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The determination of the activity distribution on the surface of a comet is a key goal of any
mission to investigate the interaction of the comet with the Sun. As the ice sublimates the
gas expands into space it fills the near-nucleus environment. Individual sources of activity have
been observed on the surface but it remains uncertain where the bulk of the mass is lost and how
the processes that are involved work in detail. There are several reasons for this. First, imaging
experiments use the dust as a proxy for the gas activity. Because the optical depth of the dust
is orders of magnitude below 1 in all but a few cases, it is not possible to trace dust filament
back to the source against the backdrop of the illuminated surface. Second, remote sensing
instruments detecting gas emission (i.e. infrared and sub-mm spectrometers) may suffer with
limited spatial and temporal resolution. In addition, the spectra lines may be optically thick
and the line-of-sight direction usually cuts through inhomogeneous coma (in density or tem-
perature) which further complicates their interpretation considerably. The in-situ instruments
(e.g. ROSINA, or GIADA) must consider possible biases due to the spacecraft position relative
to the nucleus and respective illumination conditions on the surface. For instance, the frequent
use of terminator orbits by Rosetta introduced a significant problem because the measured lo-
cal densities are at points remote from what we assume to be the main direction of outflow,
namely near the sunward direction. In addition, the possible inhomogeneities of the outgassing
at the surface cannot be detected due to the fact that the rapid gas expansion smoothens the
coma. Therefore, measurements taken tens of kilometers above the nucleus surface are rather
insensitive and provide only ambiguous results.
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The difficulties described above show the need for predictive models that can reproduce multi-
ple measurements in one self-consistent framework. We will present results from our study of
diverse Rosetta data sets (including OSIRIS, VIRTIS, MIRO, and ROSINA), constraining the
gas emission into the coma and to establish whether the data enable us to reach appropriate
conclusions on the activity distribution on the nucleus surface. The models can be used on the
one hand to constrain certain properties of the activity and on the other hand they provide
clues on the limits of the interpretations of some of the available datasets.
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