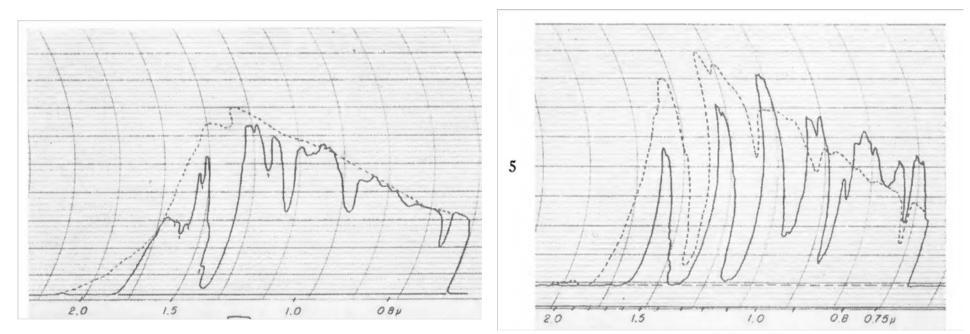
Lessons learned from Solar System IR Observations

Thierry Fouchet


LESIA – Observatoire de Paris

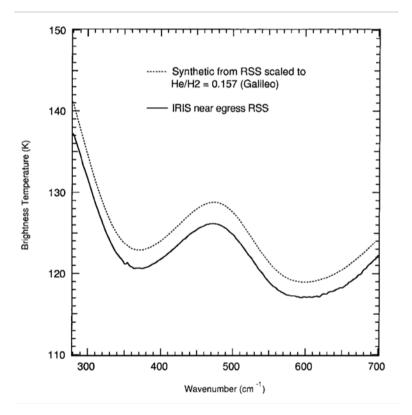
Success of IR spectroscopy in probing Solar System atmospheres

Infrared Spectra of Planets, Gerard P. Kuiper, ApJ, 106, 1947

Venus: CO₂

Jupiter: CH₄ & NH₃

Giant Planets - composition


	Jupiter	Saturn	Uranus	Neptune
H ₂ He	86,4% 13,4%	94-86% 6-14%	81-86% 12-17%	77-82% 12-17%
Noble gases	Ne, Ar, Xe, Kr			
Thermochemical equilibrium	CH ₄ : 0.2% NH ₃ : 6×10^{-4} H ₂ O > 10^{-3} H ₂ S: 9×10^{-5}	CH ₄ : 0.45% NH ₃ , H ₂ O, H ₂ S	CH ₄ ~2%, H ₂ S	CH ₄ ~2%, H ₂ S?
Disequilibrium species	PH ₃ , GeH ₄ , AsH ₃ , CO	PH ₃ , GeH ₄ , AsH ₃ , CO		СО
Photochemical products	$C_2H_6, C_2H_4, C_2H_2, C_3H_8, CH_3C_2H, C_4H_2, C_6H_6$	$CH_3, C_2H_6, C_2H_4, C_2H_2, C_3H_8, CH_3C_2H, C_4H_2, C_6H_6$	C ₂ H ₂	CH ₃ , C ₂ H ₆ , C ₂ H ₄ , C ₂ H ₂
External flux (IDPs, ring systems, impacts)	H ₂ O, CO, CO ₂ , CS, HCN	H ₂ O, CO, CO ₂	H ₂ O, CO	H ₂ O, CO, CO ₂ , HCN, CS

Terrestrial Planets - composition

	Venus	Mars	Titan	Pluto
Main gases	CO ₂ , N ₂	CO ₂ , N ₂	N ₂ , CH ₄	N ₂
Noble gases	He, Ne, Ar, Kr	Ar, Ne, Kr, Xe	⁴⁰ Ar	
Trace gases	SO ₂ , H ₂ O, OCS, HCl, HF	H ₂ O, CH ₄ ?	H ₂ O, CO	CH ₄ , CO
Photochemical products	CO, H ₂ SO _{4,} SO, ClO, O ₂ , O ₃	CO, NO, O ₂ , O ₃	$C_2H_6, C_2H_2, C_3H_8, C_2H_4, CH_3C_2H, C_4H_2, C_3H_6, H_2$ HCN, HNC, CH_3CN, HC_3N, C_2N_2, C_4N_2, C_2H_5CN, C_2H_3CN	C ₂ H ₆ , C ₂ H ₄ , C ₂ H ₂ , HCN


