

CubeSats: State-of-the-art and future potential for small low-cost science missions

Roger Walker (IOD CubeSat lead)

Directorate of Technology, Engineering & Quality, ESA

ESA SCI Science Workshop, Akersloot, 6 November 2018

ESA UNCLASSIFIED - For Official Use

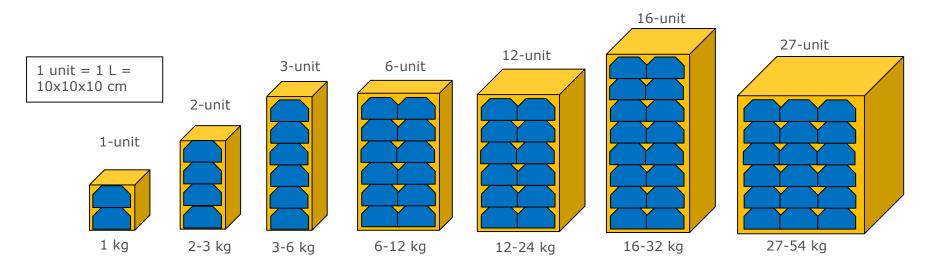
- 1. CubeSat Technical & Programmatic Overview
- 2. Current technology state-of-the-art & ESA tech demo missions
- 3. Near-term technology developments & upcoming demonstration missions
- 4. Examples of potential future small low-cost science missions

ESA UNCLASSIFIED - For Official Use

•

CubeSat Technical & Programmatic Overview WELCOME TO NANO-WORLD

ESA UNCLASSIFIED - For Official Use


ESA | 18/10/2018 | Slide 3

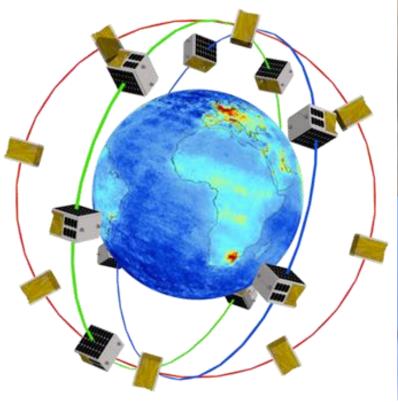
· = •• 🛌 •= +• •• • • • = 🔚 = 2 •• •• = = 10 •• = 2 = 2 •= ••

What are CubeSats?

• Small satellites of standardised external cubic unit dimensions launched inside a container

ESA UNCLASSIFIED - For Official Use

ESA | 18/10/2018 | Slide 4

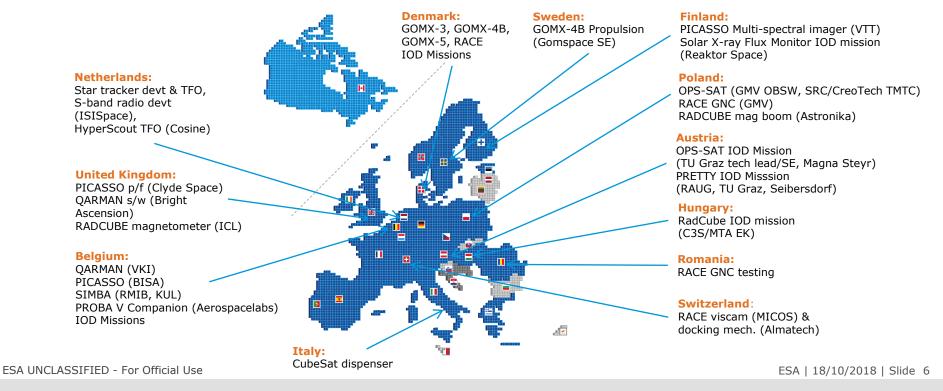

*

Why CubeSats?

esa

- Factor 10 reduction in cost
- Fast to develop (1-3 years)
- Driver for miniaturisation
- Ideal for technology in-orbit demonstration (IOD)
- Increasing space system engineering capabilities of New Member States
- Enabling for highly distributed systems
- Unique applications in constellations & swarms

