAULT]

• 'div': divide original spectrum by fitted baseline (so resulting continuum is 1)

• addMedianContinuum = True: allow the median continuum to be added back into the baseline
fit flux; this only performs well for basemode='sub' and not basemode='div' [DEFAULT:
False]

• maskTable = ...: MaskTable product containing previously-determined masks [DEFAULT: use
maskTable found in ObsContext]

• obsContext = ...: ObservationContext from which the maskTable will be read, and in which
the maskTable and fitProduct will be saved. This is useful if you provide a HifitimelineProduct or
SpectrumDataSet as 'obs' input, because the maskTable and fitPRoduct can only be stored in Obser-
vationContexts. [DEFAULT: -if obs is ObservationContext: read/write maskTable and FitProduct
from/to obs -if obs is HTP or SDS: no maskTables or FitProducts are read or written]

• smoothResolution = ...: Only applies if domask=2 has been set. Resamples the data to reso-
lution in MHz, which makes the automated masking faster. The drawback is that larger values lead
to masking of noisy peaks rather than real lines. [DEFAULT: 2 MHz]

• interactive = False: With this option, the task will run without any user interaction. Line masks
are taken from any existing mask table (in the ObsContext or user-supplied maskTable or separate
ObsContext) and previously defined line flags. No new line masks can be defined, and thus the user
parameter 'domask' is ignored. [DEFAULT: True, i.e. do stop after each spectrum, but the default
is False when doreuse=True]

• useWbs = True: With this option, the task will subtract polynomials already fitted to the WBS
spectra (stored in the fitProduct of the obsContext) from corresponding HRS spectra. This is par-
ticularly useful if there are broad emission or absorption lines that fill most of the HRS band width.
[DEFAULT: False, i.e., fit polynomials for HRS separately]

• minChannels = ...: When automated masking is enabled (domask=2), ignore masks that consist
of less channels than minChannels [DEFAULT: minChannels=10]

• wingChannels = ...: When automated masking is enabled (domask=2), extend the mask on either
side by wingChannels channels to take into account weak wings [DEFAULT: wingChannels=20]

• replace_weights: When set to True, the weight value for each channel is replaced by 1/rms^2,
with rms measured within a segment excluding the masked lines and after the baseline has been
subtracted. The user can verify whether the weights in a SpectrumDataset were replaced by check-
ing the metadata keyword 'replace_weights'. These new, empirical weights may improve the de-
convolution process for spectral scans. [Default: False]

• plot: Force plotting in interactive=False mode. [Default: False if interactive=False, True if inter-
active=True]

13.3.5. Caveats
If the spectra being processed has negative signals (due possibly to unflagged spurs or earlier process-
ing which results in an absorption feature having negative flux), then fitBaseline will produce
an improper correction.

Negative fluxes are non-physical, and fitBaseline does a first order correction by adding the
negative signal into the final spectrum as follows:

186

HIFI Baseline Removal Build 15.0.3244

(originalFlux + abs(minFlux)) / (baselineFlux + abs(minFlux))

This will over-correct the intensities in the final spectrum. It is imperative that you flag all data points
that are not real before applying fitBaseline in order to avoid this scenario.

187

Build 15.0.3244

Chapter 14. Sideband Deconvolution
Last updated: 8 June, 2015

14.1. Introduction to doDeconvolution
DoDeconvolution is the Level 2.5 pipeline task that separates (or unfolds) double sideband (DSB)
data that is inherently produced by HIFI's heterodyne process into a single sideband (SSB) result.
Figure 14.1 shows an example of how the spectral ranges of the upper and lower sidebands of HIFI
are folded together during an observation, causing the spectra to overlap and add, causing features to
blend. Also notice that the continuum doubles.

Figure 14.1. Folding of the upper and lower sidebands

Fluxes (F_DSB) in the DSB spectrum can be expressed in terms of the LO frequency and the IF
frequency (where, for bands 1-5, the IF frequency goes from 4 to 8 GHz):

F_DSB(IF) = 2 * usbGain * F_sky(LO+IF) + 2 * lsbGain * F_sky(LO-IF)

Here, F_sky are the true input fluxes from the sky, and 2 * usbGain and 2 * lsbGain are the sideband
gain (imbalance) factors, typically close to 1.0. The deconvolution is usually used to reduce HIFI
Spectral Scans, which are collections of overlapping observations taken at many LO settings. But in
principle, any set of spectra taken at differing nearby LO settings, such that the frequency coverage of
each overlaps with the next, may be together deconvolved. Observations taken at multiple LO settings
serve to constrain the SSB solution. Given the observed F_DSB fluxes at multiple LO settings, the
deconvolution solves for the unique F_sky solution that best models the observed multiple F_DSB
observations through iterative chi-square minimisation using the Conjugate Gradient Method (Comito
and Schilke 2002, A&A, 395, 357). The method can also be used to simultaneously solve for the
usbGain and lsbGain gain factors, as described below. No detailed knowledge of the algorithm is
required by you in order to operate the deconvolution task. With good input data, as few as 3 DSB
spectra may be sideband-deconvolved, as shown in an example in Figure 14.2.

188

Sideband Deconvolution Build 15.0.3244

Illustration of the double sideband deconvolution within a section of a Band 1a Spectral Scan
with a redundancy parameter R=4 (see Section 14.2). Top: Three different DSB LO settings
shown with separate colours. Note the lines from the other sideband which move at different
LO settings. Bottom: Single sideband (SSB) spectrum (in this range) after the deconvolution.

Figure 14.2. Example of three different DSB LO settings being deconvolved

189

Sideband Deconvolution Build 15.0.3244

14.2. Basic strategy for running the deconvo-
lution tool

Warning

From HIPE 14 onwards, the decon_result product called ssb is now renamed dataset. The
consequence of this change is that it will break any scripts where this naming convention is
expecting ssb. This also includes the Useful scripts provided with HIPE (Section 2.1). You
are thus invited to modify your scripts accordingly. Note that in this chapter, we liberally
use the acronym 'SSB' when talking about the 'dataset' product.

What is input to the deconvolution? When a spectral survey observationContext is selected in HIPE,
then one of the applicable tasks listed is doDeconvolution. When doDeconvolution is se-
lected, a particular data product is nominally used as input to the deconvolution: the Level 2 H-po-
larisation USB product of the WBS, complete with its frequencies, channel fluxes, channel weights,
channel flags, and metadata.

Note that pipeline processing has created this Level 2 data product by interpolating the WBS output
onto a rigid grid of evenly spaced frequencies, and that during the interpolation process, the channel
flags set in earlier pipeline steps are always propagated forward.

You have the option to select the WBS data from the V polarisation instead of the H polarisation, but
the USB product in each case is the input product to the deconvolution.

If the DSB data have been taken with sufficient redundancy (a redundancy parameter R=4 is an ad-
vised minimum), are of good signal to noise, contain detected spectral lines (lines in emission and/or
in absorption and/or blended - it does not matter), and if the data are completely prepared, then the
deconvolution tool typically runs successfully right out of the box using all default settings. The da-
ta preparation is the hard part. Correct data preparation includes complete spur-flagging, baseline-re-
moval (see Chapter 13), and defringing (standing-wave removal) (see Chapter 12). In theory, the true
continuum baseline (one unaffected by systematics) may be left present in the dataset, the data can
still be deconvolved, revealing the SSB continuum. However, attempting this is not advised. At HIFI
frequencies, true continuum baselines are at best linear over one IF passband, and detectable only over
a wide survey where the LO spans many tens of GHz. If desired, an underlying continuum can be
estimated from the DSB data, recorded, and removed before deconvolution.

When you have fully prepared the Level 2 data such that the baselines are zero and flat, the ripples
are as removed as possible, the spurs flagged, and all regions of pathological noise flagged bad, then
the deconvolution will immediately (in a few 10's of seconds and a dozen or so iterations), converge
on a correct SSB solution. The recommended tool for this preparatory work is the flagTool (see
Section 11.5), with which you can inspect or modify flagged channels (and rowflags), and correct
baseline distortions such as offsets and sinusoidal standing waves.

Conversely - if the deconvolution fails to converge or the SSB result looks bad, with spiky or repeating
noise patches - this usually indicates that there are problems with your input DSB data. Repairing
the input data problems will fix the deconvolution result. A data set of DSB scans before cleaning is
shown in Figure 14.3, and a good deconvolution result is shown in Figure 14.4.

190

Sideband Deconvolution Build 15.0.3244

Dataset before cleanup. Each colour shows a different spectrum (with its own
LO setting) of a Spectral Scan. Spurs, ripples, and bad baselines are apparent.

Figure 14.3. Dataset before cleanup

After cleaning the input data, here is the SSB result of a good
deconvolution on Orion KL. All evident structures are real.

Figure 14.4. SSB result after deconvolution

When you flag channels as containing spurs, or bad data or perhaps an entire spectrum as bad (see
Chapter 10 and Chapter 11), the deconvolution routine rejects these data upon read-in. I.e., the ob-

191

Sideband Deconvolution Build 15.0.3244

served DSB spectra that the deconvolution works with internally no longer include these bad data.
But the read-in routine records a tally of rejected data, scan by scan, and lists these numbers and their
total in the metadata found in the SSB product header. We note that typically at least two channels are
flagged as bad fluxes in each WBS spectrum since they are used for calibration. Also, the detection
of a flagged strong spur may cause the deconvolution to reject a subband or an entire scan depending
on your preference, with an entire scan being a safer setting. Look to the value of the spur_rejection
parameter in doDeconvolution to adjust the amount of data rejected in the presence of a spur;
careful inspection of the data flags with flagTool before deconvolution is always recommended.

In the example below (see Figure 14.5), we show some of the SSB metadata. The first line is the
last LO listed. Then, we see 5 bad scans - either due to spurs or flagged by you. Then, the individual
channels (in other scans) are listed - first as a total and then, scan by scan.

Part of the decon_result SSB metadata showing individu-
al bad scans and a count of bad channels in individual scans.

Figure 14.5. Bad scans and channels stored in the SSB metadata

Note

From HIPE 13 onwards, the HIFI calibration tree will contain tables with fine-tuned chan-
nel and row flags for spectral scans. These are meant to supersede the flags that were, up
to now, assigned automatically by the pipeline, but could lead to significant false positive
or miss important artefacts. When such tables are available, the default option spur_rejec-
tion = "DO_NOT_REJECT_SCANS_WITH_SPURS" is the one to apply. Not all spectral
scans could however be covered yet in HIPE 13, so that for the ones still depending on the
initial flag tables, the option spur_rejection = "REJECT_SCANS_WITH_SPURS" has to
be enforced. The availability, or not, of such table is informed via a new metadata erpf-
Flagged that doDeconvolution will check. When it is missing, the following message
will be printed in the console:

Because HTP metadata 'erpFlagged'=False or it is not present, the spur_rejection has
been reset to ‘REJECT_SCANS_WITH_SPURS'!!! (If you want to use another spur_re-
jection option, please set enforce_spur_rej = True).

With the above behaviour, the value for spur_rejection will be entirely constrained by the
presence, or not, of the aforementioned metadata, and therefore the presence, or not, of the
fine-tuned flag tables. This would however make doDeconvolution too restrictive as
a user would not be able to use certain spur_rejection options depending on what metadata
would, or not, be in their data. In particular, until the bulk reprocessing with HIPE 13
is complete, doDeconvolution will consider that no observation has yet optimised
flag tables and so option spur_rejection = "REJECT_SCANS_WITH_SPURS" will apply
whatever. This is however not the best option in case a user has carefully flagged the data.

In order to allow the user to enforce a particular spur_rejection option, a new option en-
force_spur_rej (set to ‘False’ by default), is thus available to help you control the
spur_rejection option. For example, if you have cautiously flagged your data manually,
the most optimum call to doDeconvolution is probably:

192

Sideband Deconvolution Build 15.0.3244

decon = doDeconvolution(obs,
 spur_rejection="DO_NOT_REJECT_SCANS_WITH_SPURS",
 enforce_spur_rej=True)

which will allow you to use the spur_rejection option even if no optimised table would
be found in the observation context.

Basic call to the task

To run the deconvolution on a spectral scan observation context with the default parameters, you
invoke:

result = doDeconvolution(obs=MyObsContext)

Tip

The only parameter you really need to choose is the polarisation. The one other section
of this documentation that is highly relevant to the normal use of the deconvolution is
Section 14.3 describing the viewing of results. For almost everyone, this parameter and
Section 14.3 are all that is needed in order to be ready to get a useful SSB science product.

The remainder of this Chapter describes advanced techniques - multiple dataset entry, use of rms
weighting, Maximum Entropy Techniques, and a range of diagnostic tools including ghost identifica-
tion. The full range of doDeconvolution command line input parameters and their defaults are
as follows:

decon_result = doDeconvolution(obs=MyObsContext, spectrometer='WBS-H',
 max_iterations=200,
enforce_spur_rej=False, tolerance=0.0010, gain='GAIN_FIT_OFF_USE_PRESET',
 channel_weighting=False, \
spur_rejection='REJECT_SCANS_WITH_SPURS', plot_dsb='NO_PLOT', lambda1_channels=0.0,
 \
lambda2_gains=0.0, cont_offset=0.0)

Parameter name Description

obs The primary spectral dataset.

obs2_array An array of additional datasets, which can be an array of 1, but
must be an array. Supplying optional additional datasets al-
lows you to, for example, connect spectral surveys across HIFI
subbands (e.g. 6b and 7a); or combine a deep single LO DBS
AOR with a shallower spectral survey, so as to deconvolve the
deep observation in that context.

spectrometer Observations contexts store H and V polarisations. You can
specify which to deconvolve with this option. Choices are:
WBS-H, WBS-V. WBS-H is the default, as it is often better.

tolerance Specifies the tolerance of the solution. When the rms of the
residual of the fit changes fractionally by less than tolerance,
the algorithm stops iterating. A value of 0.001 is best. Below
this value, the algorithm may work too hard to make modelled
lines match, and in so doing, produce poor baselines.

max_iterations Tells doDeconvolution to stop after a specified number
of iterations if it has not converged by then, and report the er-
ror, although the last result is returned. Healthy deconvolution
should converge in less than 20 iterations.

enforce_spur_rej If true, spur rejection selection will be enforced. Default is set
to 'False'.

193

Sideband Deconvolution Build 15.0.3244

Parameter name Description
spur_rejection Flag to reject scans, subbands, or forego rejection of da-

ta with known cold load spurs. Choices are: REJECT_S-
CANS_WITH_SPURS, REJECT_ONLY_SUBBAND-
S_WITH_SPURS, and DO_NOT_REJECT_SCAN-
S_WITH_SPURS (default). The first setting is the most con-
servative; to preserve good data in scans with weak flagged
spurs, try the other options.

gain You have the option to try to also fit the factors 2 * usbGain
and 2 * lsbGain given in the formula above which the decon-
volution calls the Gains. The options here are: GAIN_FIT_OF-
F_ASSUME_EQUAL and GAIN_FIT_OFF_USE_PRESET
(default). The words equal and preset indicate to the routine
whether to start with the assumption that the gains are equal to
1 or if they are equal to a preset value that is found in the meta-
data in the observation context as determined by previous cali-
bration studies.

use-reference If selected, doDeconvolution will use the reference spec-
tra only.

channel_weighting Toggles whether or not the deconvolution uses the weight val-
ues in the data, which will give less weight to noisier data.

ignore_bright_line Will ignore any lines flagged as HifiMask.BRIGHT_LINE. See
Section 14.5 for some extra information on using this parame-
ter.

diag_mode_on Diagnostic mode to generate interim product.

diag_scan_index When the diagnostic mode is on, you may select which spec-
trum (e.g. of a spectral scan) to follow through the deconvolu-
tion (where the indices start with 1).

diag_dsb_freq Diagnostic DSB frequency selection, USB (default), or LSB.

plot_dsb Toggles visualisation on and off. When on, the SSB output so-
lution can be viewed against the DSB input. SSB features lack-
ing DSB counterparts in all DSB spectra are called ghosts and
should not be believed. Note - the upper and lower plots in this
display will pan and zoom together so as to enable you to ex-
amine the same zoomed spectral regions in tandem. Choices
are: NO_PLOT (default), USB, LSB, ULSB, and PLOT_ALL

To run the deconvolution on a spectral scan using one obs and an array of obs with the default param-
eters you invoke:

my_obs2_array = [my_obs2,my_obs3]
decon_result = doDeconvolution(obs=my_obs, obs2_array=my_obs2_array)

The deconvolution tool can also be run from a GUI (see Figure 14.6) by clicking on the obs context
in the Variables window, then double clicking doDeconvolution in the Task list.

194

Sideband Deconvolution Build 15.0.3244

Figure 14.6. Deconvolution GUI

Like other GUIs in the system, once the Accept button is hit, the task is called and starts. The command
line version is written in the console window so you know exactly how the task was called. This output
can be cut and paste into scripts for repeatability.

14.3. Viewing deconvolution results
The single sideband (SSB) result of the deconvolution, called dataset, includes a header which con-
tains, in metadata, your selected parameters of the deconvolution run, including for example, number
of iterations and the tolerance. These can be seen in the HIPE screenshot (see Figure 14.7). The output
product result can be viewed with the product viewer.

If you have set the console logging level to INFO or lower (see Section 12 of the HIPE Owner's Guide),
this information, plus a more detailed description of data quality will also be output to the terminal
from which HIPE was run. It will also appear in the 'Log' tab associated with the HIPE Console area.

195

Sideband Deconvolution Build 15.0.3244

The dataset (SSB) product is displayed as well as the running report of the deconvolution.

Figure 14.7. HIPE screenshot

The dataset (SSB) result is a dataset that can be viewed with the Spectrum Explorer. On the command
line, it can be extracted from the decon_result produced by doDeconvolution (or from the
product labelled as myDecon_WBS-H/V found under myDecon in the Level 2.5 product) as follow:

ssb = decon_result["dataset"]

This contains the deconvolved spectrum, and is the primary output of the tool as seen in Figure 14.7.

The dataset (SSB) output also contains an estimate of the per-channel weighting. This is calculated as
the inverse of the variance of the data that went into solving for the flux of that channel.

If after inspecting the dataset (SSB) you wish to remove a residual baseline or standing wave from
your deconvolved data, you can save the dataset (SSB) as a SimpleSpectrum using the con-
vertSingleHifiSpectrum task and apply fitBaseline or fitHifiFringe to that Sim-
pleSpectrum.

The dataset gain can be viewed with dataset inspector. On the command line, it can be extracted from
the product with:

gains=decon_result["gain"]

As discussed above, when requested, the deconvolution tool will estimate the sideband gains values.
These estimates are stored per LO tuning in this product. The list of gains also includes a column
giving the rms value for each gain, which is computed as a measure of the dispersion of all associated
gains related by DSB overlap.

The DSB input data redundancy is also available as one of the output products and can be displayed
in the Spectrum Explorer (see Figure 14.8). The redundancy shown is typically more than twice the

196

Sideband Deconvolution Build 15.0.3244

redundancy specified in the AOR set-up for two reasons: First - you have specified a redundancy that
is defined as the number of times one of the two sidebands observes a particular sky frequency - while
the plot shows the total number of times either sideband observes one sky frequency. Second - the
AOR setup inserts additional range-edge redundancy, where a range-edge can be as wide as 26 GHz
on either end of the spectral scan total range. For these two reasons, the redundancy showing on the
plot is substantially higher than the redundancy requested in the observation.

The redundancy plots have the following utility: when a channel has a redundancy less than three or
four in the plot, the dataset (SSB) solution at this channel has questionable veracity.

The Redundancy Histogram Plot from a moderate width 90 GHz survey shows dual peaks where
both sidebands reached the same sky frequencies in the added settings LO near band edges.

Figure 14.8. Redundancy Histogram Plot

14.4. Exporting deconvolution results to
Class

To export the results of deconvolution to Class, use the hifiDeconToClass task.

• In the GUI, open the task on the decon_result produced by doDeconvolution or the prod-
uct labelled as myDecon_WBS-H/V found under myDecon in the Level 2.5 product.

• Specify the full path name of the fits file you want to create, remembering to add the .fits extension.

• In the command line, this is done as follows:

hifiDeconToClassObj = hifiDeconToClass(decon_result=decon_result, fileName='/
Users/Me/decon_result.fits')

14.5. Advanced settings and diagnostic func-
tions
14.5.1. Advanced methods

Bright Lines

197

Sideband Deconvolution Build 15.0.3244

Due to the iterative nature of the algorithm and small roundoff errors during resampling, very bright
lines can sometimes appear as ghosts in the final deconvolved spectra. In such cases, it is recommended
that you mark all such lines using the BRIGHT_LINE_FLAG via the flagTool task, or command
line alternatives (see Chapter 11).

Once done, we recommend running deconvolution twice. First, without the IGNORE BRIGHT LINE
option, which will provide a result that is best used to measure the properties of the bright lines.
Then, running the decon with the IGNORE BRIGHT LINE option turned on - this will allow you to
characterise the fainter features.

Bright lines in this context are relative to the noise, but typically are > 10 Kelvin in amplitude. To
quickly assess whether the solution provided by the deconvolution algorithm generates ghosts, the
task can be run with the plotting option, e.g. Plot DSB (see Section 14.5.2 below).