Helium Abundance - In situ needed

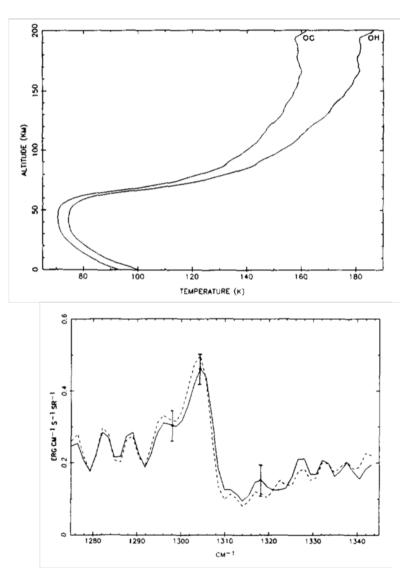
- Determined from H₂-He-CH₄ CIA in 300-700 cm⁻¹
 - Degeneracy between T(p), orthoto-para ratio, He/H₂, haze opacity
 - Combined radio occultation (RSS) T(p) measurements and IR continuum
- Jupiter:
 - Voyager: He/H₂=0.110±0.032 (Y=0.18, Gautier *et al.* 1981; Conrath *et al.* 1984)
 - Galileo in-situ: He/H₂ = 0.157±0.003 (Y=0.234, von Zahn et al. 1996, 1998)

Saturn Helium Abundance – Still debated

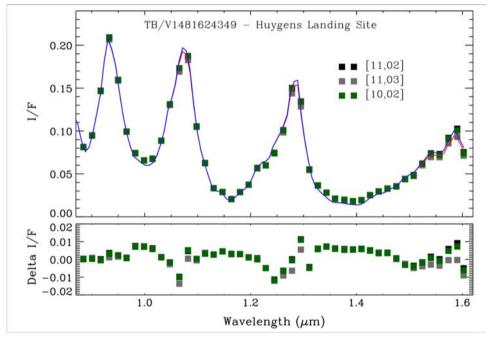
- Voyager
 - RSS+IR Continuum: He/H₂ = 0.034±0.024 (Conrath et al. 1984)
 - IR Continuum only: He/H₂=0.11-0.16 (Conrath & Gautier 2000)
- Cassini
 - RSS+IR Continuum: He/H₂= 0.06-0.085 (Achterberg et al. 2016)
 - Occultation IR / IR Continuum: He/H₂=0.09-0.19 (Banfield et al, 2014)
 - Occultation UV+ Limb IR: He/H₂=0.12±0.02 (Koskinen & Guerlet 2018)

Helium – Uranus & Neptune

- Before Voyager
 - IR Continuum only
 - A claim for a He vmr of 40±20% (Orton et al., Science, 1986)
- Voyager
 - RSS+IR Continuum: He vmr = 0.152±0.033 (Y=0.262±0.048, Conrath et al. 1987).
 - Compatible with Solar abundance


- Voyager
 - RSS + IR Continuum: He vmr= 0.19±0.032 (Y=0.32±0.05, Conrath et al. 1991)

Perspectives

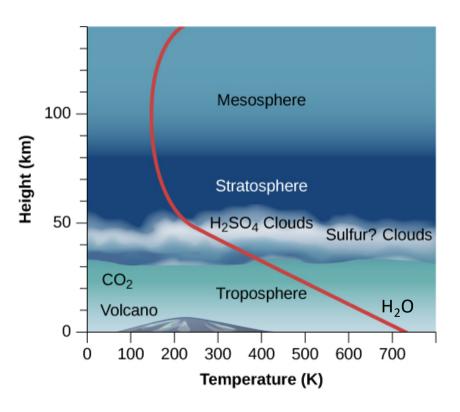

- Helium abundance only known from in-situ measurements
 - Solar System: no precise knowledge for Saturn, Uranus & Neptune
 - Affects evolution models, remote sensing interpretation
- Difficulties
 - He signal is weak
 - Degeneracy: ortho-to-para ratio, T(p), clouds
 - Hot Jupiter: water lines could affect long-wavelength part of the continuum
 - Radio occultation measurements: g not exactly known because of unknown wind speed

Titan: the debate on tropospheric methane abundance

- Voyager:
 - Radio Occultation (RSS) measures T/m vertical profile
 - + CH₄ v_4 emission measures T and CH₄ vmr
- Analysis
 - N₂, CH₄ and H₂ detected, but what if an abundant gas not detected: Argon
 - Ar/N₂<27%, stratospheric CH₄ vmr = 0.5-3.4%, tropospheric CH₄ vmr as high as 21% (Lellouch et al. 1989)
- Implications:
 - Presence of CH₄-C₂H₆ ocean at the surface (Lunine et al. 1983)
 - Exact composition depended on T_{surf} hence on [Ar]
 - Two poles: pure methane pure ethane

