Polarization properties with INTEGRAL/IBIS Swift J1727.8 -1613 and others

TRISTAN BOUCHET, PHD STUDENT

SUPERVISORS: J. RODRIGUEZ, F. CANGEMI, P. LAURENT

COLLABORATORS: P. THALHAMMER, V. GRINBERG, J. WILMS, K. POTTSCHMIDT

LAB: CEA SACLAY

Polarization with INTEGRAL/IBIS

- 1. The IBIS/Compton mode and Crab nebula
- 2. Microquasars polarization with Swift J1727.8-1613
- 3. Interpretation and outlook

1. Principle of IBIS/Compton mode

Polarization of gamma-rays

 Compton scattering depends on polarization of incoming light (Klein-Nishina formula)

$$\frac{\mathrm{d}\sigma_C}{\mathrm{d}\Omega} = \frac{r_e^2}{2} \left(\frac{E'}{E}\right)^2 \left[\frac{E'}{E} + \frac{E}{E'} - 2\sin^2\theta\cos^2\phi\right]$$

Distribution for large number of photons (polarigram):

$$N(\phi) = C (1 + a \cos(2(\phi - \phi_0))),$$

Polarization of gamma-rays

- IBIS telescope: ISGRI (30 500 keV) + PICsIT (170 3000 keV)
- Polarization Angle (PA) and Fraction (PF) from polarigram fit and MCMC simulations for a₁₀₀ value

Latest changes

- PICsIT calibration without ²²Na source:
- Gain/temperature correlation \rightarrow PICsIT gain
- Compton 511 keV background line → PICsIT offset
- OSA11.2 code implementation for ISGRI
- Extension to lower energy band (200 300 keV)
- Crab nebula polarization compatible with other mission: PA = 141 ± 4° and PF = 22 ± 7 %

Instrument	Energy (keV)	Method	Material	Optics	PA (°)	PF (%)
INTEGRAL/SPI	130-436	Compton	Ge	Coded mask	120 ± 6	24 ± 4
Hitomi/SGD	60–160	Compton	Si, CdTe	Collimator	110 ± 13	22.1±10.6
AstroSat/CZTI	100-380	Compton	CdZTe	Collimator	143.5 ± 2.8	39 ± 10
PoGo+	18–160	Compton	BGO	None	131.3 ± 6.8	20.9 ± 5.0
IXPE	2-8	electron tracks in gas	GPD	Wolter I	145.5 ± 0.29	19.0 ± 0.19
INTEGRAL/IBIS	210-450	Compton	CdTe, CsI(Tl)	Coded mask	141 ± 4	22 ± 7

Other mission polarization measurements

2. Microquasar polarization

Radio imaging of BH ejection

Black Hole X-ray Binaries

What process above few ~100 keV?

\rightarrow Polarization

Synchrotron:

For an electron distribution of index p: Can reach PF > 50%

PA perpendicular to magnetic field B

Compton scattering: PF < 20%</p>

 $\Pi = \frac{p+1}{p+\frac{7}{3}}$

Swift J1727.8-1613

- Very bright source (up to 10 Crabs) Swift J1727.8 1613, discovered in August 2023
- Seen at all energies, from radio to hard X-rays

9

Radio image of compact jet (Wood+ 2024)

Polarization and spectra

Hard Intermediate (HIM) state: cutoff powerlaw + 'hard tail' powerlaw with Γ ~ 2

10

Soft Intermediate (SIM) state: simple powerlaw (+disk)

Polarization evolution

- No detection in HS and late SIMS (Black crosses)
- HIM polarization (Black squares)
- Jet-aligned polarization coincident with 1st radio flare (Red square)

Polarization parameters

see Bouchet et al. 2024, A&A, 688:L5

3. Interpretation and future plan

13

Swift J1727.8 polarization evolution

- 'Pure' Hard state (Γ < 1.8): no detected PF, similar to Cygnus X-1 (see Chattopaday+ 2024)
- HIMS: High level of polarization = synchrotron emission

State	Detection > 200 keV ?	Polarized ?	Jet-aligned ?
Hard		×	
HIM			×
SIM start			
SIM/Soft	×		

Summary of polarization results

MAXI J1348-630

- Another bright Microquasar, outburst in 2019
- Polarization at 230-350 keV (wider energy band)
- ▶ Hint to similar behavior, but only 1 rev. in SIMS and no radio flare

SIMS polarization aligned with ejection axis ~ 33°

15

Interpretation of SIMS alignment

- How does this 'polarization flip' happen?
- Aligned with jet = B perpendicular to jet
- B field compressed in a 'slab' during the ejection → high PF, depends on electron index and inclination?

A possible explanation: B field orthogonal compression (see Laing 1980)

Future plan

- Long-term study of persistent (Cyg X-1, GRS 1758-258) or "recurrent" (GX 339-4) sources
- \rightarrow less bright, but more exposure
- Calibration with Crab nebula as a "standard candle" (In-flight calibration of IBIS/Compton, in prep.)
- Opens possibilities for fainter sources

16

IBIS before launch

Thank you!

Backup

IBIS Compton software

- In reality: spurious events mixed with true Compton events!
- Solution: reconstruct spurious event and substract the polarigrams
- Cross-check with Crab spectra for final correction

 $N_{true\ Compton} = N_{raw\ Compton} - \alpha_{corr}\ N_{spurious}$

Software workflow

20

Long-term Crab nebula polarization

- Other high-energy mission to compare
- Preliminary result in 210-450 keV band :

PA = 141 ± 4° and **PF = 22 ± 7 %**

 Stable over time, compatible mainly with AstroSat and IXPE

Instrument	Energy (keV)	Method	Material	Optics	PA (°)	PF (%)
INTEGRAL/SPI	130-436	Compton	Ge	Coded mask	120 ± 6	24 ± 4
Hitomi/SGD	60-160	Compton	Si, CdTe	Collimator	110 ± 13	22.1±10.6
AstroSat/CZTI	100-380	Compton	CdZTe	Collimator	143.5 ± 2.8	39 ± 10
PoGo+	18-160	Compton	BGO	None	131.3 ± 6.8	20.9 ± 5.0
IXPE	2-8	electron tracks in gas	GPD	Wolter I	145.5 ± 0.29	19.0 ± 0.19
INTEGRAL/IBIS	210-450	Compton	CdTe, CsI(Tl)	Coded mask		

Other polarization experiments

Crab polarization 2004-2024

Inflight calibration of IBIS/Compton (Bouchet, Laurent, Rodriguez, Cangemi, in prep.)

Swift J1727.8 results

PF energy dependency in HIMS

Evolution of PA/PF with time