A comprehensive study of thermonuclear X-ray bursts from 4U 1820-30

Gaurava K. Jaisawal DTU Space, Technical University of Denmark

DTU Space National Space Institute

Collaborators:

- J. Chenevez (DTU Space),
- T. Guiver, Z. F. Bostanci (Istanbul Univ.),
- T. E. Strohmayer, K. C. Gendreau, Z. Arzoumanian (NASA/GSFC),
- D. Chakravarty (MIT), and other colleagues from NICER science team

The INTEGRAL Workshop, ESAC Madrid, 21-24 October 2024

<u>4U 1820-30</u>

LMXB discovered in early 70s.

Located in a globular cluster NGC 6624.

Short orbital period of 11.4 min - Ultra-compact X-ray binary, suggesting the companion is an He WD (Stella et al. 1987, Rappaport et al. 1987).

First thermonuclear X-ray burst

Thermonuclear X-ray bursts are detected during the low-hard state (Island state).

A Comprehensive Study of Thermonuclear X-ray Bursts from 4U 1820–30 with NICER: Accretion Disk Interactions and a Candidate Burst Oscillation

2	Gaurava K. Jaisawal $^{(0)}$, ¹ Z. Funda Bostanci $^{(0)}$, ^{2,3} Tuğba Boztepe $^{(0)}$, ⁴ Tolga Güver $^{(0)}$, ^{2,3}
3	Tod E. Strohmayer $^{(0)}$, David R. Ballantyne $^{(0)}$, Jens H. Beck, ¹ Ersin Göğüş $^{(0)}$, Diego Altamirano $^{(0)}$, ⁸
4	Zaven Arzoumanian, ⁹ Deepto Chakrabarty ⁽¹⁾ , ¹⁰ Keith C. Gendreau ⁽¹⁾ , ⁹ Sebastien Guillot ⁽¹⁾ , ^{11,12}
5	Renee M. Ludlam ^{(D} , ¹³ Mason Ng ^{(D} , ¹⁰ Andrea Sanna ^{(D} , ¹⁴ and Jérôme Chenevez ^(D)
6	¹ DTU Space, Technical University of Denmark, Elektrovej 327-328, DK-2800 Lyngby, Denmark
7	² Istanbul University, Science Faculty, Department of Astronomy and Space Sciences, Beyazıt, 34119, İstanbul, Türkiye
8	³ Istanbul University Observatory Research and Application Center, Istanbul University 34119, İstanbul Türkiye
9	⁴ Istanbul University, Graduate School of Sciences, Department of Astronomy and Space Sciences, Beyazit, 34119, İstanbul, Türkiye
10	⁵ Astrophysics Science Division and Joint Space-Science Institute, NASA's Goddard Space Flight Center, Greenbelt, MD 20771, USA
11 ⁶	Center for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, GA 30332-0430, USA
12	⁷ Faculty of Engineering and Natural Sciences, Sabancı University, Orhanlı-Tuzla 34956, İstanbul, Türkiye
13	⁸ School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK
14	⁹ Astrophysics Science Division, NASA's Goddard Space Flight Center, Greenbelt, MD 20771, USA
15	^{10}MIT Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
16	¹¹ IRAP, CNRS, 9 avenue du Colonel Roche, BP 44346, F-31028 Toulouse Cedex 4, France
17	¹² Université de Toulouse, CNES, UPS-OMP, F-31028 Toulouse, France.
18	¹³ Department of Physics & Astronomy, Wayne State University, 666 West Hancock Street, Detroit, MI 48201, USA
19	¹⁴ Dipartimento di Fisica, Università degli Studi di Cagliari, SP Monserrato-Sestu km 0.7, I-09042 Monserrato, Italy

Jaisawal et al. 2024, ApJ, In press, https://doi.org/10.3847/1538-4357/ad794e

I DOTT I OT

X-ray bursts from 4U 1820-30 with NICER

NICER bursts are occupied in one branch

<u>A candidate burst oscillations</u> at 716 Hz from 4U 1820-30

BOs originate from bright patches of thermonuclear explosions on the NS surface, and they coincide with the NS spin frequency.

The fastest radio pulsar is PSR J1748-2446ad in the globular cluster Terzan 5 has 716 Hz spin freq. (Hessels et al. 2006).

All 15 bursts shows sign of PRE

NS photosphere expanded for >50 km.

"Super-exapasion burst" with NICER (Int' Zand et al. 2012).

Scaling factor increased to 10 times at the peak - signify changes in pre-burst accretion

<u>4U 1820-30: Burst time-resolved spectrsocopy using</u> <u>an alternative method</u>

<u>4U 1820-30: Burst time-resolved spectrsocopy</u> <u>using reflection-model</u>

Systematic drop in ionization parameter around PRE phase

Contribution from weakly ionized inner accretion disk and/or from outer disk

Flux-temperature diagram

Burst blackbody flux (bol.)

Can accretion geometry control the maximum expansion radius observed during X-ray bursts?

4U 1820-30: A relation between X-ray bursts and accretion emission parameters

Conclusions

- Strong X-ray bursts from 4U 1820-30 observed with NICER
- Detection of a candidate BO at 716 Hz
- Photospheric radius expansion bursts from 4U 1820 30 probe on the accretion environment.
- Does the accretion environment hold control over photospheric radius expansion of PRE bursts?

(gaurava@space.dtu.dk)