Titan: the debate on tropospheric methane abundance

- In principle, near-IR probes the tropospheric CH4 vmr
 - Weak lines only recently measured (Campargue et al. 2010)
 - Clouds, haze parameters weakly constrained
 - CH₄ RH = 25-200% (Courtin et al. 1995; Samuelson et al. 1997)
- Huygens in-situ required
 - CH₄ measured from GCMS and DISR: vmr=5% (Niemann et al. 2005)
 - Aerosols properties from DISR (Tomasko et al. 2008)
 - Possible to reconcile remote sensing and in-situ (Griffith et al. 2012)


Perspectives

- Condensable species: difficult to measure down to the surface
 - Difficulty to measure below the clouds
 - Highly dependent on the cloud scattering properties
 - Very demanding for spectroscopy
 - We still don't know the H_2O abundance below Jupiter's cloud deck \rightarrow C/O ratio?
 - Uncertainties and/or extrapolation on the T(p) profile
 - The relative humidi
- Ocean worlds!

Venus thick atmosphere

- Very long path-length requires knowledge
 - Collisional broadening (CO₂)
 - Sublorentzian lineshape up to several 100 cm⁻¹
 - Additional continuum opacity
 - CO₂ CIA bands
 - Extreme far wings of strong CO₂ bands
- H₂O abundance close to the surface
 - 30±10 ppm (Crisp et al., 1991)
 - 45±10 ppm (Meadows & Crisp 1996)
 - 60±10 ppm (Ignatiev et al. 1997)

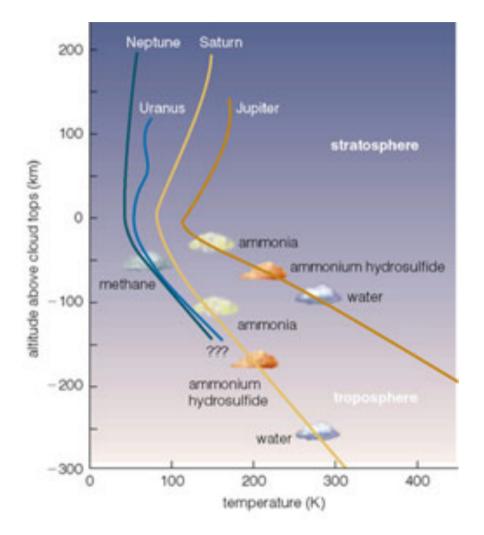
Venus thick atmosphere

- How to independently measure the additional opacity?
 - High spectral resolution of resolved CO₂ lines
 - Relative variations of the intensity at 1.185 µm as a function of surface elevation
 - H₂O abundance of 44 ± 9 ppm (Bézard et al. 2009)

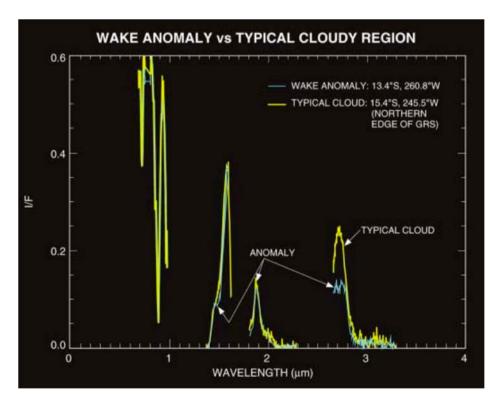
1.15 1.1 1.1 1.1 1.05 0.95 0.95 0.85

0

1 Altitude (km) 2


3

0.8


-2

-1

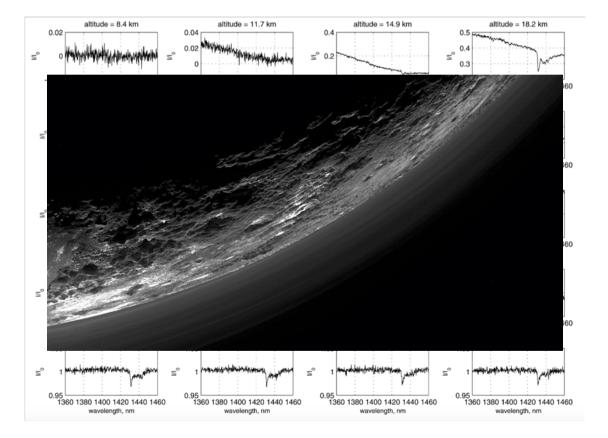
BÉZARD ET AL.: WATER VAPOR NEAR THE SURFACE OF VENUS