ESA UNCLASSIFIED - For Official Use



ESA | 18/10/2018 | Slide 5

IOD CubeSat mission implementation in GSTP

>16 MEuro in ESA GSTP FLY Element since 2013 for 12 IOD CubeSat missions

European Space Agency

•

Qarman (3U) studying atmosphere re-entry

SIMBA (3U) monitoring climate variables

PRETTY (3U)

reflectometry

demonstrating GNSS

RACE (2x6U)

and docking

demonstrating rendezvous

M-ARG0 (12U)

demonstrating asteroid rendezvous and identifying insitu resources

> HERA CUBESATS (2x6U) observing asteroid deflection assessment

Lunar CubeSats for Exploration studying Moon's surface and its environment

→ ESA'S TECHNOLOGY **CUBESAT FLEET**

GOMX-3 (3U) demonstrating new platform technologies

GOMX-4b (6U) demonstrating constellation technologies

PICASSO (3U) studying the atmosphere

www.esa.int

RadCube (3U) measuring space radiation and magnetic field

XFM Cube (2U) measuring X-Ray fluxes

Current technology state-of-the-art & ESA tech demo missions

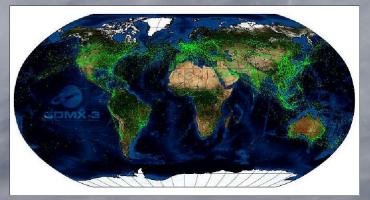
PREPARING FOR UTILITY

ESA UNCLASSIFIED - For Official Use

ESA | 18/10/2018 | Slide 8

The Evolution of the CubeSat

European Space Agency


Rapid growth in size & advances in performance for real missions

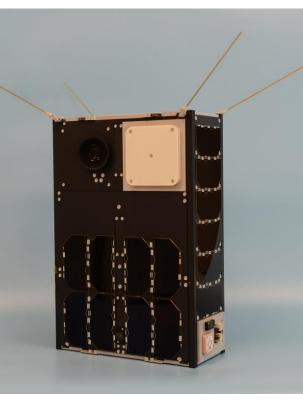
	RIMOVE BEFORE FL			
Size	1U	3 U	6U	12U
Mission	Vega Edu CubeSats	GOMX-3 tech demo	GOMX-4B tech demo	M-ARGO tech demo
Power (max)	3 W	6 W	12 W	120 W
Pointing acc.	25 deg (2-axis)	2 deg (3-axis)	0.2 deg (3-axis)	0.2 deg (3-axis)
Downlink	9.6 kbps (LEO UHF)	3 Mbps (LEO X-band)	1 Mbps @ 3300km (ISL)	10 kbps (1 AU X-band)
Delta-V	0 m/s	0 m/s	10 m/s	3750 m/s
Launch	2012	2015	2018	2022

ESA's First Technology CubeSat in Space

Project: GOMX-3 Contractor: GomSpace DK Platform: 3U CubeSat (3 kg) Duration: 1 year KO to flight readiness Deployed from ISS: 5 October 2015 Status: 1 year of operation, mission success

Achievements:

- 3-axis pointing acc. <2° (25° eclipse)
- X-band Downlink @ 3 Mbps
- Reconfigurable software-defined radio
- GEO Telecom L-band signal analysis
- ADS-B Aircraft tracking from a CubeSat
- Global wind data from ADS-B messages

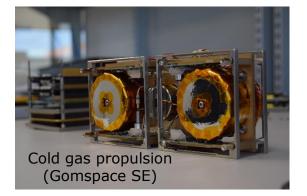

IOD for 1st generation LEO constellations

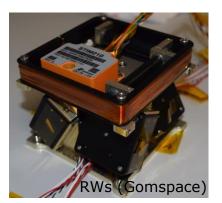
Project: GOMX-4B Contractor: GomSpace Platform: 6U CubeSat

Launch: 2/2/2018 Status: operational, end of IOD mission in October 2018 Successful demonstration of: Orbit control with cold gas propulsion S-band Inter-Satellite Link up to 3300 km