Maximum Entropy

The maximum entry option is turned on by setting either of the lambda values lambda1_channels and
lambda2_weights to positive real numbers on the order of magnitude of the rms reported in a standard
deconvolution. Maximum entropy is used infrequently, and only as a stop-gap measure to help a bad
situation with the input data. The bad situation can include:

• Insufficient redundancy (i.e. the number of overlaps of each sideband on itself), say a redundancy
of less than R=4

• Too few lines (since line strengths guide the deconvolution)

• Poor, or excessively noisy data

• Also, if the solution of the nominal deconvolution contains periodic noise patterns, or the solved
gains deviate widely from 1.0.

The inclusion of the maximum entropy method adds a term to the quantity being minimised. Without
this term, the quantity being minimised is the Chi-square difference between observed double sideband
(DSB) spectra and the modelled DSB spectra. The minimisation is accomplished by altering the SSB
model spectrum from which the modelled DSB spectra are derived. But, when the input data are of poor
quality, sparse sampling, or contain few lines, repetitive noise structures may appear in the solution
and/or the fitted gain values may begin to diverge and become non-physical. Since the entropy of these
artifacts is low, we compute the solution's channel and gain entropy, and subtract it from the Chi-
square value at each iteration. In this way the deconvolution must still match the observations but has
the additional task of keeping the entropy of its solution high, yielding a non-highly patterned result.
Turning-on the entropy terms helps the deconvolution behave.

The two lambda factors are the two relative weights of the entropy terms for the channel solution
(dataset spectrum, here called liberally 'SSB' for the remainder of this section) and the gain values.
To use the maximum entropy lambda terms strategically, set the weight low, e.g. channel weight
to 10-5 and gain weight to 0. Slowly increase either of these weights (10-4, 10-3,...) and look for an
improvement. The weights should not exceed 10-1.

Warning

There is currently no evidence that Maximum Entropy helps. If used incorrectly, it can
lead to incorrect results. Therefore, if you would like to try Maximum Entropy, it is rec-
ommended that you consult with an expert via the helpdesk.

Channel Weighting

The channel weighting option can be turned-on so as to utilise a relative weight that has been attached
to estimate the veracity or correctness of the flux in each DSB channel. In this way, spectral information
from low S/N regions of the spectra will carry less weight in contributing to the reduced chi-square
between the modelled and observed spectra. The weighting value is equal to tint/Tsys2.

198

Sideband Deconvolution Build 15.0.3244

It has been seen that turning this on has improved the chi-square of deconvolution for some examples,
but the actual effectiveness of using this weight term is still unclear - partially because we have been
comparing weighted and un-weighted chi-square values, neither of which are normalised chi-square
values.

14.5.2. Diagnostic functions
Plot DSB (default="no_plot")

This is one of the most useful diagnostic plots as it can help you check for ghosts. Ghosts are attempts
of the deconvolution to compensate for gain errors of line measurements by creating fictitious line
(sometime negative) in the other sideband and thus at an offset frequency. A ghost is identified as a
ghost when it fails the following test: A true SSB line must appear in all DSB input spectra covering
that line. So this diagnostic plot window gives you an upper (SSB) and lower (all the input DSBs) plot
where for the lower plot you can chose the frequencies to be the USB or LSB frequency interpretation
with the USB and LSB options. Additionally, you can plot both USB and LSB together with the ULSB
option, and you can create all plots with plot_all . The selected interpretation does not really matter.
What matters is that for the line in the upper SSB plot to be real, it must be seen in all the spectral
scans in the lower box. (There is one caveat - it is possible, but very unlikely, that a nastily placed
absorption line in the other sideband could overlap on the line and cancel it out, but that is a highly
unlikely occurrence).

Diagnostic Mode (true or false = on or off) and Ancillary Products

When this mode is turned on, we are able to watch the inner action of the deconvolution as it models a
single DSB spectrum. We have presented the Deconvolution with a Spectral Scan containing N DSB
input spectra. The task for the deconvolution is to arrive at the best sky flux spectrum that will replicate
all N scans. If we wish to follow one of these - the nth out of N, we specify this one via diag_scan_index
and we will get plots at each iteration showing both the SSB being iterated and refined into its final
form, and also the DSB of choice (the nth) being modelled more and more correctly: we plot the nth
(DSB_obs - DSB_modelled). Note - this is a memory-intensive process - you should have at least a
1 GByte RAM and, on install, have told HIPE you wish to be using it, in order to run this diagnostic
mode. In Figure 14.9 and Figure 14.10 we show examples.

199

Sideband Deconvolution Build 15.0.3244

We show the difference between the 4th DSB Observed and its modelled form on
the first four iterations where the spikes go away and the noise goes down a bit.

Figure 14.9. Observed vs. Modelled

200

Sideband Deconvolution Build 15.0.3244

We show the entire SSB progressing through the first 4 it-
erations where the algorithm obliterates a series of ghosts.

Figure 14.10. Iterations progression

Finally, one strong associated product of the diagnostic mode is the plot of Chi-square vs. iteration.
See Figure 14.11. Had we turned on the two entropy terms, we would have seen four plots on this axis:
(1) the channel Chi-square, (2) lambda1 * the channel's entropy, (3) lambda2 * the gain's entropy, and
then (4): the sum ((1) - (2) - (3)), that is minimised.

201

Sideband Deconvolution Build 15.0.3244

Chi-square vs. Iteration. This should show a steep (exponential) decline vs. it-
eration number leading to an asymptotic tail as the algorithm converges.

Figure 14.11. Chi-square vs. Iteration

Deconvolution Interim Products

Please note that in these products, we are tracking a single DSB spectrum n of N.

dsb_input:

These data are in vertical columns. All the N observed DSB input spectra for deconvolution, with all
their fluxes, and two frequency scales corresponding to the USB and LSB are given, one after the
other. The last column, dsbPointer, indexes the spectra - from 0 to N-1 with about 8096 points in
each spectrum.

dsb_model:

This is a complex structure. The first column is the index number of the iteration: 0 to something like
5, 10, or 15. Then there are four more columns: dsbModelint, dsbModelImage, dsbModelSignal, and
dsbModelPointer.

• dsbModelInt are the double sideband model intensities for the modelling of the nth DSB input

• dsbModelImage and dsbModelSignal are the Upper and Lower sideband frequencies (in GHz) for
this nth spectrum

• dsbModelPointer - a copy of dsbPointer described above where negated products are listed as lamb-
da1 * entSsb and lambda2 * entGain. These row arrays are populated when either of the lambda
weights are non-zero. Note - all four terms (including the sum) are also plotted on the same chi_sq
vs. iteration plot for you.

interim_lssb:

202

Sideband Deconvolution Build 15.0.3244

A row for each iteration of the entire ssb solution for that iteration of the deconvolution.

interim_lgain:

A row for each iteration of the entire gain array (first N USB values and then N LSB values - one
value for each N scans - so 2 N values). All will be equal to 1.0 when gain is off and assumed equal.

interim_chiSquare:

chiSquare value - at each iteration we record the chisquare value. With both lambdas 0 it is from the
channel fitting, and if asked for, gain fitting alone.

But when either of the two lambdas are non-zero, the total chisquare is more complex. In this case:

chiSqSum = chiSquareValue (from channels, gains) - lambda1 * entropy(SSB) - lambda2 * en-
tropy(Gain)

where the negated products are listed as lambda1_entSsb and lambda2_entGain. These row arrays are
populated when either of the lambda weights are non-zero. Note - all four terms (including the sum)
are also plotted on the same chi_sq vs. iteration plot for you.

203

Build 15.0.3244

Chapter 15. How to make a spectral
cube

Last updated: 31 August, 2015

15.1. Introduction to doGridding
Spectral cubes from all HIFI mapping observations are produced as part of the SPG pipeline and are
found in the cube context of the Level 2.5 product. Please note that baseline and standing wave cor-
rections are not done automatically in the pipeline because of the risk of harming the scientific content
of the data. The cubes produced automatically by the pipeline must therefore be regarded as browse-
quality products. Consequently, it should not be assumed that scientific analysis can immediately be
carried out on them.

It is strongly recommended that you inspect your Level 2 HTPs for baseline drifts and residual standing
waves and decide if some, or all, datasets need to be cleaned up before re-gridding the Level 2 data
using the doGridding task.

The use of the doGridding task is described in this chapter, while corrections of baselines and
standing waves are discussed in Section 13.3 and Chapter 12.

The doGridding task is provided to allow you to create cubes from the Level 2 data. Your science
objectives may require you to create cubes using different parameterisations (pixel size, beam size
etc...) for the gridding than the defaults used by the pipeline.

Note

The cubes produced automatically by the pipeline (Level 2.5), and consequently by hi-
fiPipeline if you choose to run it again, will stitch the WBS subbands and create one
final cube (with the index '_1'). You will not see individual cubes per subbands except for
the HRS. Therefore, in this chapter, we show you how to create cubes per subband using
the task doGridding, applicable to both WBS and HRS. Details of the HIFI pipeline
are discussed in Chapter 4 and Chapter 5.

15.2. doGridding Summary
The default operation (by the pipeline) of the doGridding task is to create a cube from the Level
2 HTP for each given spectrometer. The cubes generated are stored in the Level 2.5 product called
cubesContext, where you will find: 1) one cube per spectrometer per subband for HRS, and 2) one
'subbands stitched' cube per spectrometer for WBS. If the map was carried out with a non-zero position
angle, you will find two sets of cubes at Level 2.5, one non-rotated and the other with the rotation angle
applied. In addition to the cubes, the Level 2.5 is also populated with subband stitched Level 2 HTPs.

Each slice of the cube is produced by computing a two dimensional grid covering the area of the sky
observed in a mapping mode. For each pixel in the grid, the task computes an equally weighted con-
volution of those spectra falling in the convolution kernel around that pixel. The convolution ignores
any data that is flagged by the pipeline with SPUR_CANDIDATE, SATURATION, BAD_PIXEL,
NOT_CALIBRATED, GLITCHED, or DARK_PIXEL with the consequence that any channel that is
always flagged in such a way will result in a cube slice consisting of NaNs. The weights in the cube
reflect the fact that a lower integration time has been used when flagged data is ignored.

As part of the automated (SPG) pipeline, doGridding handles Observation Contexts but if you are
making a cube yourself then you should use a Level 2 HifiTimelineProduct (HTP). The reason for this
is that doGridding assumes that the spectra have a linear frequency axis, and this may not be the
case for Level 0 or Level 1 HTP, where there can still be overlap of subbands. Resampling to a linear
frequency axis is carried out in the doFreqGrid step of the Level 2 pipeline.

204

How to make a spectral cube Build 15.0.3244

The doGridding Task can be found in the Applicable folder of the Tasks view when an HTP is
selected in the variable view; double-click on it to open the dialogue in the Editor View. You can also
find the task under the Task View in By Category → HIFI.

Note that using doGridding outside of the pipeline will not produce a 'subbands stitched' final cube
for WBS. Instead, you will find one cube per spectrometer, per subband just like for the HRS.

Note also that using doGridding outside of the pipeline will produce a rotated cube if flyAngle is
non-zero. The task will automatically read the flyAngle value from the metadata and set the parameter.
If your observation was taken with a non-zero flyAngle, upon calling the doGridding task for the
first time on an htp, you will see the value already set. Therefore, if you wish to recreate the native
orientation on the sky, you must explicitly set the parameter to flyAngle=0.0 in the GUI, or add it in
the command line option.

To create cubes using the default parameter values, simply load an HTP into the GUI and press 'accept'.
In addition to the usual echo to the Console, the parameters used by doGridding as well as some
details of the output cube are written in the Log window. The GUI will produce three variables called
cubesContext, cubes, and cube.

• The variable cubesContext is a MapContext which contains an array of cubes, one for each
subband, and allows you to easily browse the cubes from the Context Viewer (right click on the
cubesContext and select Open With... → Context Viewer) without need to extract them from
the cubesContext. If you wish to extract a cube from the cubesContext, drag the cube name
into the Variables View. In the command line this is done as follows:

Extract cube for subband 1
cube_v1 = cubesContext.refs["cube_WBS_V_USB_1"].product
#
Extract cube for subband 3
cube_v3 = cubesContext.refs["cube_WBS_V_USB_3"].product

• The variable cubes is an array (a PyArray) , and it contains the same data cubes (one per subband)
as in the variable cubesContext but without the History. You cannot view the cubes in the same
way as with the cubesContext but you can extract the cubes in a more simple way, as follows:

Extract cube for subband 1, subband 2, subband 3, and subband 4
cube_v1 = cubes[0]
cube_v2 = cubes[1]
cube_v3 = cubes[2]
cube_v4 = cubes[3]

• Finally, when running the task GUI, the last cube in the array is also created as a variable called
cube; this is helpful is you are only creating a cube of one subband.

To obtain the same variables cubesContext and cubes from the command line:

cubesContext, cubes, cube, xPoints, yPoints, convolutionTable, grid =
 doGridding(htp=htp)

Or equivalently, we can create an ArrayList of length=7 (named result here), and extract each product:

result=doGridding(htp=htp)
cubesContext=result[0]
cubes=result[1]
cube=result[2]
xPoints=result[3]
yPoints=result[4]
convolutionTable=result[5] # by default, detail=False, so this table will be empty
grid=result[6]
#
to obtain a table with details of the convolution performed at each pixel

205

How to make a spectral cube Build 15.0.3244

result=doGridding(htp=htp, detail=True)
convolutionTable=result[5]

The GUI looks like this:

Figure 15.1. The doGridding GUI

The SimpleCube product can be viewed and analyzed in the SpectrumExplorer .

There are many options you can change in the doGridding task. They are listed, with a brief de-
scription, in the table below and explained more fully in the next section. Note that you do not need to
specify an option if you wish to keep the default behaviour. By hovering the mouse over the parameter
names in the GUI, you can find more information about the parameter and some tips on usage. Addi-
tional information of these parameters is also available in the HIFI User's Reference Manual under
doGriddingTask in HIFI User's Reference Manual.

Parameter name Description Command line example
htp HTP containing data to be

gridded. Should be a Level 2
HTP.

subbands Indices of the subbands to be
gridded.

subbands=Int1d([2, 3])

beam Beam size in arcsec. An ap-
propriate value for the data
is passed to the task but you
may wish to modify this to
compare with other data.

beam=Double1d([40.0])

pixelSize Pixel size in arcsec. Appro-
priate values for the data are
passed to the task but you
may wish to change them.

pixelSize=Double1d([15,25])

weightMode Weighting used in the convo-
lution. Default is to use equal
weighting but you can also

weightMode="equal" or "se-
lection"

206

How to make a spectral cube Build 15.0.3244

Parameter name Description Command line example
choose to use the weighting in
the dataset.

filterType The filter used in the con-
volution. Default is to use a
Gaussian filter but a box filter
may be more appropriate for a
raster map.

filterType="box" or "gaus-
sian"

xFilterParams Numerical parameters for the
filter function in the x-axis
(longitude, or RA direction).
Unit is pixels. The task auto-
computes the best values for
the beam size, pixel size and
smoothing selected, set to ze-
ro to allow autocomputation.

xFilterParams=Dou-
ble1d([0.5])

yFilterParams Numerical parameters for the
filter function in the y-axis
(latitude, or dec direction).
Unit is pixels.

yFilterParams=Dou-
ble1d([1.5])

detail If turned on, will generate a
table of information about the
convolution process. Increas-
es processing time signifi-
cantly.

detail=True

loadAll Loads all datasets into mem-
ory to speed up execution of
the task. This is done by de-
fault. If you find that you run
into memory consumption is-
sues it may help to turn this
off.

loadAll=False

datasetIndices Indices of the datasets to be
used to create a cube. The
values set here will override
any input from the dataset-
Types parameter.

datasetIndices=([3,4,5])

comoving Set to None by default, which
will create maps with centre
that tracks the coordinates of
a moving (Solar System Ob-
ject - SSO) target or with ab-
solute positions for non-SSO
targets. You can turn it on to
force a map to be made in co-
moving coordinates and off to
force a map created in abso-
lute coordinates.

comoving=None

flyAngle Angle of the map in respect to
the RA/dec axes. If the posi-
tion angle (pattAngle) is non-
zero then flyAngle is 180deg
- pattAngle. Note this is not
the same as the identically

flyAngle=165

207

How to make a spectral cube Build 15.0.3244

Parameter name Description Command line example
named AOT parameter; for
more about the difference
between flyAngle, pattAn-
gle, and posAngle, see Sec-
tion 15.3.5

channels Specify the start and end
range (in channel numbers) of
the cube to be produced. By
default all channels are used.

channels =[[1000,2000],
[1000,2000],[1000,2000],
[1000,2000]]

refPixelCoordi-
nates

Specifies the coordinates of
the reference point (the map
centre). The task computes
this when creating the cube
or you can specify the coor-
dinates in the same units as
the data (usually decimal de-
grees).

refPixelCoordinates = Dou-
ble1d([83.805, -5.368])

offsetsTable A table you provide to give
the positions of each pixel.
This can be used in the case
that the longitude and latitude
cannot be found in the data.

offsetsTable=myoffsetsTable

datasetTypes Supply the type of data to
be gridded into a cube. Look
in the HTP summary table
to find the types available.
The default is to use the sci-
ence data. Only science data
is available at Level 2 so this
is unlikely to be used.

datasetType="science"

refPixel Position of the reference pixel
(map centre) in pixel coordi-
nates. Note that the (0,0) pixel
is the bottom-most, left-most
pixel in the map.

refPixel = Double1d([3.5,
4.0])

smoothFactor A smoothing factor to expand
the kernel size. The default is
set to 1.0.

smoothFactor=1.0

ignoreOffs Ignore datasets from the OFF
position. The default value
is set to 'True' (or 1). To pro-
cess the reference spectra, this
should be set to 'False' in the
command line (the ignoreOffs
button should be deselected in
the GUI).

ignoreOffs=False (or =0) if
you want to process the OFF
spectra

extrapolate Used to switch on / off the
extrapolation. Decide if the
pixels far away from real ob-
served position should be
filled with a value (extrapo-
late = True), or masked (ex-
trapolate = False). With (ex-

extrapolate=False (default)

208

How to make a spectral cube Build 15.0.3244

Parameter name Description Command line example
trapolate = False) the pixels
with a weight below the val-
ue defined in the property:
"hcss.hifi.dp.otf.filter.thresh-
old" (default=0.01); will be
masked, filling them with the
value NaN.

mapSize Size of the map, in pixels.
The default operation of the
task is to calculate a size
based on the imput data; with
this parameter you can set the
x (longitude) and y (latitude)
sizes of the map in pixels.

mapSize=Int1d([10,20])

outputNames Provides a name to the out-
put that should be included in
the ObservationContext in the
level 2.5 Pipeline. The output
should return a Product or a
Dataset. The output (its name
is the key in the HashMap)
will be included in the Ob-
servationContext with a map-
Context that will have, as
name, the correspondent val-
ue provided in the HashMap.

outputNames=cubesContext

wcs Provide a WCS to perform
the projection.

wcs=Mywcs

15.3. Using doGridding...
15.3.1. ...to change beam, pixel, and map size

• Mapping observations from OD 835 onwards, and processed with HIPE 8 onwards, are gridded
using the scan and readout spacing used during the observation, whilst earlier observations are
gridded using a better approach than in HIPE 7. Note that the data must be processed including the
doUplink step from the Level 0 pipeline so you must either retrieve data from the HSA processed
already with HIPE 8 onwards, or you should run the script given in the introduction to this chapter,
where more information is given on this topic, Section 15.1.

Despite the need to grid data according to your original specifications, you may wish to regrid data
with a new pixel or beam size in order to compare with other observations. The beam width in
arcseconds is automatically entered into the GUI when you pass the HTP to the task. It can be found
in the beam box and can be edited there. If you modify the beam size then the filter parameters
will also be automatically updated unless you specify parameter values yourself, see Section 15.3.6
below.

For observations from OD 835 onwards, the beam width is calculated from the calibration tree using
the frequency requested in HSpot. Note that this results in slightly different beam sizes for the WBS
and the HRS as a consequence of how the spectrometers are set up. For older observations, the
beam size is calculated from HPBW["] = 75.44726 * wavelength[mm] where wavelength is the
LO Frequency.

The beam width can be set in the command line with:

209

How to make a spectral cube Build 15.0.3244

The extended version which can be adapted to the rest of this section
cubesContext, cubes, cube, xPoints, yPoints, convolutionTable, grid =
 doGridding(htp=htp,beam=[15.4])

or the shorther version, where, here, we are only interested in obtaining the
 cubesContext
cubesContext = doGridding(htp=htp, beam=[15.4])[0]

The HIFI beam is symmetric but you can also specify an elliptical beam by specifying the dimen-
sions of the x and y axes:

specify an elliptical beam. In this case the beam is wider along the vertical
 axis.
cubesContext = doGridding(htp=htp, beam=[20.0, 40.0])[0]

• For observations from OD 835 onwards, the doGridding task will compute the pixel size to
be appropriate according to the spacing used in the observation - metadata values of mapRead-
outSep and mapLineStep - these reflect the angular separation of the scan lines as carried on the
sky at the sampling requested with the observation. For earlier maps, i.e. when mapReadoutSep
and mapLineStep are not present in the product metadata, different estimates are used depending
on what information can be found in the metadata, such as the structure and number of datasets
within the HTP, and the metadata parameters supersampling, n_cycles for OTF maps, and
crossStep for DBS raster/cross maps. In the most sparse information case, the task will assume
the beam size is given by 75.44726 * wavelength[mm] (where wavelength is the LO Frequency) and
take (beam width/2) for half-beam spacing maps and (beam width/2.4) for Nyquist sampled maps.

