Scatter in Extended vs. Point Source Calibration

- $S[y,z]=1/9.4^2$, $\int S[y,z]$ Beam₁₃[y,z] dy dz over area >> beam width
 - nominal spaxels should collect/detect 1Jy from this surface brightness

Robustness Against Offset (or Lack Thereof)

Table $\Big[\text{Plot3D} \Big[e^{-\left(x^2+y^2\right)} + d, \{x, -3, 3\}, \{y, -3, 3\}, \text{PlotRange} \rightarrow \text{All, ImageSize} \rightarrow \text{Medium} \Big], \{d, 0, 0.01, 0.01\} \Big]$

Table [NIntegrate $\left[e^{-\left(x^2+y^2\right)}+d, \{x, -3, 3\}, \{y, -3, 3\}\right], \{d, 0, 0.01, 0.01\}$] {3.14145, 3.50145}

1% offset → 15% effect on integrated flux!

Offset in Beam Wings?

Norbie's Calculated Telescope PSFs

120μm 140μm

simulated raster 120µm (noise added) simulated raster 140µm

Integrated Flux in Wings vs. Central Peak

Telescope PSF ⊗ 8"x8" spaxel peak region

observed beams

Telescope PSF ⊗ 8"x8" spaxel wings

140µm

120µm

Offset to tweak wingint/centint of raster observation to value obtained with diffraction model

Neptune raster 136µm +0.0015 offset

...but changes ESCF only by 4% - not enough to explain scatter!

simulated raster 140µm (noise added)

ESCF from Different "Flavours" of Beam

- For central spaxel, we have
 - Coarse raster (2.5 arcsec) [for all spaxels] 0.919082
 - "Synthetic" Beam (2.5 arcsec raster /
 Gaussian model peak) [for all spaxels] 0.924654
 these are the nominal beams
 - Combined Beam 2.5 / 1 arcsec [only central spaxel] 0.903464
- No big difference and Fine Raster was done independently!
- Central part of beam doesn't seem to be main culprit

Could 125µm Map Be "Smeared Out"?

Neptune raster 125µm

Neptune raster 136µm

Could 125µm Map Be "Smeared Out"? Maybe...

Neptune raster 125µm

Neptune raster 136µm

Not clear whether this is sufficient to explain "anomaly"

Beam Normalisation?

- Beam normalisation linked to PSCF
- If that number were "wrong" at 125µm, the ESCF would have an "outlier" at that wavelength, too, to make up for it
- A smooth fit function for the ESCF would then be truly wrong at that particular wavelength
- But...

Central / 5x5 (120 or 125µm)

- There is a substantial discrepancy between central/5x5 or equivalent samples of measured central beam, on the one hand, and the same exercise on the calculated, convolved PSF, on the other!
- Problem may not be in peak or (far-off) wings but in "ring/ears" around central peak (???)

Central / 5x5 (136 or 140µm)

- Almost perfect agreement!
- Should check other wavelengths...
- Maybe the 125µm measurement is "odd", after all
- Could imply change in shape of PSCF to produce "smooth" ESCF

PSCF Re-Derived

- Use Norbie's PSFs, convolved with 8"x8" spaxel aperture, to calculate ratio of energy in 5x5 spaxels to energy in >>FOV area (total)
 - Sample convolved PSFs on regular 9.4" grid; Σ(5x5)/Σ(all)
- Calculate (central spaxel[0,0])/Σ(25 spaxels[0,0]) from the raster observations
- Correct from (1x1)/(5x5) to (1x1)/total with above ratio

PSCF Re-Derived

- Good news: no need/motivation to change existing PSCF!
- Need to check (central) beams leading to outlier in ESCF
 - Idea for "fix" of "odd" beam(s) not clear