First Hyperspectral imager (HyperScout) Star tracker for high precision pointing

ESA UNCLASSIFIED - For Official Use


ESA | 18/10/2018 | Slide 11


GOMX-4B AOCS Overview

Full 3-axis controllable AOCS

- Sensors:
 - 6 Coarse Sun Sensors
 - 6 Fine Sun Sensors
 - Gyroscope
 - Magnetometer
 - GNSS receiver
- Actuators:
 - 3-axis magnetorquers
 - 4 RWs in redundant setup
 - Butane Propulsion unit

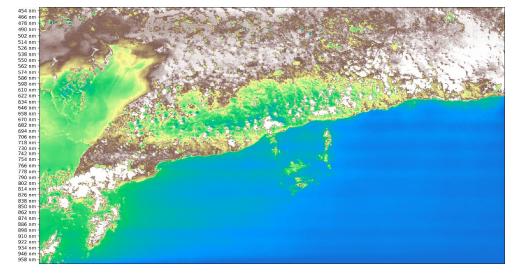
Without STR: AKE <1° (1σ) APE <1.2° (13° ecl.)

With STR (est.): AKE 30" (1σ) APE <0.2°

ESA | 18/10/2018 | Slide 12

ESA UNCLASSIFIED - For Official Use

HyperScout: First CubeSat Hyperspectral imager



HyperScout Flight Model on GOMX-4B

ESA UNCLASSIFIED - For Official Use

Cuba

Credit: Cosine

Scotland

ESA | 18/10/2018 | Slide 13

Near-term technology developments & key demonstration missions

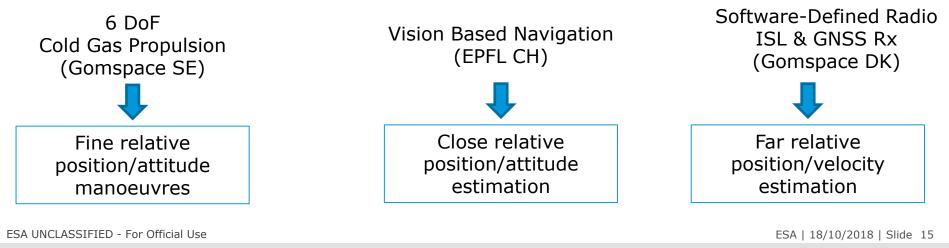
PUSHING THE BOUNDARIES

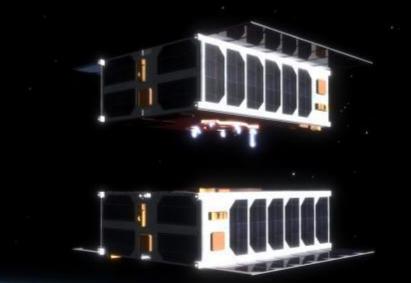
ESA UNCLASSIFIED - For Official Use

ESA | 18/10/2018 | Slide 14

|+|

From AOCS to GNC for Rendezvous & Docking




= II 🕨 == + II == 🚝 == II II == == 🖬 🛶 💁 II == 🖬 🖽 💥 🛀

Rendezvous Autonomous Cubesats Experiment (RACE) CSA

System demo of: -Rendezvous & docking -Target close fly-around

Enabling Tech demo (TRL4): -6 DoF propulsion -RelNav sensors (vis, GNSS) -autonomous GNC -docking mechanism

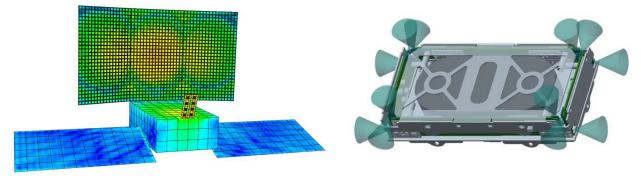
Future application: -autonomous on-orbit assembly of large structures using building blocks

Mission concept:

- two 6U CubeSats
- joined together in 12U POD for launch
- joint commissioning and separation in orbit
- series of docking and fly around trajectories
- testbed for different GNC algorithms

