ROTATING GLOBULAR CLUSTERS IN THE GAIA ERA

Alice Zocchi ESA Research Fellow - ESTEC

esa

FOR A LONG TIME...

Globular clusters have been described as stellar systems having:

 simple geometry

 simple dynamics

 simple stellar population

... BUT NOW WE KNOW BETTER!

Globular clusters are **complex** stellar systems:

- rotation
- pressure anisotropy
- external tidal field
- multiple populations
- black holes (stellar mass, IMBH) and other exotica

This complexity needs to be taken into account and to be treated properly!

... BUT NOW WE KNOW BETTER!

Globular clusters are **complex** stellar systems:

rotation

- pressure anisotropy
- external tidal field
- multiple populations
- black holes (stellar mass, IMBH) and other exotica

This complexity needs to be taken into account and to be treated properly!

Also detected with proper motions!

Also detected with proper motions!

Different rotation in different populations?

Different rotation in different populations?

Possible responsible for globular clusters morphology

Possible responsible for globular clusters morphology NGC 5904 [M5]

Stetson et al., to be submitted

Lanzoni et al. (2018)

Goals:

- to characterize rotation
 - to understand its properties with respect to external tidal field and in different evolutionary stages

Bellazzini et al. 2012

Dynamical models defined from distribution function

 Prendergast & Tomer 1970; Wilson 1975; Jarvis & Freedman 1984; Lagoute & Longaretti 1996; Lupton & Gunn 1987; Einsel & Spurzem 1999; Varri & Bertin 2012

Dynamical models defined from distribution function

- Prendergast & Tomer 1970; Wilson 1975; Jarvis & Freedman 1984; Lagoute & Longaretti 1996; Lupton & Gunn 1987; Einsel & Spurzem 1999; Varri & Bertin 2012
- Zocchi & Varri, in prep.

MAIN PROPERTIES

- The models are axisymmetric, and the flattening depends on the rotation strength
- The rotation is differential (solid body behaviour at the centre)
- The models are isotropic at the centre and at the edge, and radially anisotropic in the intermediate region

More flattened

More concentrated

Shallower truncation

ELLIPTICITY PROFILE

KINEMATIC PROFILES

Peaks are NOT in the same location!

SUMMARY

- Globular clusters are **complex** stellar systems, and this complexity needs to be taken into account and to be treated properly!
- Rotation is an interesting dynamical ingredient to explore and characterize, as its property carry information about the past evolution of clusters.
- NEXT STEP Compare models with the data of Galactic globular clusters and determine the property of rotation, anisotropy and tidal effects!

WHY IS GAIA SO IMPORTANT?

WHY IS GAIA SO IMPORTANT?

Coverage of the entire extent of stellar clusters Improved membership determination Phase space (almost) fully available!