Giant planets cloud chemical composition

Baines et al. (2002)

Jupiter: only patchy identification of NH₃ clouds

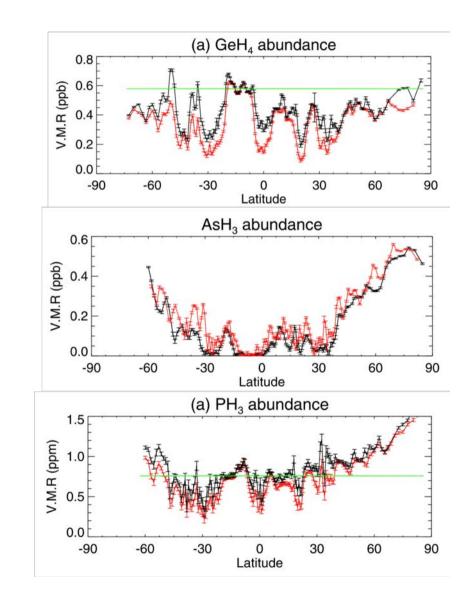
- Color variations remained unexplained: chromophores
 - Need for 2 or 3 chromophores (Simon-Miller et al. 2001)
- Photochemistry :
 - $PH_3 \rightarrow red phosphorus (P_4)$
 - $NH_3 \rightarrow hydrazine (N_2H_4)$
 - $NH_3 + C_2H_2 \rightarrow C_{2n}H_{4n-2}N_2$, $C_{2n}H_{4n}N_2$, and $C_{2n}H_{4n+2}N_2$
- Lightening could also play a role
- <u>No definitive</u> spectroscopic identification



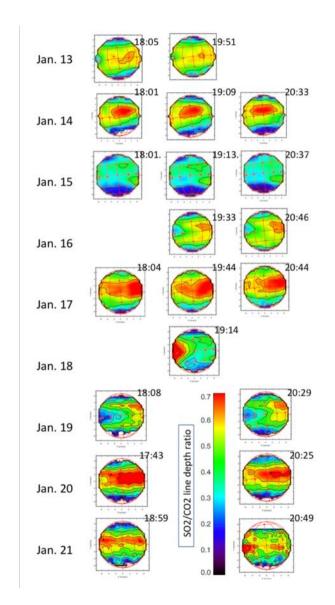
Sromovsky et al. 2018

Perspectives

- The problem of continuum spectroscopy
 - Extremely far wings Collision induced absorption spectroscopic parameters
 - Laboratory measurements & Ab initio quantum calculations needed
- Clouds
 - Very difficult to decipher their compositions, spectroscopic parameters, hence opacity


Vertical variations of hazes, clouds & aerosols

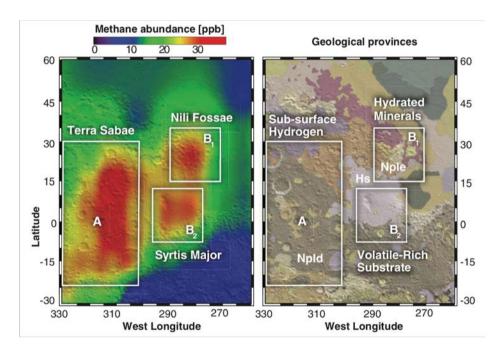
- SPICAM solar occultation on Mars (Fedorova et al. 2009)
 - CO₂ and H₂O gases
 - And several detached layers
 - Small and large particles
 - Detached water ice clouds
 - Caused by sedimentation, convection, waves


Pluto detached layers seen by New Horizons Meridional variations of disequilibrium species

- PH₃, GeH₄, AsH₃, CO disequilibrium species
 - At thermochemical equilibrium at p>1000 bars
 - Convection faster than kinetics of destruction → quenched
 - Expected abundances depending on convective heat flux
 - Unexpected and unexplained meridional variations (Giles et al. 2017)

SO₂ Temporal & Spatial Distribution on Venus

- SO₂ abundance above the clouds strongly varying
 - With time, at all scales
 - With latitudes and longitudes
 - TEXES/IRTF (Encrenaz et al. 2019) & UV/SPICAV (Marcq et al. 2016)
- Volcanic eruption?
- Large reservoir of SO₂ within the cloud
 - Puff of SO₂ in upper atmosphere ; convection, planetary waves