You can specify the pixel size by editing the pixelSize boxes in the GUI, units are arcseconds.
Note that if you do this then the filter parameters will also be updated to reflect the new pixel size.
However, editing the filter parameters does not affect the pixelSize parameter. Editing the beam
width parameter does not affect the pixelSize parameter but entering a non-zero flyAngle
(see Section 15.3.5) will in order that flux is conserved when rotating the map.

The pixelSize can be modified in the command line as:

For a square pixel
cubesContext = doGridding(htp=htp, pixelSize=[16.36])[0]
For a rectangular pixel
cubesContext = doGridding(htp=htp, pixelSize=[10.0, 20.0])[0]

Warning

Flux Conservation in Spectral Cubes from Mapping Observations:

The doGridding task in the HIFI pipeline is responsible for convolving the spec-
tral datasets acquired in an OTF or DBS Raster mapping observation into a spectral
cube with a specified pixel scale, which by default should match how the scan lines
and readout points within each line were spaced during the observation. The scheme
of signal filtering and interpolation to put the data on the specified grid may affect the
overall flux conservation, at a level which is low but you should be aware of. For ex-
ample, the total signal summed from a spectral cube produced using a Gaussian filter
over the datasets of a Nyquist-sampled OTF map is generally < 1% lower than the sum
of the signal taken directly from the input datasets (the Level 2 HTP datasets) before
convolution. A part, or all of this slight mismatch may be on the assumed versus actual
beam shape at the observed frequency. If you wish to put the map on a coarser grid,
effectively reducing the spatial resolution to a wider beam in order to match another
observation, then the flux losses become more noticeable. Doubling the pixels sizes
from their default (native map point spacing) can reduce the total flux by as much as
10%, accompanied by an increase in baseline RMS noise. The effect is more prevalent
in OTF maps than DBS Raster, and in addition to deviations from ideal beam shape
characteristics becoming more important, the filtering and interpolation method, and

210

How to make a spectral cube Build 15.0.3244

parameter values can be influential. No changes to the doGridding algorithm are
planned, and this issue applies to all HIPE versions.

For convenience, the beam widths per HIFI band and beam spacing for half-beam and Nyquist
sampled maps are given in the table below.

Band Beam Width (") Nyquist spacing (") Half-beam
spacing (")

1a 43.5 18.4 22.0

1b 37.7 15.9 19.0

2a 33.3 13.9 17.0

2b 29.8 12.5 15.0

3a 27.3 11.4 14.0

3b 24.9 10.4 13.0

4a 22.5 9.4 11.0

4b 20.8 8.7 10.0

5a 19.6 8.0 9.0

5b 18.6 7.8 9.0

6a 15.2 6.3 8.0

6b 14.0 5.8 7.0

7a 12.8 5.3 7.0

7b 12.2 5.2 6.0

• The pixel size is multiplied by a smoothing factor, which is 1 by default. You can modify the
smoothing factor by editing the smoothFactor box in the GUI or in the command line by:

cubesContext = doGridding(htp=htp, smoothFactor=[2.0, 2.0])[0]

The convolution filter parameters are dependent on the smoothing factor and modifications to it
will cause the filter parameters to be automatically updated, see Section 15.3.6 below.

• By default, the mapSize parameter is set to 0 in order to let the algorithm choose the optimal
map dimension. The map size is automatically calculated by doGridding based on the spatial
information in the input spectra. The map size can be specified in units of pixels by entering values
in the mapSize boxes on the GUI. If you wish to fix the map size, you must set mapSize to your
choice (say [8.0, 7.0]), and then you must set pixelSize =(0.0, 0.0) and (x,y)FilterParams
=(0.0, 0.0).

In the command line, this can be done as:

cubesContext = doGridding(htp=htp, mapSize=[8.0, 7.0])[0]

Note that if the map dimension in pixels are specified, then unless it is also specified, the pixel
size will be given by the area observed divided by the number of pixels specified in the map size
parameter.

Additional information about map size is available in the HIFI User's Reference Manual under do-
GriddingTask in HIFI User's Reference Manual.

211

How to make a spectral cube Build 15.0.3244

15.3.2. ...to make cubes of combined H- and V- polari-
sation

At the moment, the doGridding task only works with one HTP at a time. However, you may wish
to create maps of combined H and V polarisation in order to increase signal to noise or to be able to
compare with HSpot noise predictions, which assume that both polarisations are combined.

This can be done using the mergeHtps task, as follows:

Get the HTPs of H and V data, here we use Level 2 WBS data from two polarisations
 of an observation (obs)
htpv=obs.refs["level2"].product.refs["WBS-V-USB"].product.copy()
htph=obs.refs["level2"].product.refs["WBS-H-USB"].product.copy()
#
Merge the HTPS
htps = [htpv, htph]
mergedHtp = mergeHtps(htps=htps)
#
Create the cube of merged data
cubesContext = doGridding(htp=mergedHtp)[0]

The resulting cube is labelled with the name of the first HTP passed to mergeHtps so in the example
above, the resulting cube has the name cube_WBS_V_USB_1. Generally, the mergeHtps task
attempts to merge metadata in a sensible fashion, and the details can be found in the mergeHtps in
HIFI User's Reference Manual URM entry.

Note that differences may be seen in H and V profiles, as a consequence of the beam separation
between the H and V polarisations, and of structural and/or velocity variations in your source. If you
are particularly interested in the spatial structure of your source you may prefer not to average the
H and V polarisations together. More detailed information is provided in the HIFI AOT Observing
Mode Release and Performance Notes v3.0 (24 September 2011), available from the HIFI instrument
and calibration web pages.

The task mkRms allows you to assess the statistics of your new combined cube compared to the original
cubes and HSpot noise predictions.

The mergeHtps task can be used to combine any number of HTPs and so can be used to create
combined maps of data from different observations at the same frequency.

15.3.3. ...to make cubes for Solar System Objects
From HIPE 10 onwards, cubes of Solar System Objects (SSOs) produced by the standard pipeline
are created with co-moving coordinates, i.e., the map centre follows the moving target. Cubes for
non-SSO targets are automatically centred on the centre of the area observed. You can change these
defaults using the comoving parameter, which has three possible options:

• True: creates the map in comoving coordinates

• False: creates the map centred on the centre of the area observed (appropriate for non-SSO objects)

• None (default): for SSO, creates the map in comoving coordinates - for non-SSO, creates the map
centred on the centre of the area observed

To, for example, force creation of a map centred on the centre of the area observed (this was previously
the default approach) select comoving = False in the doGridding GUI. To do the same in the
command line, use:

cubesContext = doGridding(htp=htp, comoving=False)[0]

212

How to make a spectral cube Build 15.0.3244

You may wish to view the positions in your maps as offsets (or relative positions) rather than in the
absolute coordinates that are offered in the Spectrum Explorer. This can be done using the doOffset
task, see Chapter 7.

15.3.4. ...to make cubes more efficiently (limiting data
input)

• By default, doGridding will create cubes for each subband. However, if you know (from inspec-
tion of Level 2 HTPs) that you are only interested in a subset of subbands, you can specify these
in the comma separated list in the subbands box of the GUI. This will reduce processing time
and memory usage.

A command line example to create cubes only for subbands 1 and 4:

cubesContext = doGridding(htp=htp, subbands=Int1d([1, 4]))[0]
#
Extract the cube for subband 1
cube1 = cubesContext.refs["cube_WBS_V_USB_1"].product
Extract the cube for subband 4
cube4 = cubesContext.refs["cube_WBS_V_USB_4"].product
#

The metadata of each cube will include a "subband" parameter stating the subband of the spectra
which was used to compute the cube. This can be checked with:

print cube1.meta['subband']

• You can limit the spectral range of the cubes produced to cover only the region of interest by pro-
viding a range, per subband, for which cubes should be generated. The channel numbers must be
input, and these can be read off the text to the bottom left of the plot in Spectrum Explorer while
hovering the cursor over the spectrum.

The channel ranges can be entered in to the channels boxes in the GUI, by default the full channel
range is already entered. Channel ranges can only be entered for those subbands selected in the
subbands box at the top of the GUI, the non-editable boxes will turn red to indicate this.

The example below shows how to create a cube for the first and fourth subbands of a given spec-
trometer, reading just the channels 200 to 1200 in the first subband, and the channels 400 to 700
in the fourth:

cubesContext = doGridding(htp=htp, subbands = Int1d([1,4]), channels=[[200,1200],
[400,700]])[0]

• Finally, you can also create cubes for only a selection of datasets in the HTP. You do this by spec-
ifying the index of the dataset. Here we select subbbands 2 and 4, and datasets 3, 4, and 5 from
the HTP.

cubesContext = doGridding(htp=htp, subbands=Int1d([2,4]),
 datasetIndices=Int1d([3,4,5]))[0]
cube_subband_2 = cubesContext.refs["cube_WBS_V_USB_2"].product
cube_subband_4 = cubesContext.refs["cube_WBS_V_USB_4"].product

To use the GUI, create the variable datasetIndices using the format in the example above and
drag it from the Variables View into the datasetIndices bullet.

213

How to make a spectral cube Build 15.0.3244

15.3.5. ...to make a rotated map or use a different WCS
• In the HTP metadata, you will find the parameter pattAngle (for pattern angle) which corre-

sponds to the Position Angle was provided in HSpot. If the pattAngle is non-zero, then do-
Gridding calculates a parameter called flyAngle = 180 - pattAngle (units of degrees).

You can apply a rotation angle to the map yourself using the flyAngle parameter. For example,

cubesContext = doGridding(htp=htp, flyAngle=50.0)[0]

Note that there is also a HifiUplink parameter called flyAngle and this is not the same quantity as
the flyAngle created by doGridding. It is, unfortunately, possible to find the parameter fly-
Angle with several values in your data. For example, in the case of the observation 1342201689,
which is an OTF map carried out with a rotation angle of 65 degrees, you find the following:

• HifiUplinkProduct: flyAngle = 65 deg

pattAngle takes the same value as flyAngle in the HifiUplinkProduct

• cube headers in cubesContext: flyAngle = 0 deg

Recall that in the case a map was carried out with a non-zero rotation angle, then two sets of cubes
are generated at Level 2.5 by the SPG; one set is not rotated and this is contained in cubesCon-
text, while the rotated cubes can be found in cubesContextRotated. But if you use the
doGridding task on an htp, you will only have one sets of cubes generated i.e. with the fly-
Angle applied. Therefore, if you wish to recreate the native orientation on the sky, you need to
set flyAngle=0.0.

• cube headers in cubesContextRotated: flyAngle = 115 deg

doGridding calculates flyAngle = (180 - 65) degrees.

• By default, doGridding applies a generalised least squared (GLS) projection of the input spectral
coordinates into a flat map. You can also supply your own WCS to perform this projection. To create
a WCS in HIPE, see Defining and using the World Coordinates System (WCS) in the Herschel
Data Analysis Guide. Your WCS, for example called my_wcs, is passed to doGridding by:

cubesContext = doGridding(htp=htp, wcs=my_wcs)[0]

To use the GUI, you should pass the my_wcs variable to the wcs bullet.

15.3.6. ...with a different convolution
• By default the convolution is performed with a Gaussian filter function for OTF maps and Nyquist

or smaller sampled raster maps, while a box filter is used for greater than Nyquist sampled raster
maps. A box filter is the most appropriate choice for a raster map. However, in the case of small
(less than 4x4) Nyquist sampled raster maps, a box filter which has length BeamSize/PixelSize or
2.4 times the pixel size, will result in a map with pixels at all the same values - the average of all the
pixels in the map. For larger Nyquist sampled maps you may like to experiment with a box filter.

The filter type can be selected from the drop-down menu in the GUI or in the command line as:

box filter
cubesContext = doGridding(htp=htp, filterType="box")[0]
or Gaussian filter
cubesContext = doGridding(htp=htp, filterType="gaussian")[0]

214

How to make a spectral cube Build 15.0.3244

• The parameters characterising the convolution filter are automatically computed by the task, and
depend on the beam size, the pixel size, and the smoothing factor. If you change any of these param-
eters, the optimum filter parameters are recalculated by the task, and you can see the update occuring
in the GUI. Note, however, that the reverse is not true if the filter parameters are modified. In case of
doubt, you can set the filter paramters to zero to force the task to auto-compute the optimal values.

While we note that it is more intuitive to change the smoothing parameters to alter the convolution
than the filter parameters, there may be cases, for example to compare a HIFI map to other data
with an unusual sampling, that you would wish to do so. The filter parameters are given in pixel
lengths and can be set using xFilterParams and yFilterParams. The parameters can be
entered directly into the GUI, or set in the command line as demonstrated in the examples below.

The box filter is defined by lengths (in pixels) in the x (RA) and y (Dec) directions. The Gaussian
filter is defined by the length (or influence area), which is a +/- value rather than a total range, the
sigma of the Gaussian function multiplied by the square root of 2, and the order of the exponent. The
default value for the length of the Gaussian filter is given by 3 times the kernel beam size divided
by the pixel size, i.e. 0.9 times the telescope beam size divided by the pixel size (Section 15.4.1).

Example 1: a box filter with lengths x=0.5 pixels in the x (RA) and y=1.5 pixels in the y (Dec)
directions:

cubesContext = doGridding(htp=htp, filterType="box", xFilterParams=[0.5],
 yFilterParams=[1.5])[0]
#
Or you can wrap the x and y parameters into one
parameters = [Double1d([0.5]), Double1d([1.5])]
cubesContext = doGridding(htp=htp, filterType="box", filterParams=parameters)[0]

Example 2: specify the parameters length and sigma of the Gaussian filter function:

the "influence area" is the area surrounding a grid point
where the algorithm must pick up all the available data points.
influence_area = 1.95 # length in pixels
sigma of the gaussian function times SQRT(2)
sigma_sqrt2 = 0.3 # in pixels
xFilterParameters = Double1d([influence_area, sigma_sqrt2])
yFilterParameters = Double1d([influence_area, sigma_sqrt2])
default case: influence_area = 1.8; sigma_sqrt2 = 0.36

cubesContext = doGridding(htp=htp,filterType="gaussian", xFilterParams=
 xFilterParameters, \
yFilterParams = yFilterParameters)[0]

• The doGridding task assumes an equal weighting during the convolution, as the integration time
per point is equal. In the weightMode drop-down menu in the GUI this option is labelled as 'all
same weight'. In the command line, this option is selected by:

cubesContext = doGridding(htp=htp, weightMode="equal")[0]

You can also choose to use weights already present in the data, which may have been set by the
pipeline or by you, by choosing 'read weights column from dataset' from the drop-down weight-
Mode menu in the GUI. To do the same in the command line, use:

cubesContext = doGridding(htp=htp, weightMode="selection")[0]

• If you wish to learn more about the details of the convolution, you can check the detail box in
the GUI, or set

cubesContext = doGridding(htp=htp, detail=True)[0]

215

How to make a spectral cube Build 15.0.3244

This creates an output called convolutionTable, which can be viewed with the Dataset Viewer. The
metadata of the table gives information about the map, beam, and pixel sizes (but note that the x
values are negative because the x-axis values increment from right to left, while the y-axis values
increment from bottom to top), and also information about the filter used in the convolution and
the position of the reference pixel.

The convolutionTable itself contains the following information for each spectrum that contribute
to a given pixel:

• The pixel number, as ypixel and xpixel. The number of spectra contributing to a given pixel
depends on the gridding parameters used and the spacing of the readout points on the sky.

• The latitude and longitude of the pixel centre in decimal degrees.

• vm, v, vp, are the offsets of the bottom, centre, and top of the y position of the pixel from the
map centre, while um, u, up are the same for the x position of the pixel.

• PointSpectrum_id gives a reference to the location of the spectrum in the HTP. For example,
"row 0: box_1: container 13" refers to the first (labelled 0.0) PointSpectrum of SpectrumDataset
0014 in box 1 of the HTP. Unfortunately, that was not a typo: the ConvolutionTable labels Spec-
trumDatasets start from 0, while in the ContextViewer SpectrumDatasets are labelled from 1.

• dv and du are the distance of the spectrum (in pixels) from the pixel centre in the y and x di-
rections, while the Pythagorean distance is given by distance (in pixels) and dist_beams
(in beam size).

• If a spectrum is not included in the convolution as a consequence of a very low weighting then
the blanked column will show "true".

• du_beams and dv_beams give the distance of the spectrum in the x and y directions from the
pixel centre in antenna beam sizes.

• filter_du (filter_dv) is the value computed by the x-axis (y-axis) filter for the distance
of the spectrum to the pixel centre, while filter_value is the value computed by the filter
for this element, combining the filter functions along both axes.

• spectrum_latitude and spectrum_longitude give the position of the spectrum in
decimal degrees.

• The spectrum_flux column contains the flux of the contributing spectrum.

• The weights of each channel of the spectrum are given in the spectrum_weights column.

• The spectra within the HTP are sorted according to their coordinates in horizontal (x) and vertical
(y) directions prior to gridding. The final three columns in the ConvolutionTable refer to the
indices after sorting of the first and last spectra in the current strip as well as the index of the
spectrum.

15.3.7. ...to specify the map centre
The doGridding task computes the map centre as the centre of the coordinates of the input spectra.
The pixel that the map centre falls in is called the reference pixel. It is possible to specify the reference
pixel, in either pixel coordinates or in celestial coordinates, to doGridding. This may be useful in
the case that you know the coordinates of the map centre to higher accuracy than the Herschel-HIFI
Absolute Pointing Error (2").

• When specifying the reference pixel in pixel coordinates it is important to bear in mind that the (0,0)
pixel is the bottom-most, left-most pixel in the cube. In contrast, the header information of the cube
follows normal FITS convention in which the bottom-most, left-most pixel is (1,1).

216

How to make a spectral cube Build 15.0.3244

For example, if you want to force the map centre to be the pixel (3.5 , 4.0), then the refPixel
input will be Double1d([3.5, 4.0]). This means that in the cube header the values of CRPIX1 and
CRPIX2 will be (4.5, 5.0) and the centre of the coordinates of the input spectra will be located at
the pixel (3.5, 4.0).

cubesContext = doGridding(htp=htp,refPixel = Double1d([3.5, 4.0]))[0]

To use the GUI, you will need to create a variable refPixel as above and drag it to the refPixel
bullet.

• To specify the celestial coordinates of the map centre, you can enter the map position in decimal
degrees directly into the refPixelCoordinates box in the GUI. Here is a command line ex-
ample:

longitude = 307.9
latitude = 40.36
cubesContext = doGridding(htp=htp,refPixel=Double1d([0,0]),
 refPixelCoordinates=Double1d([longitude, latitude]))[0]
or more compactly,
refPixel = Double1d([0,0])
refPixelCoordinates = Double1d([longitude, latitude])
cubesContext = doGridding(htp=htp,refPixel=refPixel,
 refPixelCoordinates=refPixelCoordinates)[0]

You can check that the cubes generated have the same crval1 (longitude) and crval2 (latitude) as
the map centre you specified in the following way:

Value returned: True or False
print cubesContext.refs["cube_WBS_V_USB_2"].product.wcs.crval1 == longitude #
 True
print cubesContext.refs["cube_WBS_V_USB_2"].product.wcs.crval2 == latitude #
 True

Of course, it is possible to set the map centre such that the defined grid falls partially, or completely,
outside of the observed region. In that case, doGridding will not fail but will fill the pixels in the
unobserved regions with NaNs.

15.3.8. ...with selected data types
The default action of doGridding is to take the science datasets, i.e. those datasets that are on
source, and with the LO setting required to observe the frequency of interest. You can also select
data to be gridded according to any data type you can see in the summary table of the HTP. This
is particularly important if you choose to process the reference spectra (OFF positions) found in the
product Calibration -> pipeline-out to allow you, e.g., to correct for any emission contamination in
the OFF positions.

For example to make a grid of the hot/cold load observations:

cubesContext = doGridding(htp=htp, datasetType="hc")[0]

To include the OFF positions (found in Calibration -> pipeline-out -> ReferenceSpectra), which are
ignored by default, in the gridding with:

cubesContext = doGridding(htp=htp, ignoreOffs=False)[0]

In the GUI, you just deselect the ignoreOffs button

217

How to make a spectral cube Build 15.0.3244

In practice, the Level 2 HTP contain only science data and these options are not expected to be used
by astronomers unless the doCleanUp step of the Level 2 pipeline is omitted. The option to select
dataType = "other" may be of use for calibration scientists studying engineering mode observations.