Phase A/B started with GomSpace, GMV, Almatech, Micos

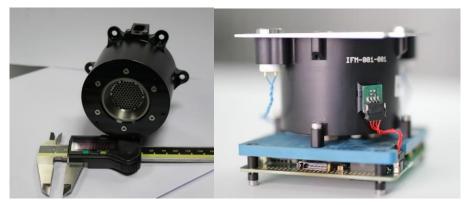
RACE will open up the path to completely new space system architectures based on aggregation that are not feasible or cost-effective today due to launcher fairing constraints


PDR Q4 2019 Launch Q4 2021


GSTP-funded Technologies Enabling New Missions

Ongoing Developments

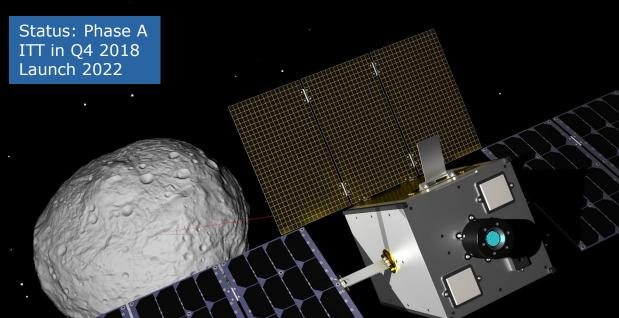
GSTP-funded Technologies Enabling New Missions


Planned Near-term Developments

Nanosat X-band TT&C transponder EM

Deep space communication & ranging (10 kbps @ 1AU)

ESA UNCLASSIFIED - For Official Use


High specific impulsion electric propulsion system

LEO re-/de-orbiting Deep space manoeuvres (3750 m/s @ Isp 3000s)

ESA | 18/10/2018 | Slide 18

Miniaturised Asteroid Remote Geophysical Observer (M-ARGO)

M-ARGO will lower the entry-level cost of deep space exploration by over an order of magnitude, leading to fleets of nano-probes for e.g. in-situ resource exploration of NEOs

Objectives:

- Demonstrate critical technologies & operations for stand-alone deep space CubeSats in the relevant environment
- Rendezvous with a Near Earth Object (NEO)
- Physical characterisation of NEO with a small payload suite for insitu resource exploration purposes

Mission concept:

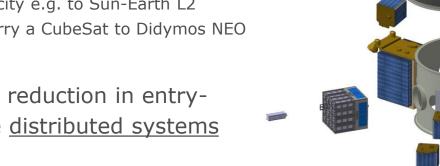
- 12U CubeSat
- piggyback launch to Sun-Earth L2 transfer or lunar swing-by
- parking in L2 halo orbit
- 1-2 year low-thrust interplanetary transfer
- 6-month close proximity ops at NEO target
- 83 different NEO targets accessible

_ II ≥ :: = + II = := : II II = : : : : = 0 II = : : II * : :

Examples of potential future small low-cost science missions

KEEP IT FOCUSSED

ESA UNCLASSIFIED - For Official Use


ESA | 18/10/2018 | Slide 20

+

"Beyond LEO" Science & Exploration

- CubeSats are now being considered for applications beyond low Earth Orbit as piggyback opportunities are arising on both launch vehicles & spacecraft:
 - GTO and Molniya orbit (commercial)
 - NASA SLS/Orion EM flights to the Moon
 - ESA/SSTL Lunar Pathfinder mission to carry CubeSats to lunar orbit and provide comms data delay
 - Ariane 6 launches with excess capacity e.g. to Sun-Earth L2
 - ESA's proposed HERA mission to carry a CubeSat to Didymos NEO
- As for LEO, order of magnitude reduction in entrylevel cost is expected to enable <u>distributed systems</u>

ESA UNCLASSIFIED - For Official Use

Credit: Arianespace

ESA | 18/10/2018 | Slide 21

Mother-daughter architectures at planetary bodies

Deployment of a swarm of CubeSats by a larger mothercraft

Transportation & data relay provided by larger mothercraft <u>Deep investigation</u> of a single target body with <u>multi-point measurements</u>

