

Probing new physics with diffuse γ -rays in the MeV gap

Pedro de la Torre Luque --- pedro.delatorre@uam.es Juan de la Cierva fellowship (UAM&IFT - Madrid) INTEGRAL workshop – ESA, Madrid 24/10/2024

Has DM been detected?

A steady injection of positrons is revealed by the observations of a bright and diffuse line at 511 keV since the 70s. However, the origin of the distribution and intensity of this line remains a mystery

Sub-GeV DM (≤hundreds MeV) was proposed as a solution by Boehm et al! (PRL92:101301,2004). DM annihilating with a NFW seem to fit quire well the morphology of the signal.

Sub-GeV DM is compatible with BBN constraints only for $m_{\chi} > a$ few MeV

DM particles heavier than ~10 MeV would produce e⁺ that travel up to 100s of parsecs before thermalizing (PDL, S. Balaji, J. Silk ArXiv:2312.04907)

Effect of a realistic diffusion

(PDL, S. Balaji, J. Silk ArXiv:2312.04907)

Profile of the line follows the distribution of diffuse DM e⁺, i.e. $\phi^{511} \sim \phi_{diff}^{e^+}$

The propagation of the e⁺ injected by DM leads to a mass-dependent profile of the expected signal

First consequence: Only positrons injected close to ~1 MeV will closely follow their source distribution Second consequence: a NFW profile does not seem to match well the observations (with caveats*)

Correlation with the anomalous CMZ ionization rate?

PDL, Balaji, Silk ArXiv:2409.07515

The CMZ ionization rate can be attributed to MeV dark matter annihilation for galactic dark matter profiles with slopes $\gamma > 1$

The low (σv) required avoid current cosmological constraints and imply no detectable IC, bremsstrahlung or synchrotron emissions

The associated continuum emission limits the DM hypothesis

("Stringent Constraint on Galactic Positron Production" -- Beacom, Yuksel PRL 2006)

The diffuse MeV gamma-ray emission rules out masses higher than a few MeV if DM is the source of the 511 keV emission

In DM spike models the bulge emission is still DM-dominated, but it does not contribute significantly to the disk emission:

Mass limits can be mitigated!

But still the line can be used to set strong constraints on light DM producing positrons

The longitude profile leads to strongest constraints up to a few hundreds of MeV

Annihilating DM:

PDL, S. Balaji, J. Silk ArXiv:2312.04907

But still the line can be used to set strong constraints on light DM producing positrons

The longitude profile leads to strongest constraints up to a few hundreds of MeV

Decaying DM:

PDL, S. Balaji, J. Silk ArXiv:2312.04907

Asteroid-mass PBHs and the 511 keV line

PBHs follow the same spatial morphology as decaying DM → they can be a fraction of the disk emission but not the dominant source of the bulge (at least in a NFW DM distribution)

The 511 keV line allows to set the strongest constraints on asteroid-mass PBHs

FIP production in Galactic SNe

<u>FIPs</u> → ALPs, Dark photons, sterile v, ...

SNe are expected to produce copious amounts of feebly interacting particles (Turner et al. PRL 60 (1988), 1797; Carenza et al. PRL 126 (2021), 071102; ...)

These particles can escape the SN envelope and decay into e^+e^- (and γ 's – Calore et al PRD 105 (2022) 063028) in the ISM, producing a diffuse sea of particles that can be detected, either directly or via their secondary interactions

Constraints on the injected number of e⁺ per SNe

This source of e⁺ can only constitute a fraction of the 511 keV disk emission.
In-flight annihilation emission from these e⁺ beats all the other limits.