15.3.9. ...to deal with NaNs
On occasion, you may see 'Not a Numbers' (NaNs) at the edge of the cube. This is not a problem with
computation but a pixel that is flagged as containing spectra that have a very low weighting. Typically,
this is found in maps displaying a strong zig-zag effect, and it is because the data arise from too far
away from the map area. You can avoid this to some degree by using the extrapolate option:

cubesContext = doGridding(htp=htp,extrapolate=1)[0]

Furthermore, you can adjust the threshold at which pixels are flagged at, the default is 1e-5 but higher
values may help remove the NaNs.

Configuration.setProperty("hcss.hifi.dp.otf.filter.threshold", "1e-1")
cubesContext = doGridding(htp=htp)[0]
cubes = cubesContext.refs["cube_WBS_V_USB_1"].product

15.4. doGridding in Detail

15.4.1. Particulars of Convolution
The gridding and convolution technique used is very similar to the one used in CLASS. The convolu-
tion is performed with a Gaussian filter function (recommended for OTF maps), where the Gaussian
function is defined as:

and where the FWHM of the antenna beam B is:

The final beam, Bf, is equal to

Using a kernel of 0.3#B then Bf = CB, where C = 1.0440306508 i.e. the final beam is 4.4% larger than
the normal beam. We loose a bit of the resolution in order to have a better reconstruction of the map.

If the smooth factor (Sm) is > C then the kernel becomes equal to:

and the filter is Gaussian where

Figure 15.2 shows an example where we have three beam positions, 1, 2 and 3 (red circles) and where
we find, in the influence area (blue square), beams 1 and 3. We define: 1] the influence area (also
called the length) of the filter as (3#Kernel / PixelSize). It is the area surrounding a grid point where
the algorithm must pick up all the available data point, 2] Dx and Dy as the distances from the centre
of the beam to the centre of the influence area, measured along their respective x and y axis, and 3]
the filter parameter for each of the x and y:

The filter final value, V, is Vx#Vy.

218

How to make a spectral cube Build 15.0.3244

The doGridding task offers two options to determine the weights: all same weight and read weights
column from dataset. The final weight value W at the centre of the influence area is (W1V1+W3V3).
For option all same weight, W1=W3=1 and the Cube Weight array will contain only the weights
computed when building the map. For option read weights column from dataset, W1 and W3 are the
values of the weight of the related spectra at that specific frequency. Thus, the Cube Weight array will
contain a mix of the weights found in the htp and the weights computed when building a map. Finally,
the final flux F at the centre of the influence area is (F1V1W1+F3V3W3) / (V1W1+V3W3).

The box filter is also based around a kernel and is defined in pixels in the x and y directions where
x and y can be either of equal length to create a square box, or of different lengths to create a rect-
angular box. The box filter (recommended for raster maps) may be more appropriated for your data
(see Section 15.3.6). For the box filter, the values V are a constant function. The effect is equivalent
to averaging if the observed points are close e.g. the value in pixel_1 = (V1*1+V3*1)/(1+1) and the
value in pixel_3= (V3*1+V1*1)/(1+1). Because V is a constant and because it does not depend on
the distance between the 2 pixels, pixel_1 = pixel_3 if they are in the same influence area. Similarly
to the Gaussian filter, the weight value W (=W1V1+W3V3) will be computed using one of the two
options: all same weight with W1=W3=1 and read weights column from dataset where W1 and W3
are the values of the weight of the related spectra at that specific frequency. The flux in the influence
area is also calculated as (F1V1W1+F3V3W3) / (V1W1+V3W3).

Figure 15.2. Gaussian Filter

219

How to make a spectral cube Build 15.0.3244

15.4.2. Using the Gridding task with the Spectrum
Toolbox

Another task, called Gridding, is available to make cubes of images. Like doGridding, it creates
a cube by performing a spatial regridding of the input spectra onto a regular grid. However, unlike
doGridding, it works with any dataset or product that implement the SpectrumContainer or inter-
face. This means that the Gridding task is not limited to working with HTP and can be used instead
for more general (to all three Herschel instruments) Spectrum1d and Spectrum2d. Using the Spectrum
Toolbox, you may also create your own collection o f datasets to pass to the Gridding task.

The Gridding task and the Spectrum Toolbox.

You can make use of the spectrum selection tools of the spectrum toolbox to perform any selection of
spectra followed by the usage of the Gridding task to create a cube for each segment of the spectra
in these selections.

The following example shows how to combine SelectSpectrum with the Gridding task:

first, create an instance of the SelectSpectrum task
selector = herschel.hifi.pipeline.util.tools.SelectSpectrum()
use SelectSpectrum to get a single HifiSpectrumDataset with the spectra that
 fulfill certain criteria
e.g. here one selects those spectra where its containing dataset has bbtype equal
 to 6022.
selected = selector(htp=htp, selection_lookup={'bbtype':[6022]},
 return_single_ds=Boolean.TRUE)
one might have a glance at the spectra in the "selection" dataset e.g. in the
 TablePlotter
cube = gridding(selected)
cubes = gridding.cubes

Making a SpectralSimpleCube with the Gridding task.

#---
make a dataset with all the spectra from all the science datasets
(isLine == true => bbtype == 6022)
#---
selector = herschel.hifi.pipeline.util.tools.SelectSpectrum()
selected = selector(htp=htp, selection_lookup={'bbtype':[6022]},
 return_single_ds=Boolean.TRUE)

scienceOnIndices = htp.summary['isLine'].data.where(\
htp.summary['isLine'].data == Boolean.TRUE)
bbid = htp.summary['Bbid'].data[scienceOnIndices]

#another way of selecting...

selected = selector(htp=htp, \
 selection_lookup={'bbtype':bbid[0]}, \
 return_single_ds=Boolean.TRUE)

#---
the Gridding task that can work with any SpectrumContainer or collection of
SpectrumContainers, like the selected above
#---

cube = gridding(container=selected)

#get a point spectrum from this selection,
ds_spectrum = selected.getPointSpectrum(1)
ds_segment = ds_spectrum.getSegment(3) # read its third subband : get
 SpectralSegment.
plotSegment = PlotXY(ds_segment.wave,ds_segment.flux,xtitle='Frequency
 (MHz)',ytitle='Intensity')

220

How to make a spectral cube Build 15.0.3244

#---
now let's play with the result cubes
#
#
each cube is a SpectralSimpleCube which in its turn is an SpectrumContainer
hence we profit from all the spectrum toolboxes: arithmetics, statistics, etc.
and we can e.g. directly obtain a point spectrum as for any other
 SpectrumContainer
#---

row = 0; column = 10;
spectrum = cube.getPointSpectrum(row,column)

print spectrum.getLongitude()
print spectrum.getLatitude()

print spectrum.segmentIndices
you can check the cube, hence its spectra has a single "segment" or subband

segment = spectrum.getSegment(0)
or...
segment = spectrum.getSegment(spectrum.segmentIndices[0])

plotSpectrum = PlotXY(segment.getWave(),segment.getFlux(),xtitle='Frequency
 (MHz)',ytitle='Intensity')

There are several ways to visualise a cube such as
the CubeSpectrumAnalysisToolbox:

cat = CubeSpectrumAnalysisToolbox(cube)

you can also visualise it with the SpectrumExplorer,
since the cube is an SpectrumContainer

or simply display it as a cube of images:
display = Display(cube)

Optional inputs for the Gridding task.

Most of the optional inputs of the doGridding task are also applicable to the Gridding task
namely: weightMode, filterType, mapSize, refPixel, refPixelCoordinates, pixelSize, smoothFactor,
filterType, filterParams, detail, and the input Wcs.

In addition, there are other optional inputs which are specific to this task, namely container and con-
tainerBox.

221

Build 15.0.3244

Chapter 16. Undoing the application
of sideband gains

Last updated: 19 May, 2012

16.1. Introduction
HIFI is a double sideband (DSB) instrument. In consequence, application of sideband gains by the
doSidebandGain step of the Level 2 pipeline mean that the detected lines are calibrated to single
sideband (SSB) scale, while the continuum contains contribution from both sidebands and remains at
the DSB scale. If the sideband gains are unity then the DSB scale continuum is twice the SSB level.

However, at the low end of band 2a and in bands 5a and 5b, non-unity sideband gains are applied,
resulting in correct line calibrations but an incorrect continuum calibration that manifests as jumps
in the continuum level. This can be problematic for absorption studies. Therefore, a task called un-
doSidebandGain is provided to allow you to undo the sideband gain correction, leaving you with
a DSB continuum.

16.2. Using undoSidebandGain
To run the task you must first extract a Level 2 HTP from the Observation Context, here we extract
the WBS-H-USB product, then the task is run on the HTP:

htp = obs.refs["level2"].product.refs["WBS-H-USB"].product
undoSidebandGain(htp=htp)

The undoSidebandGain is intended to be run on a Level 2 HTP, and will not run on data that has
not had the Level 2 pipeline tasks, doSidebandGain and convertFrequency, applied to it.
From HIPE 8 onwards, the sideband gain applied to the data has been written in the metadata fields
usbGain and lsbGain. The undoSidebandGain task looks for these metadata and uses them to
return the sideband gains to 0.5.

In the event that you have data that has been processed with a version of HIPE prior to HIPE 8.0,
but using calibration with version HIFI_CAL_6_0 (when non-unity sideband gains were introduced
in band 2a) or more recent, then undoSidebandGain will find the side band ratio used in the
sidebandGainsIF table in the calibration context, if the calibration context is passed to the task. These
values will be used to restore the sideband gains to 0.5.

undoSidebandGain(htp=htp, calibration=obs.calibration)

If non-unity sideband gains have never been applied to your data then the task will do nothing and exit.

The true (SSB) continuum level can then be determined by halving the DSB solution.

222

Build 15.0.3244

Chapter 17. Mathematical Operations
on Spectra

Last updated: Nov 12, 2014

17.1. Introduction
Mathematical operations on spectra are carried out using the tasks in the Spectrum Toolbox. While
viewing a spectrum in the Spectrum Explorer, you can open up the Spectrum Toolbox by clicking on
the crossed hammer and spanner icon in the Spectrum Explorer button bar. You can then select the
task you want from the drop-down menu in the panel that appears to the right of the spectrum. The
task GUI and the Spectrum Explorer interact so that you can select points and ranges, or even several
spectra for use in the task. Alternatively, the Spectrum Toolbox tasks can be run in the command line.

Most of the tasks in the Spectrum Toolbox are available for use on data from all Herschel instruments
so the Data Analysis Guide contains the most complete information for spectrum arithmetics (the
spectrum toolbox). Please see the Spectrum Toolbox section.

Here we give some HIFI specific examples of the Spectrum Toolbox and we describe some tasks
that are only for use on HIFI data. The tasks in the Spectrum Toolbox can be used on subclasses of
spectrum datasets (Spectrum1d, Spectrum2d) or on spectral cubes (SimpleCube) but not on
products containing such data structures (e.g., HifiTimelineProduct (HTP)).

Operations on spectra include Selection and Arithmetic Operations.

• Selection: Provide means of selecting those spectra that can be combined. For instance cold-load
spectra, ON spectra, etc. Selection can be applied to datasets, such as rows of a Spectrum2d, or
to tables within a product, such as datasets included in a HifiTimelineProduct.

• Arithmetic Operations: Provide means of combining the selected spectra. This includes:

• Basic arithmetic operations such as addition, subtraction, multiplication, or applications of scalar
functions

• Statistical operations such as mean, median, variance, standard deviation or percentiles for sam-
ples / selections of spectra

• Data transformations such as smoothing or frequency re-sampling

Tasks that are available for use only with HIFI data are:

• selectHifi: a task for selecting datasets and/or rows of an HTP

• DTFProduct: a task to compute the discrete Fourier transform of a HIFI SpectrumDataset.

• fold (DoFold): a task for folding frequency switched spectra (HTP)

• stitch: a generally available task but is particularly useful for stitching HIFI subbands, doS-
titch is used for HTP

17.2. Spectrum Toolbox HIFI Primer
We present the power of the toolbox with a few code examples.

Stitching and Folding

Let's begin by loading a Point mode Frequency Switch observation into HIPE:

223

Mathematical Operations on Spectra Build 15.0.3244

obs = getObservation(1342249401, useHsa=True, save=True)

After you have run the above line, you can access the data from your locally stored MyHSA pool
(created automatically). This avoids the need to connect to the HSA and the observation can then be
accessed in the following way:

obs = getObservation(1342249401, poolName="MyHSA")

Frequency Switch observations are stitched and folded in the Level 2.5 pipeline but you may wish to
modify the default parameters used, or modify the data prior to stitching and folding. You can use the
interactive pipeline to do these things but you can also run the tasks stand-alone on HTP, or on spectra
(SpectrumDatasets). The examples below illustrate how to use the tasks using only the default
parameters. To run the tasks on HTPs, use the DoStitch and DoFold tasks.

First extract some Level 2 HTPs.

WBS-H-USB
htp_wbs_h = obs.refs["level2"].product.refs["WBS-H-USB"].product
HRS-H-USB
htp_hrs_h = obs.refs["level2"].product.refs["HRS-H-USB"].product

Now stitch the subbands together:

Stitch a copy of the HTP so you can compare the results with the original
htp_wbs_h_stitched=doStitch(htp=htp_wbs_h.copy())

HRS data can contain subbands which do not overlap so doStitch must be run with an additional
parameter, fillGaps, to account for this. In the case of this particular observation, several of the
HRS subbands lie at the same frequency so the varient parameter should also be set to stitch all
subbands.

htp_hrs_h_stitched=doStitch(htp=htp_hrs_h.copy(),fillGaps=True, variant='stitchAll')

Now fold the stitched data, again the example shows how to work on a copy of the data.

htp_wbs_h_folded=doFold(htp=htp_wbs_h_stitched.copy())
htp_hrs_h_folded=doFold(htp=htp_wbs_h_stitched.copy())

To perform the same operations working on SpectrumDatasets, use the stitch and fold
tasks.

Extract SpectrumDatasets
ds_wbs_h = htp_wbs_h.refs["box_001"].product["0001"]
ds_hrs_h = htp_hrs_h.refs["box_001"].product["0001"]
#
Stitch
ds_wbs_h_stitched=stitch(ds=ds_wbs_h.copy())
ds_hrs_h_stitched=stitch(ds=ds_hrs_h.copy(),fillGaps=True, variant='stitchAll')
#
Fold
ds_wbs_h_folded=fold(ds=ds_wbs_h_stitched.copy())
ds_wbs_h_folded=fold(ds=ds_wbs_h_stitched.copy())

HIFI specific selection task: selectHifi

The selectHifi task allows you to make selections from both HTPs and SpectrumDatasets,
and for HTPs allows to select based on metadata. This provides a broader functionality than the se-
lect task in the Spectrum Toolbox, which in common with all the Spectrum Toolbox tasks, does not

224

Mathematical Operations on Spectra Build 15.0.3244

work on HTPs. Furthermore, the selectHifi task can return a single SpectrumDataset. This
allows you to operate the Spectrum Toolbox tasks on the contents of an HTP.

The full capabilities of the selectHifi task are described in the selectHifi in HIFI User's Reference
Manual URM entry. Here, we give an example in which all the science data sets are extracted from a
Level 1 HTP from the Frequency Switch observation used above, and a single SpectrumDataset
is returned.

Extract the WBS-H Level 1 HTP
htp = obs.refs["level1"].product.refs["WBS-H"].product
Select the 'science' observations
science_l1 = selectHifi(htp=htp, selection_meta={"sds_type":["science"]},
 return_single_ds=True)

If you look at science_l1 in the Spectrum Explorer, you will see that it contains a set of spectra
containing a line, and a set of spectra that look like background. The second set of spectra are the
observations taken on target but at the frequency switched LO setting. In order to select only the on-
source, on-frequency data, you need to make a tighter selection based on the Bbtype (or Bbid) of
that observation; these can be found by looking in the Summary Table in the HTP. We want to select
datasets that are science datasets identified as IsLine=True, and these have Bbid=6038.

science_l1 = selectHifi(htp=htp, selection={"bbtype":[6038]}, return_single_ds=True)

Fourier transform task: DFTProduct

The DFTProduct class can be used to calculate the Discrete Fourier Transform of a HIFI Spec-
trumDataset subband. This can then potentially be used to remove standing waves before using
the class to perform the inverse Fourier Transform.

The DFTProduct class is described in more detail in the DFTProduct in HIFI User's Reference
Manual URM entry. Here, we give a brief example of its usage using the WBS dataset extracted above;
usage is identical for the HRS.

Perform the Fourier Transform for the 4th subband of the WBS dataset
wbs_ft_4 = DFTProduct(ds_wbs_h, 4)
Plot the phase and amplitude of the Fourier Transform
wbs_ft_4.plot()

Selection and other standard Spectrum Toolbox tasks

When digging into data, perhaps the most important thing to do is to be able to select out exactly the
spectra you want to work on. This is possible with the select task, which allows you to select by:

• subband, or segment,

• index (the number of the row in the dataset) or by pixel coordinates (for a cube),

• or by a selection model that allows you to specify certain attributes, such as LO frequency or Chop-
per throw, or a range of values of an attribute.

Here, we give a few examples of selection, followed by some examples using other standard Spectrum
Toolbox tasks. Unlike selectHifi, the select task will not work on an HTP so we first extract a
SpectrumDataset from the Level 1 HTP used above to work on. We take the dataset with index
4, which is the first science dataset taken at the target LO frequency.

ds = htp.refs["box_001"].product["0004"]

Later, we will average together the rows in the selected datasets so first, resample ds so that all the
spectra have the same frequency grid.

225

Mathematical Operations on Spectra Build 15.0.3244

ds_resampled = resample(ds=ds, density=True, resolution=1.0, unit="MHz")

Using the density parameter set to 'True' as above forces the task to treat the flux as a flux density.

Now, let's try a few selections:

Select only the 2nd subband
ds_2 = select(ds=ds_resampled, segments=[2])
Select only rows with a Chopper column value of -5.536, to within a tolerance of
 0.0001
ds_chop = select(ds=ds_resampled, selection={"Chopper":([-5.536], 0.0001)})

Now, average the spectra in ds_2:

ds_2_av = avg(ds=ds_2)

The selection and averaging can be done in one step:

ds_2_av = avg(ds=ds_resampled, segments=[2])

The simple arithmetic tasks have been overwritten with the usual key commands so you can use:

• '+' instead of add,

• '-' instead of subtract,

• '*' instead of multiply,

• and '/' instead of divide

For example,

ds_plus = add(ds=ds_2_avg, param=2.0)

and

ds_plus = ds_2_av + 2

are equivalent.

For more information about the Spectrum Toolbox, please see the Spectrum Toolbox section in the
Herschel Data Analysis Guide.

226

Build 15.0.3244

Chapter 18. Unit conversions
Last updated: 6 February, 2015

18.1. Converting to velocity and other fre-
quency scales or frames
18.1.1. Changing frequency scale to USB, LSB, IF or
velocity

The "x-axis" of spectra can be converted into other units (frequency, velocity, wavelength) using the
general task, convertWavescale. The convertWavescale task uses the RADIO convention
in converting to or from velocity.

There is also a task specifically for HIFI data, the ConvertFrequencyTask, which works on a
HifiSpectrumDataset and on a HifiTimelineProduct. This can be used to convert between the USB,
LSB, and IF scale and also to convert to velocity.

Converting Frequency Scales.

Assuming spectrum is the variable name for a HifiSpectrumDataset with the frequency scale of the
data expressed as IF frequencies, you can convert to the lower sideband frequency scale as follows:

cft=ConvertFrequencyTask()
cft(sds=spectrum,to="lsbfrequency")

Of course, it is also possible to convert to the upper sideband. To achieve this, the keyword is "us-
bfrequency".

cft(sds=spectrum, to='usbfrequency')

To convert back to the IF, use:

cft(sds=spectrum, to='frequency')

The ConvertFrequencyTask works equally well on the HifiTimelineProduct itself. In this case,
all the internal HifiSpectrumDatasets are converted. Note that this is not something you should do
in the early stages (i.e. before Level 0.5) of the HIFI pipeline. For example, on a Level 1 HifiTime-
lineProduct:

cft=ConvertFrequencyTask()
cft(htp=hifitimelineproduct, to='frequency')

Note

Direct application of the ConvertFrequencyTask changes the data listed in the spec-
trum. Conversion back to the original IF scale is possible, just use the to ='frequency'
option.

Conversion to Velocity.

The ConvertFreqencyTask also works to convert the frequency scale to a velocity scale once
given the reference frequency. By default, the RADIO velocity convention is used, but the OPTICAL
and RELATIVISTIC conventions are available too.

227

Unit conversions Build 15.0.3244

cft=ConvertFrequencyTask()
cft(sds=spectrum,to='velocity', reference=576.268, inupper=False)

In the above example, you need to specify the reference frequency in GHz (the rest frequency of
the line, for example). You also need to specify whether this reference frequency is for the upper
(inupper =True) or lower (inupper =False) sideband. The 'inupper' parameter is always used, even
for taking a spectrum already in USB or LSB frequencies to velocity; the default value is inupper=True.
So if your line is in LSB and you go to velocity, be sure to explicitly set inupper=False.

Summary.

to= Description Other keywords necessary

frequency Converts to the Intermediate
Frequency scale in MHz.

None

usbfrequency Converts to the Upper side band
Frequency scale in GHz.