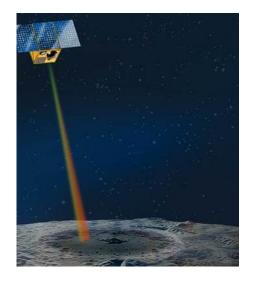
ESA UNCLASSIFIED - For Official Use

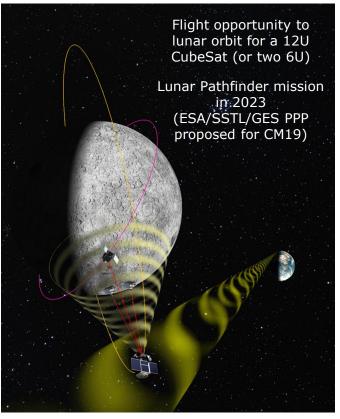
ESA | 18/10/2018 | Slide 22

CubeSats on the HERA mission

- Payload carried on ESA's proposed HERA mission to the Didymos asteroid in the frame of the NASA-ESA AIDA collaboration
- Platform: 6U CubeSat
- Purpose: demonstrate deep-space (6U) cubesat, data relay & ranging via an inter-satellite link, payload & operations supporting HERA's planetary defence objectives
- Status: Phase A KO in Q4 2018

LUnar Cubesats for Exploration (LUCE)

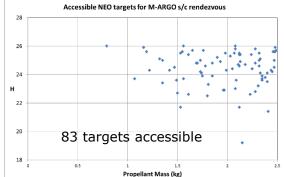

VMMO (Volatile and Mineralogy Mapping Orbiter)


Charting the Moon's water ice in permanently shadowed polar regions using active fibre laser

Example concepts studied in GSP Sysnova

LUMIO (Lunar Meteoroid Impacts Observer)

Carrying sophisticated camera to capture flashes of meteoroids impacting the far side

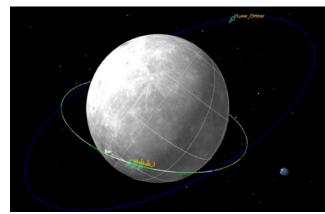

ESA UNCLASSIFIED - For Official Use

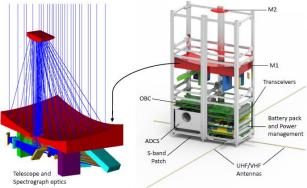
ESA | 18/10/2018 | Slide 24

Fleets of Stand-Alone Deep Space Cubesats: a new paradigm in deep space exploration

- High potential of technology miniaturisation to cut the entrylevel cost of interplanetary missions by <u>an order of magnitude</u>:
 - facilitate entry of new actors to space exploration (government, commercial, PPPs)
 - stimulate low-cost single spacecraft technology demo missions
 - deploy and operate fleets of nano-spacecraft distributed in interplanetary space
- Applications of distributed nano-spacecraft fleets:
 - wide survey of the Near Earth Asteroid population for:
 - science (diversity of early solar system bodies)
 - planetary defence (know your enemy)
 - in-situ resource exploration (prerequisite for exploitation)
 - simultaneous in-situ monitoring of space weather at multiple locations in the heliosphere (L1, L5, inner Earth orbits)

ESA | 18/10/2018 | Slide 25


ESA UNCLASSIFIED - For Official Use


Astronomy CubeSats(?)

- Low-frequency Radio Interferometric Array
 - Studied concepts: OLFAR, DARIS etc
 - 1 large mother s/c + swarm of 10-50 small daughter s/c, loose formation, deployed in lunar orbit or Sun-Earth L2 halo orbit, <20 MHz frequencies
 - Enabling tech: high-rate inter-satellite links with ranging, high perf. signal processing, software-defined radio, deployable 3m booms
- Optical Spectrometer
 - Studied concepts: CubeSpec
 - Long-term follow-up observations of bright stars
 - UV/VIS/VNIR wavelengths
 - Enabling tech: arcsecond line of sight pointing (piezoelectric), high thermal stability (10 mK)
 - o proven on NASA JPL Asteria mission

ESA UNCLASSIFIED - For Official Use

ESA | 18/10/2018 | Slide 26

THANK YOU

Roger Walker ESA/ESTEC Keplerlaan 1 2201 AZ Noordwijk The Netherlands Tel: +31 71 565 3349 e-mail: roger.walker@esa.int

ESA UNCLASSIFIED - For Official Use

###