PDL, et al ArXiv:2405.08482

Constraints in sterile neutrino mixing angle

It leads to an improvement on the mixing angle limits of **more than one order of magnitude!** Previous limits are mainly based on cosmological arguments (CMB and BBN) or SN (nondetection of gamma rays from SN1987A, or diffuse gamma-ray constraints)

Conclusions

Probing new physics with Galactic diffuse y-rays in the MeV gap

- The observations of the 511 keV line still lack a satisfactory explanation and may indicate the presence of new physics in the Galaxy
- The hard-X-ray to soft-gamma-ray band (the MeV gap) has a high potential to probe the properties of positron emitters
- The 511 keV line and the MeV continuum gamma-ray background set leading constraints for Sub-GeV DM, PBHs and FIPs (sterile neutrinos)
- Future MeV observations may solve many important open problems in the astroparticles community. However, our theoretical modelling needs to be improved to draw robust conclusions

Pedro de la Torre Luque – 24/10/2024 pedro.delatorre@uam.es

Bakground model

- CR electrons dominate the γ-ray emisión below 100 MeV
- Our prediction (from **PDL** et al *JCAP* 07 (2022) 07, 008) reproduces well MeV data in several Galactic Regions
- The model is obtained from a combined fit to AMS-02 data and the local emissivity spectrum measured by Fermi-LAT

e⁺e⁻ propagation

- Electrons and positrons interact with the Galactic magnetic field and the ISM
- DM particles heavier than ~10 MeV would produce e⁺ than travel up to 100s of parsecs before thermalizing (PDL, S. Balaji, J. Silk ArXiv:2312.04907)

The diffusion equation in this case can be approximated as:

The fate of positrons in the Galaxy

Positrons were discovered in the 30s, from CR interactions -- CRs must also produce positrons in the disk of the Milky Way

In the 40s, Dirac showed that positrons annihilate with electrons into a pair of photons – If positrons are near rest, this leads to a line at 511 keV!

But e⁺e⁻ pairs likely create a bound state, "positronium", which produces a line, and also a continuum emission below 511 keV

Direct annihilation cross sections:

on
$$\sigma = \frac{\pi r_e^2}{\gamma + 1} \left[\frac{\gamma^2 + 4\gamma + 1}{\gamma^2 - 1} \ln \left(\gamma + \sqrt{\gamma^2 - 1} \right) - \frac{\gamma + 3}{\sqrt{\gamma^2 - 1}} \right]$$

The 511 keV puzzle

A steady injection of positrons is revealed by the observations of a bright and diffuse line at 511 keV since the 70s. However, the origin of the distribution and intensity of this line remains a mystery

SPI Collab.

ArXiv: 1903.05569

Very peaked emission towards the center (bulge emission) + a very extended disk emission

Possible positron sources

Known sources contributing with the <u>disk</u> <u>emission</u> are pulsars injecting e^{\pm} or sources synthesizing β^+ radioactive elements (e.g. ²⁶Al in massive stars, ²⁴Ti in CC-SNe or ⁵⁶Ni in SN 1A)

The measured <u>bulge emission</u> requires a spatial morphology and injection rate that does not seem to easily fit with known candidates, such as low-mass X-ray binaries, SN 1A or other sources expected to be located around the Galactic centre

Possible positron sources

Sub-GeV DM (≤hundreds MeV) was proposed as a solution by Boehm et al! (PRL92:101301,2004)

It was soon realized that a cored DM profile cannot explain observations. Also, DM decay or velocity dependent cross section are ruled out

Sub-GeV DM is compatible with BBN constraints only for $m_{\chi} > \sim 1-10$ MeV