None

lsbfrequency Converts to the lower side band
Frequency scale in GHz.

None

velocity Converts to radial velocity (km/
s) relative to reference frequen-
cy (RADIO convention)

reference=reference frequency
(GHz), inupper=(True or False)

radio-vel Converts to radial velocity (km/
s) relative to reference frequen-
cy (RADIO convention)

reference=reference frequency
(GHz), inupper=(True or False)

optical-vel Converts to radial velocity (km/
s) relative to reference frequen-
cy (OPTICAL convention)

reference=reference frequency
(GHz), inupper=(True or False)

relativistic-vel Converts to radial velocity (km/
s) relative to reference frequen-
cy (RELATIVISTIC conven-
tion)

reference=reference frequency
(GHz), inupper=(True or False)

18.1.2. Use of the Local Oscillator (LO) Frequency
Going from the IF scale to LSB or USB requires an LO frequency. To be explicit,

Bands 1-5:

USB: SKY = LO + IF

LSB: SKY = LO - IF

Bands 6-7:

USB: SKY = LO + Fconv - IF

LSB: SKY = LO - Fconv + IF

where Fconv is 10404.7 MHz (H-pol) or 10403.2 MHz (Vpol).

The convertFrequency Task demonstrated above makes use of the 'LoFrequency' data column
in the spectrum. During the Level 1 pipeline, the doVelocityCorrection Task multiplies both
the LoFrequency and frequency_X (where X is the subband number) columns by a Doppler factor to
take them into the LSRk frame of reference (or the SOURCE frame for Solar System targets). If you
add these columns together, you will have SKY frequencies already in the final frame of reference.
So the meaning of the column 'LoFrequency' depends on the level in which it is found:

228

Unit conversions Build 15.0.3244

• Levels 0 and 0.5

Column 'LoFrequency' is the actual, instrumental LO setting.

• Levels 1 and 2

• 'science' datasets

Column 'LoFrequency_measured' is the actual, instrumental LO setting.

Column 'LoFrequency' is the LO Frequency multiplied by a Doppler factor to put it in the refer-
ence frame specified in metadatum freqFrame (SPECSYS)

• non-'science' datasets

Column 'LoFrequency' is the actual, instrumental LO setting.

• Level 2.5

For point modes, same as Level 2.

In mapping modes, the cubes don't have such columns, though there is a metadatum 'loFrequency',
description 'The LO frequency of the source phase', which is the actual instrumental LO frequency.
In addition, there are copies of the Level 2 products alongside the cubes, in which you will find the
columns described for Level 2

In spectral scans, there are no such columns. However, the values from the Level 2 Doppler-cor-
rected 'LoFrequency' column are copied into metadata with names such as 'loFreq1','loFreq2', etc.

The instrumental IF frequencies are not preserved after Level 0.5. They can be recreated most easily by
repipeling with doVelocityCorrection turned off, or by using doVelocityCorrection
and convertFrequency.

There are metadata, which are observing mode dependent, appearing throughout the observation con-
text derived from these LoFrequency data columns.

Metadatum Description Comment
LoFreqAvg Average LO frequency

Doppler-corrected to freqFrame
(SPECSYS)

Average of the LoFrequecy col-
umn after doVelocityCorrection

loFrequency Actual local oscillator frequen-
cy

For observations with a fixed
instrumental LO

loFreqMax Max LO frequency of the spec-
tral scan Doppler-corrected to
freqFrame (SPECSYS)

Doppler-corrected max LO fre-
quency for Spectral Scan obser-
vations

loFreqMin Min LO frequency of the spec-
tral scan Doppler-corrected to
freqFrame (SPECSYS)

Doppler-corrected min LO fre-
quency for Spectral Scan obser-
vations

loFrequencyEnd Actual end local oscillator fre-
quency

Instrumental LO in Spectral
Scan observations

loFrequencyStart Actual start local oscillator fre-
quency

Instrumental LO in Spectral
Scan observations

obsFreqLsbMax Observed max frequency for
LSB in freqFrame (SPECSYS)

Max observed Doppler-correct-
ed sky frequency for the LSB
for Point and Mapping observa-
tions

obsFreqLsbMin Observed min frequency for
LSB in freqFrame (SPECSYS)

Min observed Doppler-correct-
ed sky frequency for the LSB

229

Unit conversions Build 15.0.3244

Metadatum Description Comment
for Point and Mapping observa-
tions

obsFreqUsbMax Observed max frequency for
USB in freqFrame (SPECSYS)

Max observed Doppler-correct-
ed sky frequency for the USB
for Point and Mapping observa-
tions

obsFreqUsbMin Observed min frequency for
USB in freqFrame (SPECSYS)

Min observed Doppler-correct-
ed sky frequency for the USB
for Point and Mapping observa-
tions

obsFreqMax Observed max frequency in fre-
qFrame (SPECSYS)

Max observed Doppler-correct-
ed sky frequency for Spectral
Scan observations

obsFreqMin Observed min frequency in fre-
qFrame (SPECSYS)

Min observed Doppler-correct-
ed sky frequency for Spectral
Scan observations

18.1.3. Changing frequency rest frame with doVelocity-
Correction

By default, the Level 2 spectra are in the LSRk rest frame (or the source frame for solar system targets).
The doVelocityCorrection Task can be used to change the rest frame to one of 'topocentric' (space-
craft), 'geocentric', 'barycentric' (close to heliocentric), 'lsrk', and 'source'. Chapter 25 describes how
these transformations are done.

For example, to transform all Level 2 products to the spacecraft rest frame:

 level2 = obs.getLevel2()
 refs = level2.refs
 for ref in refs:
 htp=level2.refs[ref].product
 doVelocityCorrection(htp=htp,targetFrame="topocentric")

Because of the way referencing works inside observation contexts, the original data are now changed.
Along with the frequency axes, the 'LoFrequency' column is transformed to the spacecraft frame and
now matches 'LoFrequency_measured':

 print htp.meta['freqFrame']
 {description="Standard of rest for spectral axis", string="topocentric"}
 print htp.refs['box_001'].product['0001']['LoFrequency_measured'].data -
 htp.refs['box_001'].product['0001']\
 ['LoFrequency'].data[0.0]

18.1.4. The meaning of velocities found in data and
metadata

After application of doVelocityCorrection, three data columns appear in spectra: 'velocity_h-
so_1', 'velocity_hso_2', and 'velocity_hso_3'. These are the three components of the spacecraft velocity
in the barycentric rest frame computed for the midpoint of the integration. To preserve HIFI frequency
calibration accuracy, this velocity is necessarily better than 1 m/s accurate.

There are metadata read and written by doVelocityCorrection, some of which come from the original
observing proposal.

230

Unit conversions Build 15.0.3244

Metadatum Description Comment
vlsr "Velocity in the frame of refer-

ence"
From the proposal: source red-
shift

redshiftFrame "Reference frame of redshift" From the proposal: reference
frame for source redshift

redshiftType "Type of redshift: optical, radio,
redshift"

From the proposal: definition of
redshift ('vlsr') parameter

freqFrame (SPECSYS) "Standard of rest for spectral
axis"

dovelocityCorrection read/
write: ref frame of associated
dataset

There are some other metadata not used by HIFI, here listed for completeness:

Metadatum Description Comment
radialVelocity (VFRAME) "Spacecraft velocity along the

l-of-s of the telescope wrt the
LSR"

This is computed by the Ra-
dialVelocityTask using
the spacecraft orbital ephemeris
for the mid-time of the obser-
vation (metadata (startDate +
endDate)/2). Note the sign, it
is positive if the spacecraft is
moving toward the source. This
value is used in the SPIRE and
PACS pipelines to convert fre-
quencies from topocentric to the
LSR rest frame. Both use the
RADIO convention: freq = fre-
qRest * (1 - Vrad/C)

velocityDefinition (VELDEF) "The velocity definition and
frame"

Current value is 'RADI-LSR'.
It reflects the way radialVeloc-
ity is used to compute LSR fre-
quencies from topocentric.

frame "Frame of reference for Vlsr" Ignore it. It is a leftover from
previous versions of the
HSPOT proposal software.

18.2. Flux conversions
HIFI data can be converted from temperature scale to Jy using the convertK2Jy task. The task
works for spectra in ObservationContexts (obs), HifiTimelineProducts (htp), HifiSpectrumDatasets
(ds), and in SimpleSpectrum format (spectrum). The conversion can be done assuming a disk-like
(top-hat), a Gaussian source morphology, or an ad hoc source model morphology. In the first two
cases, a source diameter needs to be entered (<size>). The convertK2Jy task also allows you to
convert data back from Jy to whatever temperature scale the data was originally on.

In the GUI, the convertK2Jy task is found under Applicable in the Tasks view panel when you have
selected an ObservationContext in the Variables view panel. To open the convertK2Jy task
GUI, double click on its name in the Task panel, the GUI will open with the ObservationContext
you had selected in the Variables panel loaded into the obs parameter in the GUI. If you have select-
ed an HTP, SpectrumDataset or SimpleSpectrum in the Variables panel, you can find the
convertK2Jy task under By Category → Hifi or under All in the Tasks panel. You will need to drag
the name of the variable containing the data you want to convert into the appropriate field in the GUI.

The simplest call to the task requires only the input data and the diameter of the source in arcsec
(size):

231

Unit conversions Build 15.0.3244

MyConvertedObs = convertK2Jy(obs=obs, size=10.0)

By default, the output name from convertK2Jy is result. You can change this in the GUI by
typing a different name into the Variable name for result field. In the command line, you can set the
result name as you call the task, as was done in all the example above and other examples below.

All other parameters have default values, as described below. Depending on your science goals and
your data, it is expected that you will to modify the defaults parameter values.

• size

As described above, for the size parameter, you should fill in the size of your source, in arcsec.
The meaning of size depends on what you assume for your source geometry (see next bullet).
For shape=disk, the size is the diameter of your source, while for shape=gaussian, the
size is the FWHM of your source.

This is a mandatory parameter, so for a point source you must specify size=0.0.

Note that you must include a decimal point, so size=10. or size=10.0 rather than size=10,
in order for the task to work.

• shape

The conversion can be made assuming a disk (top-hat), or Gaussian morphology for the source. The
latter is generally more appropriate for the semi-extended sources typically observed with HIFI.
The default is to assume a disk shape.

To change the parameter in the GUI, type gaussian or disk. In the command line, it is used
like this:

MyConvertedObs = convertK2Jy(obs=obs, size=10.0, shape='gaussian')

• inputShape

A user-provided source brightness distribution model can be provided by the user using this option.
This option will only work if the option hifiBeam is selected, i.e. when the detailed 2-D HIFI
beam is used. When such an input is provided, the source coupling factor (see below) is will be the
same for each position contained in the input products, and is computed at the averaged position
of the products passed in, see Figure 18.1. For a mapping observation, this means that the same
correction will apply to all positions, and this correction is computed from the coupling to the source
model at the centre of the mapped area. This behaviour is similar to what is done when e.g. a simple
Gaussian or Disk source model is used.

• reverse

The convertK2Jy task adds a new matadatum at the SpectrumDataset level called temper-
atureScaleOrigin, with the original temperature scale (T_A*, T_A', T_MB) as a value. This meta-
data item can then be used by the task in order to reverse the calculation back from Jy to the original
temperature scale.

To use the reverse option, check the reverse box in the GUI. In the command line use:

MyObs = convertK2Jy(obs=MyConvertedObs, size=10.0, shape='gaussian',
 reverse=True)

Note that you need to provide the same size and shape values as used in the conversion to Jy
in order to get correct results.

• overwrite

232

Unit conversions Build 15.0.3244

The data in an observationContext will always be overwritten, in order to conserve memory.
In the cases of HTP, SpectrumDataset, or SimpleSpectrum, you can choose not to over-
write the input data. In the GUI, do this by unchecking the overwrite box. In the command line,
set overwrite=False.

• cal

If you pass an observationContext to convertK2Jy, it will automatically use the beam
widths and beam efficiencies found in the Calibration Tree. If you want to use the beam parameters
from the calibration tree to convert fluxes in an HTP, SpectrumDataset, or SimpleSpec-
trum, you need to pass the calibration tree directly to the task.

Extract a calibration context from an observation context named obs
cal = obs.getCalibration()
Pass the calibration to convertK2Jy
convertedHtp = convertK2Jy(htp=htp, size=10.0, shape='gaussian', cal=cal)

In the GUI, you can drag the calibration context from an observationContext viewed in the
Context Viewer into the Variables panel. From there, drag the variable created to the cal bullet.

If you pass an HTP, SpectrumDataset, or SimpleSpectrum to convertK2Jy and do not
specify a calibration context to use, the task will use hard coded values to calculate ηA and ηB for
the conversion. See below for more details about the calculations carried out by convertK2Jy.

• useInterpolation

You can force convertK2Jy to use the hard-coded values to calculate ηA and ηB by checking the
useInterpolation box in the GUI. In the command line, use useInterpolation=True.

The forward and beam efficiencies are calculated in the following way:

ηA=ηA0 × exp[-(4 × π × σ/λ)
2]

ηB=ηB0 × exp[-(4 × π × σ/λ)
2].

where, σ = 3.8 micron, ηA0 = 0.68 and ηB0 = 0.76, in bands 1-4, 6 and 7 and ηA0 = 0.58 and ηB0
= 0.66, in band 5

The frequency used to determine λ in the expressions above is printed out to the console, along
with the values found for ηA and ηB.

• useLo

You can choose whether the calculations are made using the LO frequency (or frequencies) in the
observation, or the frequency of each spectrum with the useLo parameter. Using the LO frequency
(useLo=True) is most efficient, and the recommended approach for all types of observations,
except Spectral Scans. In the case of Spectral Scans, where the LO frequency changes for each
spectrum at Level 2, it is recommended to use useLo=False. In the GUI, this option is toggled
on and off via a check box.

• tol

You can limit (or increase) the number of calculations convertK2Jy does with the tol param-
eter. This is the delta frequency for the calculations of the forward and beam efficiencies so, for
example, a tol=0 will result in a calculation for every LO or spectrum frequency in the dataset.
The default value is 0.1 and it takes the units the data are in. However, the default value is chosen
assuming that Level 2 data is passed to the task.

To change this parameter in the GUI, type a new value in the tol parameter field. In the command
line, use tol=your value.

233

Unit conversions Build 15.0.3244

• hifiBeam

By default, convertK2Jy uses the values of the HIFI beam model introduced to the calibration
tree in HIPE 13, and the parameter hifiBeam is set to True. If you prefer to use the old (Gaussian)
model and efficiencies, you can set hifiBeam=False. In the GUI, do this by unchecking the
tick box.

It is strongly recommended to use the new beam model, see the release note for more details. The
possibility to use the Gaussian beam assumption is provided for backwards compatibility, and to
allow the task to be used with data from another instrument (in which case the appropriate beam
width and efficiencies must be passed manually to the task).

Figure 18.1. Illustration of the beam coupling computation in case of a user-provided source brightness
distribution model. In this case, the model is passed as a PACS continuum image (background image) and
the corresponding position of the HIFI observations where it is computed is shown as a circular footprint
of the size of the HPBW.

The temperature values in the spectrum are converted by convertK2Jy from TA* or TMB to TA'
using the forward and beam efficiencies available from the calibration tree or hard-coded values,
as described above. The conversion to Jy is dependent on the size of your source, and is computed
differently for point sources and extended sources.

• Point source (size=0.0)

where S is the Energy flux expressed in Jansky, TA' is the Antenna Temperature measured in Kelvin,
k is the Boltzmann's constant, and ηA is the aperture efficiency. Ageom is the effective area of the
telescope, which we take to be 3.283 m, so Ageom = 8.465091 m2.

• Extended source (size >0.0).

For extended sources, assumptions about the HIFI beam and the source geometry become important
and a flux dilution factor, K, is introduced into the expression above:

234

Unit conversions Build 15.0.3244

The flux dilution comes from the ratio of the beam and source solid angles. The following expres-
sions are extracted from the HIFI beam model release note , to which you are directed for a detailed
discussion.

The source solid angle is given by:

the beam-weighted solid source angle by:

and the total integrated source flux by:

The computation of K depends on the assumption made about the HIFI beam profile.

• HIFI beam model

If the (non-Gaussian) beam model is employed (hifiBeam=True), the integrals above are
performed numerically, using the source shape as specified by the shape and size parameters,
and using the beam model extracted from the calibration tree. Note that due to the azimuthal
symmetry of the source models (and the fact that central pointing is assumed), the azimuthal
integral does not depend on the source. Equivalently, for our assumptions on the source, the 1D
beam model can be used without loss of generality (see Chapter 8 for more information about
the 1D and 2D beam models). This is done by convertK2Jy.

• Gaussian beam assumption

If hifiBeam is set to False then covertK2Jy uses a less accurate Gaussian beam assumption.
In this case, the integrals defining K can be performed analytically for the assumption of a disk
or a Gaussian source geometry as follows:

• shape=disk

• shape=gaussian

where,

and

235

Unit conversions Build 15.0.3244

with S, TA', ηA, and Ageom as above, and ηB is the main beam efficiency.

• shape=user-provided

236

Build 15.0.3244

Chapter 19. Combining H- and V-
polarisation Spectra

Last updated: 21 October, 2015

19.1. Introduction
You may wish to average H- and V-polarisation data together in order to improve the signal-to-noise.
You should average H- and V-polarisation data if you wish to compare the signal-to-noise with the
noise estimates provided by HSpot, which are calculated assuming that the Level 2 H and V spectra
are averaged. H- and V-polarisation HIFI data do not have exactly the same frequency scale (there is
a small offset) so a convolution should be made prior to averaging in order to calculate an accurate
channel by channel average. The polarPair task does this for you.

Note, however, that differences may be seen in H and V profiles as a consequence of the beam sepa-
ration between the H and V polarisations, and of structural and/or velocity variations in your source. If
you are particularly interested in the spatial structure of your source, you may prefer not to average the
H and V polarisations together, at the cost of signal-to-noise. More detailed information is provided in
the HIFI AOT Observing Mode Release and Performance Notes v3.0 (24 September 2011), available
from the HIFI instrument and calibration web pages.

19.2. Using the polarPairs task
Warning

The polarPairs task has been modified in HIPE 12 to enable it to be used as part of
the pipeline and to bring its syntax in line with other Spectrum Toolbox tasks. The syntax
used prior to HIPE 12, e.g.

pp_wbs = PolarPair(wbs_h, wbs_v)
wbs_av = pp_wbs.avg()

will not fail but can now produce incorrect results. The reason for this is still being inves-
tigated.

Be assured that polarPairs worked correctly in previous HIPE versions but it is rec-
ommended to use the new syntax from HIPE 12 onwards.

The polarPairs task can be used for all types of HIFI spectra and spectral cubes, and also for
HIFI TimelineProducts (HTP). The task associates a pair of H- and V-polarisation spectra in order to
compute their average or their difference. The algorithm used convolves one spectrum on the other,
insuring a perfect channel-by-channel association without any spectroscopic resolution loss. The av-
erage and difference takes also into account channel weights.

The polarPairs task checks that each pair of H- and V-polarisation spectra have consistent LO
frequency and pointing positions. This ensures, for example, that all the data in a spectral cube is not
collapsed or that data at different LO settings are not averaged together in the case of Spectral Scans.

In the command line, the polarPairs task is used to calculate the average(s) in the following ways
for Spectrum Containers (Spectrum Datasets and Spectral Cubes) and HTP, respectively:

average_spectrum = polarPair(ds1=spectrum_h, ds2=spectrum_v)
average_htp = polarPair(htp=htp_h, htp2=htp_v)

You can find the difference in the pairs of spectra in the following way:

237

Combining H- and V-polarisation Spectra Build 15.0.3244

average_spectrum = polarPair(ds1=spectrum_h, ds2=spectrum_v, difference=True)
average_htp = polarPair(htp=htp_h, htp2=htp_v, difference=True)

The task can also be used via a GUI interface, which can be found in the Tasks panel under Applicable
if you have an HTP selected in the Variables panel. In the cases of Spectrum Datasets and Spectral
Cubes, you have to look under the All menu in the Tasks panel.

In the command line, it is also possible to compute the average (or difference) for a given segment
(subband):

average_spectrum = polarPair(ds1=spectrum_h, ds2=spectrum_v)
Get the average for just the third subband
av_subband3 = avg(ds=average_sectrum, segments=[3])

Note the following:

• In the case of HTPs, the first HTP passed to the task - the H polarisation in the example above - is
overwritten with the average. If you want to retain the original HTP, you should work on copies.

• The result contains only changed fluxes. Header information (metadata) are not adapted. This re-
mark is particularly relevant for the integration time given in the averaged spectrum.

Task details

The order of the datasets or HTP determines the frequency grid of the result. In the examples above, the
V-polarisation spectra will be convolved over the H-polarisation spectra. New V-polarisation spectra
(called V* hereafter) is calculated with exactly the same frequency grid as the H-polarisation spectra.
V* and H are then averaged or differenced.

