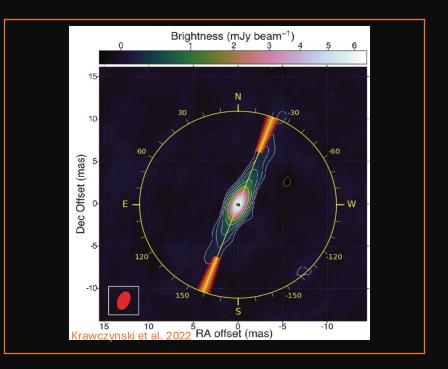
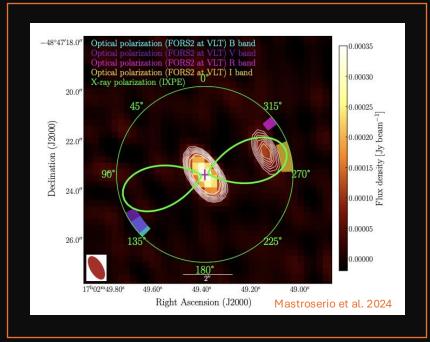

IXPE results from BH X-ray binaries

Capitanio F., Fabiani, S., Marra, L., Tarana on behalf of IXPE collaboration

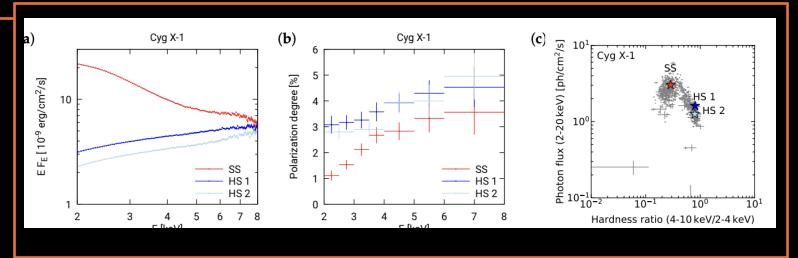

Object (Object Type)	Observation Date	LIVETIME [ks]	State	Energy Flux ^a [mCrab]	Polarisation Degree ^a [%]	Polarisation Angle ^a [deg]
LMC X-1 persistent HMXB	19–28 October 2022	562	ss	14	< 2.5 h	_
LMC X-3 persistent LMXB/HMXB	7–20 July 2023	562	SS	16	3.0 ± 0.4	-41 ± 4
4U 1957+11 persistent LMXB	12–24 May 2023	572	SS	22	1.8 ± 0.4	-52 ± 7
4U 1630–47 transient LMXB	23 August 2022 – 2 September 2022	458	SS	181	8.6 ± 0.2	17.6 ± 0.6
LMXB	10-13 March 2023	36 102	SPL ^c	389 539	8.3 ± 0.5 6.7 ± 0.3	$\begin{array}{c} 22\pm2 \\ 21\pm1 \end{array}$
Swift J1727.8–1613 ^d transient LMXB	7–8 September 2023	19		3920	4.1 ± 0.2	3 ± 2
	16–17 September 2023	37	bright HIMS ^e	3574	3.9 ± 0.2	3 ± 1
	27–28 September 2023	21		3050	3.7 ± 0.2	3 ± 2
	4 October 2023	18		3284	3.2 ± 0.2	0 ± 2
	10 October 2023	18		2676	2.8 ± 0.3	-1 ± 3
Swift	11–12 February 2023 20–23	67	dim SS f	86	<1.1	_
J1727.8–1613 ^d transient LMXB	February 2023	151		58		
LIVIND	3–8 April 2023	202	dim HIMS	32	4.0 ± 0.7	6 ± 5
GX 339–4 g transient	14–16 February 2024	95	SIMS	291	$1.3\pm0.4~^h$	-69 ± 8 h
LMXB -	8–10 March 2024	98	SS	94	<1.4 i	_
Swift J151857.0– 572147 transient	18–20 March 2024	96	SS	300	<1.3 ^j	_
Cyg X-3 ^g persistent HMXB	14 October–6 November 2022	538	HS 1	72	19.5 ± 0.4	89.9 ± 0.5
	17–23 November 2023	291	HS 2	76	20.0 ± 0.5	91.8 ± 0.7
	25–29 December 2022	198	IMS	192	9.3 ± 0.3	92 ± 1
-	2–3 June 2024	50	SS	268	11.3 ± 0.5	93 ± 1

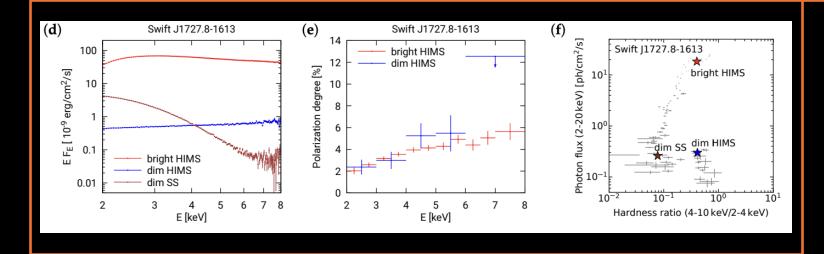


- IXPE observed 10 BH-Xray binaries until now
- Almost persistent sources in HSS.
- Only 3 transients have been observed until now: GX 339-4, 4U 1630-47 and Swift J1727.8–1613

Geometry of the corona: polarization angle is parallel to radio jets

- All accreting BH, having a known direction of the jets, show a polarization angle aligned with the jets
- this is a common characteristic of accreting compact objects (NS-LMXB, AGN).
- for GX 339-4 we observed simultaneously with ixpe a jet ejection in radio band.
- the alignment of the polarisation direction with the ballistic radio jet may suggest the presence of a corona extended perpendicularly to the jet in this source as well.