Source	Process	$E(e^+)^a$	e^+ rate ^b	$Bulge/Disk^{c}$	Comments
		(MeV)	$\dot{N}_{e^+}(10^{43} \text{ s}^{-1})$	B/D	
Massive stars: ²⁶ Al	β^+ -decay	~ 1	0.4	< 0.2	$\dot{N}, B/D$: Observationally inferred
Supernovae: ²⁴ Ti	β^+ -decay	~ 1	0.3	< 0.2	\dot{N} : Robust estimate
SNIa: ⁵⁶ Ni	β^+ -decay	~ 1	2	< 0.5	Assuming $f_{e^+,esc}=0.04$
Novae	β^+ -decay	~ 1	0.02	< 0.5	Insufficent e^+ production
Hypernovae/GRB: ⁵⁶ Ni	β^+ -decay	~ 1	?	< 0.2	Improbable in inner MW
Cosmic rays	p-p	~ 30	0.1	< 0.2	Too high e^+ energy
LMXRBs	$\gamma - \gamma$	~ 1	2	< 0.5	Assuming $L_{e^+} \sim 0.01 \ L_{obs,X}$
Microquasars (μQs)	$\gamma - \gamma$	~ 1	1	< 0.5	e^+ load of jets uncertain
Pulsars	$\gamma - \gamma / \gamma - \gamma_B$	> 30	0.5	< 0.2	Too high e^+ energy
ms pulsars	$\gamma - \gamma / \gamma - \gamma_B$	> 30	0.15	< 0.5	Too high e^+ energy
Magnetars	$\gamma - \gamma / \gamma - \gamma_B$	> 30	0.16	< 0.2	Too high e^+ energy
Central black hole	p-p	High	?		Too high e^+ energy, unless $B > 0.4 \text{ mG}$
	$\gamma - \gamma$	1	?		Requires e^+ diffusion to $\sim 1 \text{ kpc}$
Dark matter	Annihilation	1(?)	?		Requires light scalar particle, cuspy DM profile
	Deexcitation	1	?		Only cuspy DM profiles allowed
	Decay	1	?		Ruled out for all DM profiles
Observational constraints	3	$<\!7$	2	>1.4	

Correlation with the anomalous CMZ ionization rate?

PDL, Balaji, Silk ArXiv:2409.07515

Maximum ionization rate allowed by CMB constraints

The CMZ ionization rate can be attributed to MeV dark matter annihilation for galactic dark matter profiles with slopes $\gamma > 1$

The low (σv) required avoid current cosmological constraints and imply no detectable IC, bremsstrahlung or synchrotron emissions

Previous constraints

Strongest previous constraints come from the X-ray Galactic diffuse emission and CMB

X-ray constraints suffer from uncertainties in propagation as well – Limits can be a factor of a few lower for a NFW profile

Best fit line profiles vs DM mass

The last chance for DM: spike around SgrA*

The high bulge emission can be still dominated by DM, while not being in conflict by the disk emission in this kind of profiles and needing very low $\langle \sigma v \rangle$

The last chance for DM: spike around SgrA*

The associated in-flight annihilation emission is compatible with MeV diffuse gamma-ray observations up to DM masses around 20-30 MeV

PDL, S. Balaji, F. Sala, M. Fairbarn, J. Silk. In preparation

The last chance for DM: spike around SgrA*

O-ps emission dominates at low energy, while IA the at high energies. Internal bremsstrahlung (FSR) is subdominant

DM spike distributions open a window of m_{χ} compatible the 511 keV bulge emission

Gondolo-Slik profile

*Heating profile

PDL, S. Balaji, F. Sala, M. Fairbarn, J. Silk. To be submitted

Constraints on the injected number of e⁺ per SNe

This source of e⁺ can only constitute a fraction of the 511 keV disk emission.
In-flight annihilation emission from these e⁺ beats all the other limits.

FIP production in Galactic SNe

The production for these particles can be described as a thermal Boltzmann emission. Therefore, **the injection of positrons and electrons** produced in their decay **can be parameterized as**:

$$\frac{dN_e}{dE_e} = N_e C_0 \left(\frac{4E_e^2 - m_X^2}{E_0^2}\right)^{\beta/2} e^{-(1+\beta)\frac{2E_e}{E_0}}$$

<u>FIPs</u> → ALPs, Dark photons, sterile v, ...

FIP constraints on FIP parameters

(ArXiv:2307.13728, ArXiv:2307.13731)

The upper limits on the e⁺e⁻ injection can be applied to several FIP models

Here, we assume a simple dependency of the coupling, as $g \sim N_e^{-\alpha}$, with g being the coupling to electrons for ALPs, $|U_{\nu_s}|^2$ for sterile ν , or ε for dark photons.