Given a middle frequency ν0 of a channel i in the H dataset, the corresponding V* channel is given by:

V* [i] = Σ[j=0..N] V[j]*exp(-(ν[j]-ν0[i])2/2*σ[i]2) / Σ[j=0..N] exp(-(ν[j]-ν0[i])^2/2*σ[i]^2)

where N is the number of channels in V and σ is set so that the FWHM of the Gaussian corresponds
to the channel width in H.

Computing V over H takes N*N operations, which can be a lengthy procedure. As only channels near
ν0 significantly contribute to the V* channel value, this sum can be reduced to a limited number of
channels around ν0 by setting a tolerance.

If H and V are shifted in frequency, a minimal tolerance is required for a correct convolution which
is equal to the number of channels corresponding to the shift. However, if the tolerance is too small,
the final averaged dataset may contain NaNs only. The default value of the tolerance is set to 100 but
if you wish to modify this, you can do so with the tolerance argument. For example, below we
change to tolerance to 140 channels.

average = polarPair(ds1=spectrum_h, ds2=spectrum_v, tolerance=140)

Note

If you wish to combine maps, you should use the task mergeHtp as it was specifically
developed for combining maps (see Section 15.3.2 for further details).

238

Build 15.0.3244

Chapter 20. Fitting Spectra
Spectral fitting is described in the Spectral fitting chapter of the Herschel Data Analysis Guide.

When working interactively with the SpectrumFitterGUI, it is important to remember that the Spec-
trum Fitter will work only with a single SpectralSegment. HIFI data contain one SpectralSegment per
subband; four for the WBS, and up to sixteen, depending on the setting used, for the HRS. Graphically,
SpectralSegements can be plotted individually by clicking on only one box in the SpectrumExplorer
selector panel.

You may find it easiest to Stitch together the HIFI subbands, and/or Extract the range of interest before
using the SpectrumFitterGUI.

239

Build 15.0.3244

Chapter 21. The HIFI line
identification tool

Last updated: 24 November, 2015

21.1. Introduction
The identifyLines task allows you to identify lines in your spectrum and then run a comparison
of known lines with a linelist.

Prior to using the task, you must have cleaned your spectrum (no fringes, no spurs, etc...). Please visit
Section 1.1.4 to learn more about the data reduction steps.

This chapter is divided in four sections:

• Basic usage: This is where you will find the minimum instructions you need to identify the lines
in a spectrum.

• Advanced usage: If you want to get the maximum out of the line identification task.

• A guided tour: The line identification task comes with handy functionalities for handling, filtering,
and visualising your lines. This section will teach you how to do that.

• The exportLines task: Once the identifyLines task terminates, you can then export the results
using the exportLines task into a SpectralLineList.

Note

In this chapter, we will use, as an example, a spectrum from Orion, more specifically, Ori-
on South in band 1a between 485 and 490 GHz. We have made accessible, from the HIFI
Instrument and Calibration Web page, the spectrum (in FITS format), the CASSIS linelist
(for band 1a, in ascii format - therefore reproducible with other lines of your choice), and
a script (please remove the extension '.txt' prior to using the script) to help you practice.
You can thus eventually create your own spectrum and linelist.

Initialisation

You will need to set the correct path to line_identification_guide/data using these command lines:

import os
from herschel.hifi.dp.tools.linelist import Linelist

#
The path to the directory (here called 'line_identification_guide/data') where the
 Spectrum1d fits
and the CASSIS linelist (of the known lines) files are stored.
#

INPUT_DATA_DIR = "yourpathdirectory/line_identification_guide/data"

21.2. Basic Usage
The identifyLines task is applied on a Spectrum1d and once selected, you will find identi-
fyLines in the Applicable Tasks menu where you can open the GUI from there (see Figure 21.1).
You can also open the GUI from the HIFI list of tasks under By Category. A table with the list and
definition of each parameters can be found at the end of this section.

240

The HIFI line identification tool Build 15.0.3244

Figure 21.1. IdentifyLines task GUI

The identifyLines task can also be used with a series of command lines. The rest of the chapter
will make use of the command lines.

In order to identify the lines in a spectrum you need at least 4 components:

• a spectrum: the Spectrum1d for which we want to identify the lines (see Figure 21.2)

• a linelist: the path to the CASSIS linelist file used as the known lines. Please note that HIPE has
a linelist in the build and can be used by default (leave the parameter linelist unset).

• a vlsr: the VLSR of the source in km/s

• identifyLines: the task for the line identification

The first three components are the data, and are called as follow:

Instructions on how to obtain the spectrum1d, the lineList, and the script used
 as an example
in this chapter are found in the Section 21.1.

The Spectrum1d fits file
spectrum = fitsReader(os.path.join(INPUT_DATA_DIR,
 "Orion_S_baselined_485_490.fits"))

The CASSIS linelist of known lines
linelistFile = os.path.join(INPUT_DATA_DIR, "16293_SIS.txt")

The VLSR (in km/s), here, specifically for Orion
vlsr = 6.7

Figure 21.2. The spectrum1d of Orion South in band 1a

241

The HIFI line identification tool Build 15.0.3244

The line identification is performed with the task identifyLines. You pass the data defined above
to the task:

In our example, vlsr is already set to vlsr = 6.7 (see previous script)

lines = identifyLines(data=spectrum, linelist=linelistFile, vlsr=vlsr)

You then get the identified lines, unidentified lines (only if there is at least one), and the baselined
spectrum:

identified = lines["identified"]
unidentified = lines["unidentified"]
baselinedSpectrum = lines["baseline"]

Whilst the command:

lines = identifyLines(data=spectrum, linelist=linelistFile, vlsr=vlsr)

may be enough to perform the line identification, it makes many assumptions and sets default values
to the optional parameters. You may want to have more control on what is actually happening. This
is what we describe further down in Section 21.3. If you want to learn how to work with the resulting
lines, please consult Section 21.4.

Parameter Comment default value
box The input smooth box used by

smoothBaseline in the de-
tection step.

200

calibration The calibration of the instru-
ment used in the computation of
the noise flux. Used in the fil-
tering step.

0.1

data The Spectrum1d that contains
the lines to identify.

fwhmAbsorption The FWHM values (in km/s)
for the absorption lines. This
value is used for the computa-
tion of the noise flux in the cri-
terion for filtering real lines.
Used in the filtering step.

1.0

fwhmEmission The FWHM values (in km/s)
for the emission lines. This val-
ue is used for the computation
of the noise flux in the criterion
for filtering real lines. Used in
the filtering step.

3.0

lines The detected lines output file.

linelist The path to the linelist file. De-
fault is to leave unset, the task
will then use the linelist already
present in the build.

midcycle The middle of the frequency
range in the fringe search (per
inverse wavenumber in mi-
cron). Used by smoothBase-
line in the detection step.

1700000.0

242

The HIFI line identification tool Build 15.0.3244

Parameter Comment default value
minSNR The minimum signal-to-noise

ratio for which the filtered line
is accepted. Used in the filtering
step.

5.0

nbOfSplits The number of shorter spec-
tra of the same size to create
from the initial wide spectrum.
Splitting the initial spectrum
has 2 benefits: 1) the fit of the
baseline is better, which slight-
ly improves the detection, 2)
the number of channels to be
processed by smoothBase-
line is reduced, which great-
ly improves its speed. If you do
not want the data to be split, set
nbOfSplits = 1.

4

overlap The overlap (in GHz) between
the split spectra. Overlapping
the spectra prevent the loss of
lines between 2 consecutive
spectra.

0.25

smoothBox The number of points on which
the smoothing is done during
the separation.

7

toleranceFactorEmi The tolerance factor for the
emission lines. The tolerance
factor allows to determine how
the detected frequency should
be compared to the known fre-
quency. In particular, it defines
a frequency range in which the
comparison is done. The known
line within this frequency is
then associated to the detected
line.

1.5

toleranceFactorAbs The tolerance factor for the ab-
sorption lines. The tolerance
factor allows to determine how
the detected frequency should
be compared to the known fre-
quency. In particular, it defines
a frequency range in which the
comparison is done. The known
line within this frequency is
then associated to the detected
line.

1.5

vlsr The vlsr of the source in km/s.

width The width of the region (in
GHz) on which the RMS is
computed around the line. Used
in the filtering step.

0.05

243

The HIFI line identification tool Build 15.0.3244

Parameter Comment default value
snrType The signal to noise ratio calcu-

lation algorithm (Intensity or
Flux).

Intensity

To obtain details about all the parameters, you can also type:

print identifyLines.__doc__

or read the corresponding entry in the HIFI User Reference Manual.

21.3. Advanced Usage
identifyLines allows you to determine how the different steps of the identification must be per-
formed through several optional parameters. Before introducing them, it is necessary to understand
what identifyLines does.

The line identification is a 2-step process:

• the lines are detected:

• In order to optimise the quality and the speed of the detection, the spectrum is split into N smaller
spectra (nbOfSplits) with a given 'overlap'.

• The detection is performed by smoothBaseline which needs a box value for the smoothing
and a midcycle value (see smoothBaseline).

• The detected regions of lines are then separated using a boxcar smoothing (smoothBox) and a
slope detection algorithm.

• All the lines that are detected may not be real lines but noise, so a filter using a minimal signal-to-
noise ratio (minSNR) is necessary to keep only relevant lines. The signal-to-noise ratio is com-
puted with an estimation of the FWHM of the lines (fwhm), the calibration value of the instru-
ment, and the width of the region around the line used to compute a local RMS.

• these detected lines are then compared with the known lines (linelist):

• Basically, each detected line is compared with each known lines, and if the frequency between
the detected line and a known line is inferior to a given tolerance, the detected line is identified
otherwise it is unidentified.

Using the parameters table found in the "basic" section (see Section 21.2), we can re-write the basic
command line:

lines = identifyLines(data=spectrum, linelist=linelistFile, vlsr=vlsr)

into an extended form (here, using the default values):

lines = identifyLines(data=spectrum, linelist=linelistFile, vlsr=vlsr, \
 box=200, midcycle=1.7E6, nbOfSplits=4, fwhmEmission=3.0, \
 fwhmAbsorption=1.0, toleranceFactorEmi=1.5, toleranceFactorAbs=1.5, \
 calibration=0.1, minSNR=5.0, width=0.05, overlap=0.25, \
 smoothBox=7, snrType="Intensity")

If you do not set 'linelist', the task will use the default linelist present in
 the build

244

The HIFI line identification tool Build 15.0.3244

followed by:

identified = lines["identified"]
unidentified = lines["unidentified"]
baselinedSpectrum = lines["baseline"]

to obtain the identified lines, the unidentified lines, and the baselined spectrum.

The identification is then finished. Identifying your lines is one thing, analysing what was identified is
another story. Fortunately, the line identification tool comes with a few functions that may be helpful.
The next Section 21.4 will teach you about those functions.

21.4. A guided tour
This section will teach you about:

• Getting to know your lines

• Saving and plotting

• Looking closer

• Adding and removing lines

• Loading your lines

From here, you should read the comments and run the code line by line to make sure you understand
everything.

Getting to know your lines

Let's look at the identified lines. The variable identified is a Linelist (a data structure containing Line
objects):

print identified

You should see the number and the species of the lines. If you want to print more details for each
line, use the inspect method:

identified.inspect()

Note

inspect does not return anything, it just prints the result.

Sometimes, a table is more handy:

table = identified.toTable()

If you open table in the Dataset viewer you will see the same result as with inspect but this time, each
line is in a row, and each attribute of a line is in a column. If you want to get, for example, the sky
frequency of all the lines, you can use:

245

The HIFI line identification tool Build 15.0.3244

print table["skyFrequency"].data

But you can also use:

print identified.get("skyFrequency")

Working with the Linelist has other advantages. You can select the lines with a specific attribute. For
example, this is how you can select all the A-CH3OH lines:

print identified.select(species="A-CH3OH")

This command returns a Linelist, which means that you can apply all the methods you know so far,
including select:

ach3oh = identified.select(species="A-CH3OH").select(maxAmplitude=[0.7, 0.9])
print ach3oh

You have just selected all the A-CH3OH lines, whose maximum amplitude is between 0.7 and 0.9
K. You can check it is true with:

print ach3oh.get("maxAmplitude")

If you want more details about the command select, type print identified.select.__doc__.

Saving and plotting

If you are happy with the lines you have (we will assume you are), you can save them in a FITS file
so that you can use them later.

ach3oh.saveLinesTo("ach3oh_lines.fits")
identified.saveLinesTo("identified_lines.fits")

saveLinesTo saves all the lines in a TableDataset into a FITS file. For a CSV file, use '.csv' instead
of '.fits' if you prefer CSV.

So far you just used numbers and tables. You can have a spectrum of the lines by using the spectrum
method:

ach3ohSpectrum = ach3oh.spectrum(data=baselinedSpectrum)

or just plot them with plot:

ach3oh.plot(data=baselinedSpectrum)

246

The HIFI line identification tool Build 15.0.3244

Figure 21.3. Plot example for identifyLines

Note

You need the baselined spectrum (or at least a spectrum) for 'spectrum' and 'plot'. We will
explain why later as it involves some details on how the Line was implemented.

The same way you used saveLinesTo to save your lines to a file, you can save your spectrum to a file
with saveSpectrumTo:

ach3oh.saveSpectrumTo("ach3oh_spectrum.fits", spectrum=baselinedSpectrum)

You probably noticed that the spectrum created is just a continuum at 0 K except where the lines were
detected. Let us choose the first line and see what we can learn.

Looking closer

It was mention earlier that a Linelist contains Line objects. A Line just stores information about the
line detected in your spectrum. In order to get a line, specify its index (starting from 0):

print ach3oh[0]

In fact, you can treat the Linelist like any other iterable you are used to. For example, you can iterate
on it with a 'for' loop:

for line in ach3oh:
 print line

As for a Linelist, if you want to know in details the attributes of this line, just use inspect:

247

The HIFI line identification tool Build 15.0.3244

print ach3oh[0].inspect()

All these attributes are easily accessible. For example, you want to get the signal-to-noise ratio (snr)
of this line, you just specify this attribute:

print ach3oh[0].snr

Linelist and Line share some methods like plot and spectrum. So you can plot this line with the plot
method:

ach3oh[0].plot(data=baselinedSpectrum)

Figure 21.4. Plot example for identifyLines with specifying an index number

and obtain the corresponding spectrum with the spectrum method:

ach3ohSpectrum = ach3oh[0].spectrum(data=baselinedSpectrum)

One remark about these 2 methods and the philosophy behind the Line object. As you saw earlier, a
Line object just has information about the line in the spectrum, not the spectrum itself. The attribute
allowing to bind the line and the spectrum is the frequency range. This is why the methods plot and

248

The HIFI line identification tool Build 15.0.3244

spectrum need the spectrum as argument in order to select only the part of the spectrum within that
frequency range.

Adding and removing lines

Any convenient data structure allows you to add or remove elements, so does the Linelist. First, let's
create an empty Linelist:

from herschel.hifi.dp.tools.linelist import Linelist
myLinelist = Linelist()

You can add a Line or a Linelist into this Linelist with add. Here, we add all the A-CH3OH lines
and the H2CS line:

ach3ohAll = identified.select(species="A-CH3OH")
h2cs = identified.select(species="H2CS")
myLinelist.add(ach3ohAll)
myLinelist.add(h2cs)

If we now look at the Linelist, there should be 5 lines in it:

print myLinelist
print len(myLinelist)

You could have had the same result by removing the CS, v=0-4 line from our initial Linelist with the
method remove:

cs_v0_4 = identified.select(species="CS, v=0-4")
identified.remove(cs_v0_4)

Note

You could also have removed it with its index (i.e. 5):

identified.remove(5)

You must be careful with remove because it removes permanently the lines from the Linelist. If you
want to make a copy of your Linelist, you can do it by creating a new Linelist with the lines you want
instead of leaving it empty:

identifiedCopy = Linelist(identified)
print identifiedCopy

To remove all the A-CH3OH lines:

identified.remove(ach3ohAll)

To print the result:

print "The original linelist has %d lines." % len(identified)
print "The copied linelist has %d lines." % len(identifiedCopy)

You can see that identified does not have A-CH3OH lines anymore, and identifiedCopy is not mod-
ified.

249

The HIFI line identification tool Build 15.0.3244

Loading your lines

It is generally a good idea to save your lines so you can reload them if you want to share them, or if
something goes wrong. Fortunately, this is what you did in the Saving and Plotting section above.
You can load all the lines you had at the beginning with loadLinesFrom.

First you create an empty Linelist that will be populated by the lines that you will load from the file
identified_lines.fits:

originalLines = Linelist()
originalLines.loadLinesFrom("identified_lines.fits")

21.5. The exportLines Task
The exportLines task was designed to export the results from identifyLines into a Spec-
tralLineList.

In order to use it, you need to set some parameters:

Parameter Comment default value
lines The results from identify-

Lines.
None

obs The observation context which
contains the Spectrum1d used in
identifyLines.

None

spectrum The spectrum used as data in
identifyLines.

None

author The author name. None

calibration The calibration of the instru-
ment used in the computation of
the noise flux.

0.1

Get the observationContext
obs = getObservation(obsid=1342203743, useHsa=True)

or from your localStore
obs = getObservation(obsid=1342203743, poolName="1342203743")

hslls = exportLines(lines=lines, obs=obs, spectrum=spectrum, author="AUTHOR_NAME",
 calibration=0.1)

After that, you can get the results with the same Linelist elements from lines:
hsllsIdentified = hslls["identified"]
hsllsDetected = hslls["detected"]

21.6. Line assignment: the identifyLinesCata-
log task

A new task has been introduced, that allows to perform automatic line assignment based on an input
catalogue of detected spectral features: identifyLinesCatalog in HIFI User's Reference Man-
ual. This task relies on a default catalogue of spectral lines, that is provided together with the HIPE
software. Alternatively, a smaller line list can also be used. This file can be adopted to the users need,
and then passed as input to the task. Since the line species catalogue provides frequencies in the local
standard of rest, a velocity needs to be provided. This task can e.g. work on spectral feature catalogues
from SPIRE, PACS, or any other facility. It can take as input tables with line positions in frequency

250

The HIFI line identification tool Build 15.0.3244

(GHz), wavelengths (microns) or wavenumber (cm-1). See the task reference manual in
HIFI User's Reference Manual for further details.

251

Build 15.0.3244

Chapter 22. Making Publication
quality plots

Last updated: Feb 18, 2011

Within HIPE you have the possibility to make publication quality plots graphically with Spectrum
Explorer or via scripts. The ways to do this are described within several chapters in the HIFI Data
Reduction Guide and the Herschel Data Analysis Guide. This chapter pulls this information together
in a way that is relevant for HIFI data.

Probably the most efficient and customisable way to make plots is to use the PlotXY package, which
is described in full detail in the Plotting chapter of the Herschel Data Analysis Guide. Below is a
script which shows how to make this figure.