Geometry of the Corona: Polarization degree increases with energies

Dovciak et al. 2024

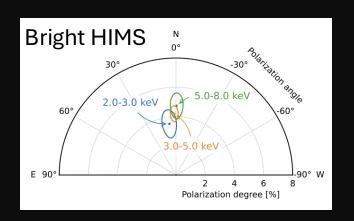
Swift J1727-1613

Geometry of the Corona: Polarization degree value changes with source state

- In HSS the polarization degree is very low and is below or near the detection limit of IXPE.
- As for example, GX 339-4 pass from a low but significative (at 99.9% sigma level) PD =1.3% in SIMS to an upper limit in HSS.
- In case of GX 339-4, based on the alignment of X-ray and optical PA with the radio jet, the favoured system configuration is a corona horizontally extended on the plane of the accretion disk

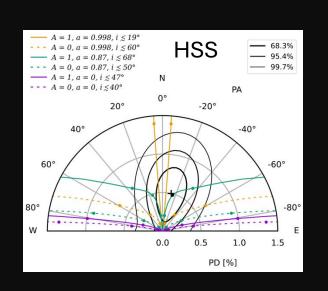
60° -60° 90° 0.5 1.0 1.5 2.0 2.5 P_X [%] 0° 30° -30° 30° 2-3 keV 60°60° -60° -60° 6-8\keV 0.5 1.0 1.5 2.0 2.5 90° -90° 10 15 20 25 30 P_X [%]

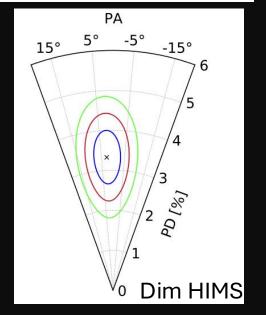
0°


2-8 keV 3-8 keV -30°

30°

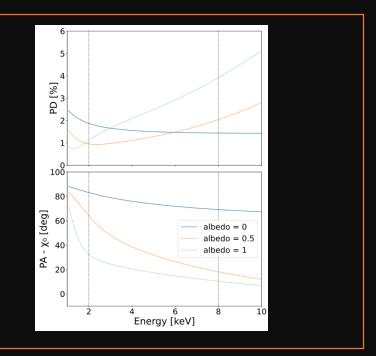
Mastroserio et al. 2024


Geometry of the Corona: Polarization degree changes with source state. The case of Swift 1727.8-1613

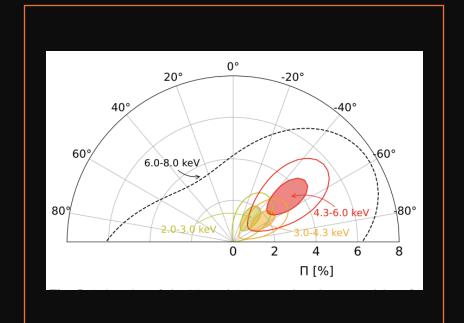

- Recovering of polarization degree value after transition back to HS (at least in the case of Swift 1727.8-1613)
- The geometry of the thermal corona, should have similar geometries in both the initial bright HIMS and in the dim HIMS at the end of the outburst

Object (Object Type)	Observation Date	LIVETIME [ks]	State	Energy Flux ^a [mCrab]	Polarisation Degree ^a [%]	Polarisation Angle ^a [deg]
Swift J1727.8–1613 ^d transient LMXB	16–17 September 2023 27–28	37	bright HIMS ^e	3574	3.9 ± 0.2	3 ± 1
	September 2023	21		3050	3.7 ± 0.2	3 ± 2

Swift J1727.8–1613 ^d transient LMXB	11–12 February 2023	67	$\dim\operatorname{SS}^f$	86	<1.1	_
	20–23 February 2023	151		58		
	3–8 April 2023	202	dim HIMS	32	3.4± 0.7	6 ± 5



BH-XRB shows a "moderate" level of polarization degree


- The averaged value of polarization degree < 4%
- The polarized light observed in the 2-8 keV is due to the superposition of different contributions:
- Intrinsic disk polarization,
- The inverse Compton scattering
- Scattering due to reflection.
- The presence of wind should increase the PD
- All these components are not oriented in the same direction (different polarization angle): effects partial or total subtraction
- 4U 1630-47 and Cyg X-3 represent an exception.

Spin measurements: the case of 4U 1957+115

- IXPE was able to constrain BH spins using spectral polarimetry of BH XRBs by observing in the HSS
- In HSS the X-ray emission is dominated by the inner regions of the accretion disc, where the gravity of the BH has the strongest effect.
- The GR effects and the returning radiation in the vicinity of the BH introduce an energy dependence on the observed polarisation properties of the thermal emission making polarimetric data a valuable tool for estimating the BH spin via the relation between the ISCO radius and spin
- The spin measured was consistent with previous measurements
- The spin has been measured for: LMC X-3, 4U 1957+11, and Cyg X-1.

Marra et al. 2024

Conclusions

- The IXPE observations have shown that all BH X-ray binaries observed until now share same properties with the exception of Cyg X-3 and 4U 1630-47.
- With polarization is possible to constrain:
- the geometry of the corona
- the spin of the BH
- However, not all the polarization properties have been already explained

- There are several INTEGRAL/IXPE simultaneous data that are crucial to constrain the high energy behavior.
- The spectral analysis in not easy to do but the work in on going:
 - Swift 1727.8, Mastroserio et al. in prep;
 - 4U 1630-47, Capitanio et al in prep
 - GX 339-4; Cyg X-1 and Cyg X-3