For example, for ALPs in the low-coupling regime, the positron production rate per SN grows as g^2

Limits on the injected number of positrons emitted by FIPs produced in SNe

Constraints on the injected number of e⁺ per SNe

This source of e⁺ can only constitute a fraction of the 511 keV disk emission.
In-flight annihilation emission from these e⁺ beats all the other limits.

The specific case of sterile neutrinos

$$\begin{aligned} \nu_{\alpha} &= U_{\alpha 1} \, \nu_{\ell} + U_{\alpha 4} \, \nu_{4} \\ \nu_{s} &= -U_{\alpha 4} \, \nu_{\ell} + U_{s 4} \, \nu_{4} \end{aligned}$$

We compute the sterile neutrino production using as a benchmark an $18 M_{\odot}$ progenitor mass, based on the AGILE BOLTZTRAN code

Most important decays are $\upsilon_4 \rightarrow \upsilon_{\alpha} l_{\alpha}^+ l_{\alpha}^-$ See Carenza et al 2023 (ArXiv:2311.00033) for details

$$\frac{dN_{\rm pos}}{dE} = n_{\rm pos} \frac{dN_4}{dE_4} \left(\epsilon_{II} e^{-r_{II}/\lambda_{\rm dec}} + \epsilon_I e^{-r_{\rm I}/\lambda_{\rm dec}} \right)$$

Constraints on sterile neutrinos produced in SNe

Injected distribution of positrons

Propagated positrons: Local spectra vs mass

in-flight positron annihilation

$$\frac{d\phi^{\mathrm{IA}}}{d\Omega \, dE_{\gamma}} = \frac{d\phi^{511}}{d\Omega} \frac{n_H}{P(1-\frac{3}{4}f)} \times \int_{E_{\gamma}}^{E_{\mathrm{max}}} dE' \, \frac{1}{N_{\mathrm{pos}}} \frac{dN_{\mathrm{pos}}}{dE'} \int_{m_e}^{E'} P_{E' \to E} \, \frac{d\sigma}{dE_{\gamma}} \frac{dE}{|dE/dx|}$$

Constraints on sterile neutrinos

Evaporating primordial black holes

Using BlackHawk

Hawking radiation is expected to produce all kind of particles with a thermal spectrum

The lower the mass of the PBH, the higher is the PBH temperature and, hence, the higher is the mass of the particles that it produces

Satellite-mass PBHs would produce detectable emission of e⁺e⁻ and secondary radiations. Constraints are placed on the fraction of DM that is in the form of PBHs

Strongest previous constraints were based on Voyager-1 data, direct decay to gamma rays and the isotropic X-ray background.

Asteroid-mass PBHs and the 511 keV line

PBHs follow the same spatial morphology as decaying DM \rightarrow they can be a fraction of the disk emission. At 10¹⁸ g their production is very low, and *f* cannot be constrained

PBHs and the 511 keV line: constraints

XMM-Newton limits are obtained from the inverse-Compton emission of the injected e⁺e⁻ For the high masses, these limits improve, by far, the existing ones.

Monochromatic and non-rotating PBHs

PBHs and the 511 keV line: constraints

Kerr BHs (a \equiv Spin) Non-rotating BHs $T = \frac{1}{2\pi} \left(\frac{r_{+} - M}{r_{+}^{2} + a^{2}} \right)$

$T = 1/(8\pi M)$

Mass distribution of PBHs

$$Q_e(E_e, \vec{x}) = f\rho_{\rm DM}(\vec{x}) \int_{M_{\rm min}}^{\infty} \frac{dM}{M} \frac{dN_{\rm PBH}}{dM} \frac{d^2N_e}{dtdE_e}$$

PBHs and the 511 keV line: constraints

Kerr BHs (a \equiv Spin) $T = \frac{1}{2\pi} \left(\frac{r_+ - M}{r_+^2 + a^2} \right)$

Non-rotating BHs

 $T = 1/(8\pi M)$

Mass distribution of PBHs

In-flight positron annihilation emission from PBHs

Our first calculations suggest that the limits obtain for low PBH masses would improve those from the 511 keV line when including the gamma-ray background