Figure 22.1. Plot example produced by the provided script

Script to create publication quality plots

Get data from HSA and extract Level 2 WHS-H, WBS-V, and HRS_H USB spectra
obs = getObservation("1342190183", useHsa=True)
L2_wbs_h_u = obs.refs["level2"].product.refs["WBS-H-USB"].product.refs \
["box_001"].product["0001"]
L2_wbs_v_u = obs.refs["level2"].product.refs["WBS-V-USB"].product.refs \
["box_001"].product["0001"]
L2_hrs_h_u = obs.refs["level2"].product.refs["HRS-H-USB"].product.refs \
["box_001"].product["0001"]

First make a copy of the original datasets so that they are not overwritten
wbs_h_u = L2_wbs_h_u.copy()
wbs_v_u = L2_wbs_v_u.copy()

252

Making Publication quality plots Build 15.0.3244

hrs_h_u = L2_hrs_h_u.copy()

Convert to velocity, the strong line is CO(5-4) (576.268 GHz)
convertWavescale(ds=wbs_h_u,to="km/s",reference=576.268,referenceUnit="GHz")
convertWavescale(ds=wbs_v_u,to="km/s",reference=576.268,referenceUnit="GHz")
convertWavescale(ds=hrs_h_u,to="km/s",reference=576.268,referenceUnit="GHz")

Add 5 to the WBS-V spectrum to create an offset
wbs_v_5 = add(ds=wbs_v_u,param=5.0)

PlotXY works with Numeric1d (e.g. Double1d) data so you need to extract
the numbers from the SpectrumDataset and you need to extract the x (wave)
and y (flux) axes separately.
The CO line appears in subband (segment) 2 of the WBS, the HRS was set up
in the observation to have only one subband
wbs_h_wave = wbs_h_u.getPointSpectrum(0).getSegment(2).getWave()
wbs_h_flux = wbs_h_u.getPointSpectrum(0).getSegment(2).getFlux()
hrs_h_wave = hrs_h_u.getPointSpectrum(0).getSegment(1).getWave()
hrs_h_flux = hrs_h_u.getPointSpectrum(0).getSegment(1).getFlux()
wbs_v_wave = wbs_v_5.getPointSpectrum(0).getSegment(2).getWave()
wbs_v_flux = wbs_v_5.getPointSpectrum(0).getSegment(2).getFlux()

Alternatively, stitch subbands so that can plot all the subbands, this gives
you one segment to extract, e.g.:
wbs_v_st = stitch(ds=wbs_v_5,edgeTolerance=0.01,stepsize=0.0,unit="km/s")
wbs_v_wave = wbs_v_u.getPointSpectrum(0).getSegment(1).getWave()
wbs_v_flux = wbs_v_u.getPointSpectrum(0).getSegment(1).getFlux()

Create plot. This is done in batch mode so that the plot is not updated
everytime you add a layer (p.batch=1 starts batch mode, p.batch=0 stops it
and creates the plot)
p=PlotXY()
ll=[]
Make a blue dashed line (line=3) line, with thickness (stroke) 1.5
l = LayerXY(wbs_h_wave, wbs_h_flux, color=java.awt.Color.BLUE, line=3, \
stroke=1.5, chartType=Style.HISTOGRAM)
ll.append(l)
Make a red solid (line=1) , thickness 0.75
l = LayerXY(hrs_h_wave, hrs_h_flux, color=java.awt.Color.RED,line=1, \
stroke=0.75, chartType=Style.HISTOGRAM)
ll.append(l)
Make a black solid line, thickness 1
l = LayerXY(wbs_v_wave, wbs_v_flux, color=java.awt.Color.BLACK,line=1, \
stroke=1, chartType=Style.HISTOGRAM)
ll.append(l)
p.layers=ll

Now set the axes limits and titles
p.xaxis.range = [-50.0, 50.0]
p.yaxis.range = [-1, 16]
Latex options are available but an extra backslash is needed
from java.awt import Font
p.xtitle = "V$_{\\textrm{LSR}}$ (km s$^{-1}$)"
p.ytitle = "$T_{\\textrm{A}}^{*}$ (K)"

You might want to draw a zero level line for each plot.
Create a "zero spectrum" by subtracting one from itself
zero = wbs_h_u - wbs_h_u
You can add five to it to create a line at y=5
five = zero + 5.0
Now we have to extract the numbers again, make sure to
use the same segment as used to plot data from
z_wave = zero.getPointSpectrum(0).getSegment(2).getWave()
z_flux = zero.getPointSpectrum(0).getSegment(2).getFlux()
f_wave = five.getPointSpectrum(0).getSegment(2).getWave()
f_flux = five.getPointSpectrum(0).getSegment(2).getFlux()

Now add these to the plot we already made
l = LayerXY(z_wave, z_flux, color=java.awt.Color.BLACK,line=1, \

253

Making Publication quality plots Build 15.0.3244

stroke=0.5, chartType=Style.HISTOGRAM)
ll.append(l)
p.layers=ll
l = LayerXY(f_wave, f_flux, color=java.awt.Color.BLACK,line=1, \
stroke=0.5, chartType=Style.HISTOGRAM)
ll.append(l)
p.layers=ll

Annotate plot
Clear any old annotations first (helpful if you need to move annotations)
p.clearAnnotations()
Annotations are placed using plot location (x,y)
p.addAnnotation(Annotation(30,5.5,"WBS-V",color=java.awt.Color.BLACK))
p.addAnnotation(Annotation(30,1.0,"WBS-H",color=java.awt.Color.BLUE))
p.addAnnotation(Annotation(30,0.4,"HRS_H",color=java.awt.Color.RED))

Add a title
p.setTitleText("CO(5-4) with HIFI")

Now save
p.saveAsEPS("Fig1.eps") # Encapsulated PS

You can also saveAsPNG, JPG or PDF, and set a path
p.saveAsPNG("Fig1.png") # Encapsulated PNG
p.saveAsPDF("Fig1.pdf") # Encapsulated PDF

There is also another scripting package for plotting called SpectrumPlot (or splot), which is described
in Section 6.4. Splot is simpler to use but is still limited in some capabilities.

You can use SpectrumExplorer to:

• Plot multiple spectra by dragging spectra from the Variables view into the plot.

• Modify the line (colour, style and thickness) and symbol (shape, size and colour) in the properties
dialogue. You can also provide a name for the line that will appear in the legend below the plot.

To do this, hover your mouse over the spectrum until you see a dot the same colour as the line you
want to modify next to spectrum [name...] beneath the plot, and select properties from the
right click menu.

To change the line colour is not so obvious: click on the coloured square and then on the grey box
that appears to the right. Then select your preferred colour from the grid.

Property changes may require you to hit return before taking effect.

If you have multiple spectra plotted you can hover over a different spectrum and 'shift-click' to
switch the dialogue to the properties for that spectrum.

• Similarly, you can modify the properties of the axes (labels and tick marks), and of the plot itself
by right clicking over those regions.

• You can add an auxiliary axis and change the units displayed. To do this, right click on the axis
(top or bottom) and select 'Axis->add aux axis'. A new axis with the same units as the main axis
will be displayed.

To change the units right click on the axis again and select 'Axis->set unit'. To convert between
frequency and velocity you will need to supply a reference value. Note that this is a display function
only, the data itself is not changed.

You may wish to right click on the axis title and change it to a more appropriate name via the
properties menu.

• You can print or save the plot by right clicking on the plot and selecting the file menu. You can
save as eps, png, pdf or jpeg.

The displayed plot is printed/saved; a zoom on the plot is retained.

254

Making Publication quality plots Build 15.0.3244

An example of what can be done using SpectrumExplorer is shown below. The same data as used in
the script above is plotted.

Figure 22.2. Same result as above but if plotting with Spectrum Explorer

255

Build 15.0.3244

Chapter 23. Exporting HIFI data to
CLASS

Last updated: 22 November, 2016

23.1. Processing version from HIPE 12 on-
wards: direct FITS reading

If you are using a Gildas version later than oct15, it is possible to read HIFI FITS files directly from
CLASS. This will, however, only be true for products generated from HIPE 12 onwards. For older
products, you should use the hiClass task (see next section). The direct conversion will apply
both to level 2 and level 2.5 products from the Archive, as well as any equivalent products generated
from HIPE using e.g. FitsArchive(). Also, don’t forget that the FITS in Level 2 and 2.5 observations
downloaded from the HSA are gzipped. To test if the FITS are properly un-zipped before reading to
CLASS, the user could try a utility like ‘fv’ (FITS Viewer) particularly good for spectra, or ‘ds9’ for
spectral cubes

 Because the CLASS header expects a pre-defined set of meta-data, all meta-data need to be filled
when the products is imported. If some of those are missing, they will be set to default values in
CLASS. This can happen for some meta-data that were not introduced in the 12 and 13 version of
the HCSS products. An example is shown below where such missing meta-data are reported in a set
of warning messages.

Example of direct reading from a HIFI FITS file
LAS> file out spectra.hifi mul
LAS> fits read HIFI_SScan_Spec1d.fits
I-FITS, Found the Basic HDU.

I-FITS, Found a Binary Table in extension #1
I-FITS, Importing data from the 'frequency' and 'flux' columns

I-FITS, Found a Binary Table in extension #2
W-FITS, No relevant data in this HIFI extension, skipping

W-FITS, Skipping remaining extensions

W-FITS, --- Warning summary (all extensions) ---
W-FITS, Column flag not found, channel flags defaults to 0
W-FITS, Metacard rowflag not found, row flags defaults to 0
W-FITS, Metacard bbtype not found, R%HEAD%GEN%SCAN defaults to 0
W-FITS, Metacard bbnumber not found, R%HEAD%GEN%SUBSCAN defaults to 0
W-FITS, Metacard tsys_median not found, R%HEAD%GEN%TSYS defaults to .0
W-FITS, Metacard LoFrequency or LoFrequency_measured not found, LO frequency
 defaults to .0
W-FITS, Metacard Gain not found, R%HEAD%CAL%GAINI defaults to .0
W-FITS, Card ETAMB not found, R%HEAD%HER%ETAMB defaults to .0
W-FITS, Card ETAL not found, R%HEAD%HER%ETAL defaults to .0
W-FITS, Card ETAA not found, R%HEAD%HER%ETAA defaults to .0
W-FITS, Card HPBW not found, R%HEAD%HER%HPBW defaults to .0
W-FITS, Card REDSHFT and/or metacard 'vlsr' not found, R%HEAD%HER%VINFO and R%HEAD
%HER%ZINFO default to 0
W-FITS, Card LODOPPAV not found, R%HEAD%HER%LODOPAVE defaults to LO frequency
W-FITS, Metacard Gain_0 not found, R%HEAD%HER%GIM0 defaults to .0
W-FITS, Metacard Gain_1 not found, R%HEAD%HER%GIM1 defaults to .0
W-FITS, Metacard Gain_2 not found, R%HEAD%HER%GIM2 defaults to .0
W-FITS, Metacard Gain_3 not found, R%HEAD%HER%GIM3 defaults to .0
W-FITS, Metacard MJC_Hor not found, R%HEAD%HER%MIXERCURH defaults to .0
W-FITS, Metacard MJC_Ver not found, R%HEAD%HER%MIXERCURV defaults to .0
W-FITS, ==> One or more meta-data missing, default values used in CLASS

256

Exporting HIFI data to CLASS Build 15.0.3244

 The users should keep in mind that those warnings do not prevent the data from being properly read.
All details about this HIFI FITS reader in CLASS can be found in the following documentation . You
should also be aware that the flags present in the HIFI FITS data can now be imported into the CLASS
data and made use of. This is described in this document .

Warning

Please be aware that the HSC cannot to guarantee that CLASS will read those FITS files in
future versions of CLASS. In case of issues, please get in touch with the Gildas helpdesk:
gildas@iram.fr.

23.2. Processing version earlier than HIPE 12:
the hiClass task
23.2.1. Introduction to hiClass

The hiClass task can be used for ObservationContexts, Level 0, 0.5, 1, 2 products, HTP of Level
0, 0.5, 1, 2 data, and SpectrumDatasets. Note that if you pass on the ObservationContexts to the task,
only the Level 2 data is exported.

Note that it is possible to export the Level 2.5 products but only those which are in the form of HTPs -
Spectrum1d such as the level 2.5 products for point or spectral scans cannot be exported by hiClass.
For spectral scans, a dedicated task hifiDeconToClass can be used.

The following information is exported to CLASS:

• The fluxes

• ObsId, BbType, BbId

• The name of the observed source, which can be non-astronomical for spectra of level lower than 2
(integrations on the Hot Black Body for example).

• The Rest Frequency, Image Frequency, Channel References, Frequency Step. HiClass always
choses the centre of the spectrum as the reference.

• Dates of observation, and name of the instrument (HIFI plus spectrometer and polarisation)

• Pointing information

• Tsys

• Forward and, if present, beam efficiency

The hiClass task is a wrapper around the HiClass object defined in herschel/hifi/dp/tools/hi-
class_tools.py. Only the usage of the hiClass task is described here. If you want to work directly
with the HiClass object, you can read further documentation about how the HiClass object works,
including examples, by typing in the console:

print herschel.hifi.dp.tools.hiclass_tools.__doc__

Metadata propagation to Class FITS files

HiClass propagates new metadata in the Class FITS files per default, and exports the data to a
Product that contains TableDatasets (each TableDataset represents a HifiSpectrumDataset).

These default metadata can be grouped in 2 categories:

257

Exporting HIFI data to CLASS Build 15.0.3244

• the metadata coming from a HifiSpectrumDataset:

Metadata name Proposed FITS name Description

usbGain_0 or lsbGain_0 GAINCOE0 Sideband gain correction coeffi-
cient 0

usbGain_1 or lsbGain_1 GAINCOE1 Sideband gain correction coeffi-
cient 1

usbGain_2 or lsbGain_2 GAINCOE2 Sideband gain correction coeffi-
cient 2

usbGain_3 or lsbGain_2 GAINCOE3 Sideband gain correction coeffi-
cient 3

posAngle POSANGLE [deg] Observation position an-
gle

naifId NAIFID source NAIF ID (0 if fixed tar-
get)

raoff RAOFF [deg] Commanded RA (J2000)
of reference position

decoff DECOFF [deg] Commanded DEC
(J2000) of reference position

These metadata are propagated in the rows of the Tabledataset
Example

print h.Prod["0"].meta["POSANGLE"]
{description="Observation position angle", double=98.46283357392767, unit=deg [1 deg
 = 0.017453292519943295 rad]}

• the other metadata:

Metadata name Proposed FITS name Description
calVersion CALVERS caltree version

creator HIPEVERS HIPE version

cusMode OBSMODE Observing mode

pmRA PMRA [arcsec/yr] Target proper mo-
tion in RA

pmDEC PMDEC [arcsec/yr] Target proper mo-
tion in DEC

apertureEfficiency ETAA Aperture efficiency

hpbw HPBW [arcsec] Half-Power Beam
Width

forwardEfficiency ETALCAL Take that from the HCSS head-
er

mainBeamEfficiency ETAMBCAL Take that from the HCSS head-
er

These metadata are propagated in the Product
Example

print h.Prod.meta["PMRA"]
{description="Target proper motion in RA", double=0.0, unit=arcsec/a [1 arcsec/a =
 1.5362818500441602E-13 rad/s]}

258

Exporting HIFI data to CLASS Build 15.0.3244

23.2.2. hiClass examples
The hiClass task appears under the Applicable Tasks menu where you can open the GUI from there.
The selected product (ObservationContext, HTP, SpectrumDataset...) will then be loaded into the data
bullet. You can also open the GUI from the HIFI list of tasks under By Category. Similarly, an input
product should be dragged to the data bullet. It is also possible to invoke the hiClass task by simply
using the right-click on a variable and select Sent to and then CLASS FITS file. This method is a short-
cut to the Applicable Tasks menu to open the hiClass task GUI.

The GUI is shown in Figure 23.1. An output filename is also required (fileName). The parameter
engineeringMode, if selected, will force the access to the calibration tree root.

Inputs accepted by HiClass

• HifiSpectrumDataset

• HrsSpectrumDataset

• WbsSpectrumDataset

• SingleHifiSpectrum

• HifiVectorDataset

• Product

• ProductRef

• HashSet

• HfiTimelineProduct

• ObservationContext

• CalFluxHotCold

Figure 23.1. HiClass task GUI

Command line examples

The hiClass task can also be used in the command line. Some examples are shown in this section.
They cover a range from basic usage (like in the GUI), to more advanced scripting.

1. Export the Level 2 spectra (by default) to a FITS file, by supplying an ObservationContext (obs):

hiClassObj = hiClass(data = obs, fileName = 'obs.fits')

Example 6 will teach you how to export other levels.

259

Exporting HIFI data to CLASS Build 15.0.3244

Note that if you do not specify a path in the fileName, the FITS file will be saved in the directory
in which you launched HIPE. See example 4 to learn how to specify a path to fileName.

2. Export one HIFI timeline product, including calibration observations, to a FITS file:

First extract an HTP from the ObservationContext.
Here the Level 1 HTP for the HRS-V is extracted from an ObservationContext
 named obs.

htp = obs.refs["level1"].product.refs["HRS-V"].product

#
Now create the FITS file:

hiClassObj = hiClass(data = htp, fileName = 'myhtp.fits')

3. Export one dataset (one spectrum) to a FITS file:

First, extract a dataset from the ObservationContext.
Here the first spectrum in the Level 2 product for the upper side band of the
 WBS-H
is extracted from an ObservationContext named obs.

spectrum = obs.refs["level2"].product.refs["WBS-H-
USB"].product.refs["box_001"].product["0001"]

#
Now create the FITS file

hiClassObj = hiClass(data = spectrum, fileName = 'myspectra.fits')

4. The .fits file is written in the active directory. You can specify a specific path to write to a different
location:

hiClassObj = hiClass(data = obs, fileName = '/mypath/mydir/obs.fits')

Note

In a more general way, to specify a path in a platform independent way, use
os.path.join().

import os # See http://www.jython.org/docs/library/os.path.html
file_name = 'myfits.fits'
file_path = os.path.join('~', 'hifi', 'ngc1234', file_name)
hiClassObj = hiClass(data = myhtp, fileName = file_path)

5. The hiClass task is basically a wrapper around the 'HiClass' class which provides more flexibility
but may be less user-friendly without the graphical user interface.

With HiClass, example 1 becomes:

 from herschel.hifi.dp.tools.hiclass_tools import HiClass
 h = HiClass()
 h.add(obs)
 h.saveToFits("my_obs.fits")

The advantage of this form is that you can add as many data as you want to the final exported
product. This following example shows how to export only some WbsSpectrumDatasets called
'ds1', 'ds2', and 'ds3':

260

Exporting HIFI data to CLASS Build 15.0.3244

 h = HiClass()
 h.add(ds1)
 h.add(ds2)
 h.add(ds3)
 h.saveToFits("my_3_datasets.fits")

6. Export data at different levels:

By default, with an ObservationContext, hiClass exports only the Level 2 data.

If you also want to export the other levels, you can do:

 h = HiClass()
 for level_number in ('0', '0_5', '1', '2'):
 level_name = 'level%s' % level_number
 try:
 p = obs.refs[level_name].product
 except AttributeError:
 print "Could not retrieve %s." % level_name
 else:
 h.add(p)
 h.saveToFits('my_obs.fits')

7. Export system temperature:

You can also export the system temperature, Tsys. In this particular case, only the Tsys for a spec-
trometer and a polarisation is exported. If you want to do this, you need to provide the Tsys this way:

h = HiClass()
 for backend in ('WBS-H', 'WBS-V', 'HRS-H', 'HRS-V'):

 tsys = obs.calibration.getProduct('pipeline-out').\
 getProduct('Tsys').getProduct(backend)
 if tsys is None:
 print "Couldn't retrieve %s." % backend
 else:
 h.add(tsys)
 h.saveToFits('tsys.fits')

8. Export several FITS files:

• Either you instantiate one HiClass per FITS that you want to create:

h = HiClass()
 h.add(dataset_for_fits_1)
 h.saveToFits("fits1.fits")

 h = HiClass()
 h.add(dataset_for_fits_2)
 h.saveToFits("fits2.fits")

• Or you can use the method reset:

 h = HiClass()
 h.add(dataset_for_fits_1)
 h.saveToFits("fits1.fits")

 h.reset()

 h.add(dataset_for_fits_2)
 h.saveToFits("fits2.fits")

There is really no good reason to use one rather than the other. It really depends on what you want
to do.

261

Exporting HIFI data to CLASS Build 15.0.3244

23.2.3. How to read HIFI data in CLASS
In case you need to read HIFI data converted with hiClass, please make sure to use a version of
CLASS released from April 2010 onwards.

• Old versions use Fortran 77 and will not be able to dynamically allocate the memory needed to read
big spectra like WBS ones (8000 channels),

• Old versions do not know about the subscan number, and will not be able to make any difference
between the different subbands of a spectrum,

• Old versions have troubles with reading double precision values from FITS files,

• Some versions (first half of 2009) have a broken code which totally prevents reading any FITS file
with a long header,

• Note that data on the TA
* scale have to be multiplied by Feff/Beff to scale to main beam tempera-

tures, Tmb.

 file out MyHIFISpectra.hifi mul
 fits read MyHIFISpectra.fits

Now you have a CLASS file named MyHIFISpectra.hifi (you can use whatever you want as an exten-
sion) you can access like you always do in CLASS:

 file in MyHIFISpectra.hifi
 find
 get first
 set unit f i
 device image white
 plot

The hiClass task exports information that is stored in the CLASS fits file metadatum (or header),
which can be viewed with the list command and are:

• Source: science datasets are labelled by the name of the astronomical source. Calibration datasets
are named appropriately; 'comb', 'tune', 'hot', etc.

• Line: LO frequency in GHz (corrected for the spacecraft Doppler-shift), suffixed with 'USB' or
'LSB' according to the exported dataset.

• Telescope: 'HIF' for HIFI, subband number (01-16), spectrometer and polarisation ('HH', 'HV',
'WH', 'WV'), and LO band. Note that each subband is exported; you may wish to stitch spectra
before using the hiClass task.

• The offset positions (in arcsec): computed with respect to the intended source coordinates. Note
that due to the imperfect co-alignment between the respective H- and V-polarisation aperture, those
offsets may slightly differ between data from the two polarisations.

• Scan, subscan: reflect the respective BBtype and BBnumber of the observations, see the Prelimi-
naries section to the Generic pipeline in the HIFI Pipeline Specification Document for more in-
formation.

• The forward and, if present, beam efficiencies: how hiClass fills these in depends on if you have
applied the doMainBeamTemperature task to your data.

• Data processed prior to HIPE 13:

• If you have not applied the doMainBeamTemperature task, the metadata of your Level
2 products have an entry forwardEff, which is set to 0.96, as it is the value that was applied

262

Exporting HIFI data to CLASS Build 15.0.3244

to the Level 1 data to bring them from the TA scale to TA
*. When hiClass sees this, it fills

the Class header with Feff=Beff=0.96.

• If you have applied the doMainBeamTemperature task then the metadata of your trans-
formed Level 2 products have now an entry beamEff, set to the frequency-dependent value that
applies to your data, and you are in a Tmb scale. When hiClass sees this, it should fill the
Class header with Feff=0.96 and Beff with the applicable value.

• There should always be at least one of forwardEff or beamEff in the metadata of data that has
been through the pipeline in a standard fashion. However, if hiClass is, for some reason,
not able to find either of them it will export your data with Feff=Beff=1, essentially signifying
that it does not know in which scale the data are. Note again that if you have simply multi-
plied "manually" your TA

* data by Feff/Beff in HIPE, the metadata will still contain only the
forwardEff and hiClass will thus fill the Class header with Feff=Beff=0.96.

• Data processed with HIPE 13, and onwards: the temperatures T_A* and T_mb are determined
from the temperatureScale metadatum

• If temperatureScale is T_A*:

• beamEff = forwardEff = value of the metadata forwardEff.

• If temperatureScale is T_mb:

• beamEff = value of the metadata beamEff

• forwardEff = value of the metadata forwardEff

• If temperatureScale is not available for some reason:

• beamEff = forwardEff = 1

• In order to handle the old and the new schemes, HiClass will distinguish between these two
schemes by testing the presence of the metadata beamEff and forwardEff.

• If both beamEff and forwardEff are present in the metadata, the new algorithm is applied,
otherwise it is the old algorithm that is applied.

• To understand how CLASS reacts to these different items in the header, you are directed to the
CLASS documentation.

• The velocity information in the CLASS fits header is assuming vlsr = 0.0. HiClass sets the ref-
erence channel for the velocity to be the middle of the spectrum. You can use modify frequency
(units MHz) to set as reference channel that of the frequency in the Local Standard of Rest of the
line of interest.

The source velocity, as provided in the HSpot AOR, is also found as a FITS header keyword. At
this time, the CLASS software does not do anything with this information. This information has
been used to properly set the LO for the observation, but has not been used to apply any correction
the frequency scale provided by the HIFI pipeline. Therefore, the velocity information present in
the CLASS fits header is assuming Vlsr=0.

Please refer to CLASS documentation for further information about how to access spectra and headers
in CLASS.

23.2.4. Exporting the results of deconvolution to Class
To export the results of deconvolution to Class, use the hifiDeconToClass task.

• Create a variable of the product labelled level2.5/myDecon/myDecon_WBS-H (and/or -V) or select
the decon_result variable if you reprocessed your data

263

Exporting HIFI data to CLASS Build 15.0.3244

• When selecting the variable, you will find the task hifiDeconToClass in the Applicable Tasks
menu where you can open the GUI

• Specify the full path name of the fits file you want to create, remembering to add the '.fits' extension

• In the command line, this is done as follows:

hifiDeconToClassObj = hifiDeconToClass(decon_result=decon_result, \
fileName='/Users/Me/decon_result.fits')

Warning

Please be aware that not all header fields will be filled consistently when exporting spectral
scan deconvolved data. In particular, there is no particular LO frequency to report in the
line name, or any particular Tsys to populate the corresponding keywords. The same will
be true for e.g. the calibration keywords (efficiencies, sideband gain, etc).

Warning

In case you are running a recent version of CLASS that allows direct import of the HIFI
FITS file, the use of the hifiDeconToClass is not necessary. Still, if you wish to read
FITS files created with this task, you should use a Gildas version older than nov16.

264

Build 15.0.3244

Chapter 24. Sending HIFI spectra to
VO tools

Last updated: 28 July, 2015

Sending data to VO (Virtual Observatory) tools is described in the Working with the VO section in
the Import/Export Chapter of the Herschel Data Analysis Guide. HIFI spectra can be sent to VO tools,
such as VOSpec, by right-clicking on the name in the Variables pane, and selecting a VO tool from
the Send To list as usual. But you are required to run some tasks on the spectra first, some of which
depend on the observing mode used.

Below are the steps needed to take a single Level 2 spectrum and convert it to the format required for
export to VO tools. Since tools such as VOSpec do not know how to deal with flux units in Kelvin,
this must be done before the export. Also, HIFI data products intrinsically deal with data as two di-
mensional which is not the standard convention for most ground-based spectrometers. Thus, there will
also be a step to convert to a SimpleSpectrum product, which is a one dimensional spectrum for
Herschel.

Point spectra.

The Level 2 data can be converted for export to VO tools in the following way:

First get the observation, here we use obsid 1342190183
obs = getObservation(1342190183,useHsa=True)
#
Now select the Spectrometer (WBS or HRS), the Polarisation (H or V) and the
 Sideband
(Upper Sidedand (USB) or Lower Sideband (LSB)). Point spectra at Level 2 contain
 only one
dataset which will be a spectrum2d.
ds_whusb = obs.refs["level2"].product.refs["WBS-H-
USB"].product.refs["box_001"].product["0001"]
#
The flux units for this spectrum can be converted to Jansky using the
 "convertK2Jy" task.
Here a point source is assumed.
ds_whusb_Jy = convertK2Jy(ds=ds_whusb, size=0, cal=obs.calibration)
#
Finally, create a SimpleSpectrum Product which can be sent to VO tools.
onedim_Jy = convertSingleHifiSpectrum(ds_whusb_Jy)

Mapping data.

HIFI produces two "map" products. The first is the fully calibrated spectra in time (HifiTimelineProd-
ucts), these are found at Level 2. Since, the pointing of the satellite is changing over time, this corre-
sponds to the pieces of the map. To make a spectral cube, these pieces need to be spatially convolved
onto a grid. This gridded data is found in cubes in the cubesContext at Level 2.5 for data processed
with HIPE version 9.0 onwards, or in the cubes product found at Level 2 for data processed with earlier
HIPE versions. Both the un-gridded and the gridded data can be sent to VO tools. However, tools such
as VOSpec do not deal with spectral cubes so the data must be sent as individual spectra.

For Level 2 HTPs:

First get the observation, here we use obsid 1342248770
mapobs=getObservation(1342248770,useHsa=True)
#
Pull out the HTP from the observation context
mapobs_level2_WBS_V_USB = mapobs.refs["level2"].product.refs["WBS-V-USB"].product
#

265

Sending HIFI spectra to VO tools Build 15.0.3244

Extract a single spectrum from the HTP. Here the 4th spectrum of the 4th scan leg
 in the map
(that is, the 4th spectrum in the 4th dataset in the HTP)
ds_4_4 = extract(ds=mapobs_level2_WBS_V_USB.refs["box_001"].product["0004"],
 selection=[4])
#
Convert the units to Jy. The assumption below is that of a point source which is
 technically incorrect.
cal=mapobs.calibration
spectrum_Jy=convertK2Jy(ds=ds_4_4, size=0.0, cal=cal, overwrite=False)
#
Convert this to a simple spectrum
spectrum4_4 = convertSingleHifiSpectrum(spectra=spectrum_Jy)
#
spectrum4_4 can be sent to VO tools

Now for HIFI cubes:

We use the same obsid as above
mapobs=getObservation(1342248770,useHsa=True)
For data processed with HIPE versions 9.0 onwards, obtain a SimpleCube from the
 Level 2.5 product,
here we take the cube for the first sideband of the WBS-H-USB
cube_WBS_H_USB_1 = mapobs.refs["level2_5"].product.refs["cubesContext"].product.\
refs["cubesContext_WBS-H-USB"].product.refs["cube_WBS_H_USB_1"].product
#
To obtain the same SimpleCube from the Level 2 product for data processed with
 older HIPE versions, uncomment the line below
cube_WBS_H_USB_1 =
 mapobs.refs["level2"].product.refs["cubes"].product.refs["cube_WBS-
H_USB_1"].product
#
Extract a single spectrum from the cube using the following command. This command
 gets the spectrum
in the cube location of 4,6. No unit converstion has occured yet, so flux is still
 in K.
sp_4_6_K=extractRegionSpectrum(cube=cube_WBS_H_USB_1, \
regionType=herschel.ia.toolbox.cube.ExtractRegionSpectrumTask.Region.SINGLE_PIXEL, \
centerRow=4.0, centerCol=6.0)
#
Convert this to a simple spectrum Product
ss_4_6_K=SimpleSpectrum(sp_4_6_K)
#
Now this can be converted to Jansky before sending to VO tools
ss_4_6_Jy = convertK2Jy(spectrum=ss_4_6_K, size=0.0, cal=mapobs.calibration,
 overwrite=False)

Spectral Scan data.

First load an observation
surveyobsid=1342205334
surveyobs=getObservation(surveyobsid,useHsa=True)
#
For data processed with HIPE version 9.0 and more recent you can extract the
 deconvolved Level 2.5 product,
here the WBS-H. This will be a Spectrum1d and the flux units will be in
 Kelvin. Please note that for data processed
up to HIPE 13, the SSB result is recorded as 'ssb' and for HIPE 14 onwards, the
 SSB result is recorded as 'dataset'.

up to HIPE 13
decon_result_ssb =
 surveyobs.refs["level2_5"].product.refs["myDecon"].product.refs["myDecon_WBS-
H"].product["ssb"]

HIPE 14 onwards
decon_result_ssb =
 surveyobs.refs["level2_5"].product.refs["myDecon"].product.refs["myDecon_WBS-
H"].product["dataset"]

266

Sending HIFI spectra to VO tools Build 15.0.3244

#
For data processed with an older HIPE versions you must first run doDeconvolution
 before selecting the
single sideband result (ssb). Note, the step below is a "blind" deconvolution,
 which by default is for the WBS-H.
Consult the Sideband Deconvolution chapter (Chapter 14) for a description on how
 to get the best results
from the Deconvolution step.
Uncomment and run the following two lines for data processed with software older
 than HIPE 9.0.

#decon_result = doDeconvolution(obs=surveyobs)
#decon_result_ssb = decon_result["ssb"]

or for data processed with HIPE 14 and later:
#decon_result_ssb = decon_result["dataset"]

#
This needs to be specifically a Simple Spectrum for the conversion to Jansky
decon_ss_K=SimpleSpectrum(decon_result_ssb)
#
Now convert to Jansky. The user will have to assign a source size for this
 conversion to work.
For this demonstration, a point source (size=0.0) is assumed.
cal = surveyobs.calibration
decon_ss_Jy = convertK2Jy(spectrum=decon_ss_K, size=0.0, cal=cal, overwrite=False)
#
decon_ss_Jy can now be sent to VO tools

267

Build 15.0.3244

Chapter 25. Reference Frames in HIFI
data

Last updated: Feb 18, 2011

25.1. Introduction
Given HIFI's high spectral resolution, a relativistic treatment is necessary when accounting for space-
craft motion. Lorentz transformations take observed frequencies from one inertial frame to another.
Over the ten seconds or so of a single integration, we can ignore the spacecraft acceleration. We can
likewise ignore General Relativistic (GR) effects due to Herschel's elliptical orbit; and we choose to
ignore GR effects when observing near interfering bodies such as Jupiter.

25.1.1. HSO Frame
The internal frequency calibration schemes for HRS and WBS, executed within the HIFI Level 0.5
pipeline, produce observed frequencies in the spacecraft frame ("HSO"). They are in the IF scale;
the frequency of the detected photon is simply IF + LO. There are two observables of interest: the
frequency of the incident wave, and its direction. In fact, we don't know the direction from which the
radiation was incident because the HIFI beam is of finite size (between 10 and 45 arcseconds FWHM),
and additionally has a small pointing uncertainty (about 2 arcseconds). Often the signal will come from
a resolved source. We assume the direction of incidence is the boresight of the beam as reconstructed
in the pointing product; the frequency error due to the uncertainty in signal arrival direction is small, of
order 1 kHz per arcsecond of error. Note that because of stellar aberration, the direction of incidence
in the HSO frame differs from that observed in, say, the Solar System Barycenter (SSBC) frame, by
up to about 23 arcseconds. In practice, the pointing information provided in the pointing product has
been de-aberrated, and so is in the SSBC frame.

Only the frequency remains known in the HSO frame alone; everything else, including the HSO mo-
tion, is known in the SSBC frame.

25.1.2. SSBC Frame
The Solar System Barycenter is the fundamental inertial frame for calculations involving the motion
of HSO. The state vectors (r,v) of solar system objects (SSOs), including HSO, expressed in this frame
have as origin the SSBC and as reference directions the International Celestial Reference Frame axes.

The motion of HSO with respect to the Geocenter is determined to an accuracy of about 5 cm/s by
the usual tracking techniques. The Geocenter is tied to the Solar System Barycenter through the JPL
DE405 planetary ephemerides to a precision of mm/s. Because the HSO motion, target coordinates,
and telescope pointing are all defined in this frame, the transformation from the HSO frame to any
other passes necessarily through the SSBC.

It's important to keep in mind in which frame observables are defined; in the equations below we use
the convention that subscripts refer to the object of interest, and superscripts to the frame in which the

observable is measured. For example, the direction of a SSO as seen by the telescope is

and as seen by an observer at rest in the SSBC, it is

A signal is incident upon the spacecraft and detected at frequency

The transformation of HSO-centric frequencies to SSB-centric is described by the relativistic Doppler
formula:

268

Reference Frames in HIFI data Build 15.0.3244

1

where

and is the de-aberrated direction of telescope pointing (the J2000 coordinates of the beam
boresight at the time of observation).

25.1.3. LSR Frame
It might be useful to review the definition of the Local Standard of Rest. Take any point in the Galactic
plane, and imagine there exists a circular orbit about the Galactic Center that passes through that point.
The circular velocity defines the Local Standard of Rest for that position. Such a point coincident with
the Sun defines the Solar Local Standard of Rest (LSR). The Sun has a peculiar velocity with respect
to the LSR, which can be estimated in different ways. The LSR so defined is also called the Dynamic
LSR, referring as it does to the rotation curve of the Galaxy. In practice, the Sun's peculiar motion
with respect to the LSR has also been inferred from the mean motion of bright stars in catalogues
or in the solar neighborhood. The LSR defined by this calculation of peculiar motion is called the
kinematic LSR (LSRk), and is the more commonly used convention. However, there is not a single
standard value for the LSRk. Further, it is not very close to any physical velocity of interest; it is only
a common convention.

We take as our definition of the LSRk frame: the motion of the SSBC with respect to the LSRk is 20.0
km/s toward ra, dec = 18h03m50.29s, +30:00:16.8 (J2000). This is a common observatory standard,
and adopted by many astronomical software suites such as CASA, SLALIB, and CLASS.

Frequencies in the LSR frame are derived from the SSB frame by a Lorentz transform:

And using the relativistic Doppler formula, LSR frequencies can be calculated directly from observed
HSO frequencies and SSB-centric known quantities:

2

25.1.4. Source (nonSSO) Frame
Because the 3-velocity of a star or other such target is unknown, a transformation to its comoving
frame is impossible. What may be known about the object is that a spectral line appears shifted from
its expected rest frequency, and that shift can be interpreted as a radial velocity. One would like to
see the relative velocities of other spectral lines, with a view to constraining a dynamical model of the
object. In this context, transforming frequencies to the source frame is only a shift of the frequency
axis already defined in an inertial frame (e.g. SSB, LSR), and then expressing the frequencies as
velocities according to some convention. There are three operative conventions for expressing redshift
as a velocity:

Convention

radio

269

Reference Frames in HIFI data Build 15.0.3244

Convention

optical

relativstic

The relativistic definition would be correct if the relative velocity between observer and source were
purely radial. The radio and optical definitions are two linearisations of the relativistic equation, and

their difference is quite large at HIFI bandwidth about 4 GHz and frequencies 500

GHz

The HIFI Pipeline task DoVelocityCorrection will, if requested, recast the frequencies in the
data to the ̀ `source frame'' of a nonSSO target, but it is not a real frame change and a Lorentz transform
is not performed.

It is often interesting to view spectra plotted on an axis representing speed. In recent versions of HIPE
(6.0.1360 or earlier), the Spectrum Explorer display tool uses the relativistic convention when dis-
playing frequencies as velocties; however, the ConvertFrequencyTask uses the radio definition.

25.1.5. Source (SSO) Frame
When observing objects within the solar system, we know or can estimate their full 3-velocity, and
so a real Lorentz transform to the object rest frame is performed. The manner is thus: the state (r,v)
of Herschel is known as a function of time, as is the SSO's. A photon received by HSO at time t was
emitted by the SSO at time t - LT(t), where LT(t) is the light-travel-time between the two. The frame
to which we transform is the comoving frame of the SSO at the retarded time t - LT(t).

LT is computed iteratively; three iterations are sufficient to achieve a precision of less than a millisec-
ond within the orbit of Pluto, which is less than the error due to ignoring General Relativity. Once
the SSO state at the retarded time is known, frequencies are transformed by equation 2 (with SSO
substituted for LSR).

270

Build 15.0.3244

Chapter 26. Relative performance of
the HIFI spectrometers

As the HRS always has a better spectral resolution than the WBS, it is expected from the radiometric
formula that HRS data should have an rms noise greater than that of WBS spectra.

In addition, the HRS has an efficiency of, on average, 81%, which also has the effect of increasing the
HRS rms with respect to the WBS rms, for a similar integration time and a similar spectral resolution.

Furthermore, there is a small degradation from the expected rms in HRS spectra in bands 1 and 2,
because HRS attenuators tune on the hot load rather than the sky.

The overall theoretical ratios of the expected HRS rms with respect to the WBS rms for simultaneous
observations, assuming the WBS efficiency and spectral resolution to be 100% and 1.1 MHz respec-
tively, are:

HRS resolution Theoretical ratio

Wide 1.68

Low 2.37

Nominal 3.35

High 4.74

A statistical study of data collected during the Performance Verification and Science Demonstration
Phases of the mission showed that the HRS to WBS rms ratios are as good as expected, for all observing
modes and spectral resolutions.

271

Build 15.0.3244

Chapter 27. Dealing with memory
issues and slow performance.

Last updated: 17 February, 2015

Memory Issues.

On occasion, one can run into the java heap space error when using HCSS software, especially
when running the pipeline. Here are some things to help:

1. Delete any unneeded variables.

2. Limit the running of the pipeline to one spectrometer at a time.

3. Force the pipeline not to create a new variable each time you run it by giving the output variable
the same name as the input:

obs = hifiPipeline(obs=obs)
#
This can only be done in the command line,
the GUI will automatically append a number to an output variable with the same
 same name as an input variable.

4. When installing HIPE, allocate a sensible amount of memory to it, i.e., a sizeable fraction of your
RAM, but leave enough to run your browser and email. For example, allocate 2.5-3 Gb on a 4
Gb machine or 6-7 Gb on an 8 Gb machine. If, after the installation, you wish to modify your
memory allocation, you can do so 1) by editing the following file .hcss/Hipe.props (ja-
va.vm.memory.min and java.vm.memory.max), or 2) by editing the HIPE preferences
from the preferences panel (General->startup & shutdown).

5. To ease memory problems related to GUIs, you can set:

java.vm.options = -XX:MaxPermSize=256m

But note that this option for the compiler will disappear in Java 8.

6. The "garbage collection" command System.gc() is also useful to force clearing memory. HIPE
will automatically do this when memory becomes too full.

7. Swap Store Properties:

It is possible to use the hard disk as swap space to preserve the memory available in HIPE, and
HIPE does this by default. The following properties are defined to preserve computer memory.
This becomes especially useful when pipeline processing long observations on a laptop, or on a pc
with a 32 bit Operating System (TBC), and with average or limited memories capacities. However,
any Task that uses or changes any HifiProduct (e.g., HifiTimelineProduct) will benefit from the
use of swap space.

The following properties can be modified (in the user.props file or using the "Hifi Product"
tab in propgen) to set or to configure the Swap mechanism.

• hcss.hifi.pipeline.product.memory = true: Setting the value of this property to "true" enables
the swap mechanism. Note that the default value is "false".

• hcss.hifi.pipeline.product.swapstore = "swapStore": This is the name of the LocalStore
where the temporary data will be saved. The default location is: ${user.home}/.hc-
ss/lstore/swapStore .

272

Dealing with memory issues and slow performance. Build 15.0.3244

• hcss.hifi.pipeline.product.swapratio = 0.25: This property determines how much the swap
mechanism is used and is used to set the threshold level of free memory. When a new dataset is
set or retrieved from the HifiProduct, the HifiProduct will check the size of the dataset and the
free memory in the system. If the condition:

(memory free)*swapratio < dataset size

is met, then all the floating datasets contained in the HifiProduct will be saved in the swap store.

This property should have value between 0 and 1 and has a default value of 0.25.

If the value is 0 all datasets will always be stored in the swap store. This is safe, but it could
create performance delay (in the time needed to process the pipeline) due to the access time to
the hard disk.

In the case of long observations, setting the property to 1 could be dangerous because memory
problems (like Java.heap.space exception), may still occur, although the pipeline will
try to have the best performance possible.

• hcss.hifi.pipeline.product.savedisk = true: This property determines whether an existing ob-
servation in the swap store should be overwritten or not. It is strongly suggested to keep the value
= true, otherwise the space used in the hard disk will increase in proportion to the number of
times a product is saved in the swap store.

Note

SwapUtil Class: At the moment, the pipeline does not clean the swap store after
the processing. To avoid the swap store completely filling the hard disk when many
observations are processed, it is suggested one manually remove the swap store by
either deleting the swapStore directory, or in HIPE:

from herschel.hifi.pipeline.product import SwapUtil
SwapUtil.delete()

Performance.

• The system opens every lstore pool on one's disk, so the more pools you have in this directory the
more disk activity will occur.

• The HIPE session history is stored in ~/.hcss/apps/hipe. This is where information about prefer-
ences, and which files and pools you have accessed to is stored. If HIPE seems to be holding on to
some old behaviour unexpectedly, then it might be helpful to try renaming this directory.

273