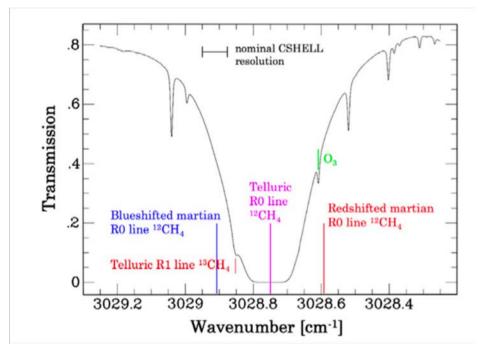


Perspectives

- Take into account the possibility of spatial variability
 - Vertical variations
 - Meridional variations
 - Dusk/dawn variations
- Take into account the possibility of temporal variability
 - When several transits averaged together
- Change the radiative transfer through line saturation

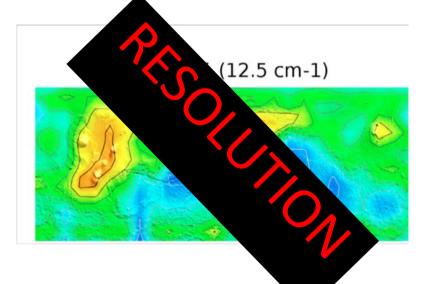
Methane on Mars?

- Three independent detections of methane on Mars
 - 10±3 ppb (CFHT/FTS, Krasnopolsky et al. 2004)
 - Regional variability : 0-30 ppb (MeX/PFS, Formisano et al. 2004)
 - Regional variability: 0-40 ppb (CSHELL/IRTF, Mumma et al. 2009)
- Origin?
 - Cometary impacts?
 - Serpentinization?
 - Life?

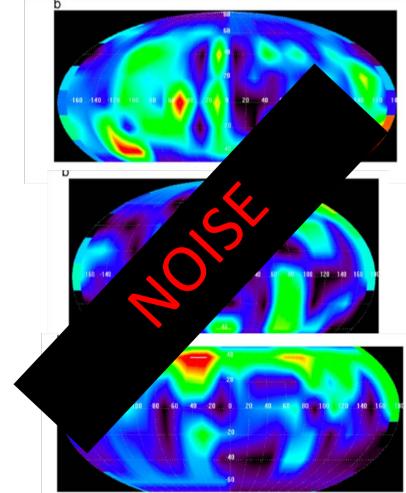


Methane rapidly challenged

Observed variations of methane on Mars unexplained by known atmospheric chemistry and physics

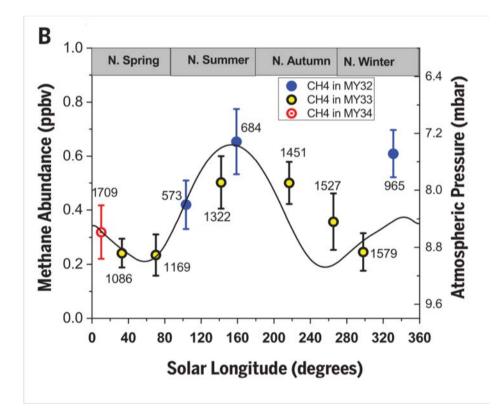

Franck Lefèvre¹ & François Forget²

- « Regional, temporal variations imply an unidentified methane loss process that is 600 times faster than predicted by standard photochemistry »
- Oxidation of methane at odds with CO, O₂, O₃ measurements



• Zahnle et al 2011: Difficult to correct for terrestrial isotopic lines

Methane on Mars: from the worst

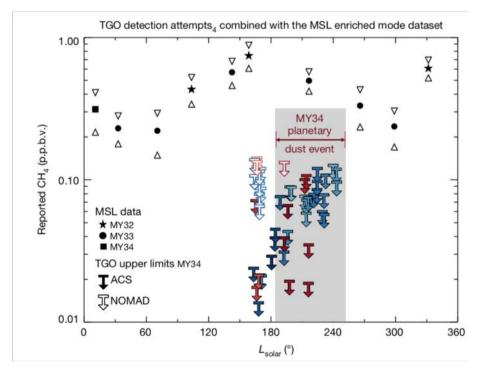


- CH4 v_4 at low spectral resolution \rightarrow a map of water
- Unexplainable seasonal variations

CHA column density * e-15

Methane on Mars: to the intriguing

- In situ measurement by a laser diode on MSL (Curiosity rover, Webster et al. 2018)
 - Note the decrease in abundance
 - Correlated with oxygen abundance



Du Kenin Zahali

Methane on Mars: and the rebutal

No detection of methane on Mars from early ExoMars Trace Gas Orbiter observations

Oleg Korablev¹*, Ann Carine Vandaele², Franck Montmessin³, Anna A. Fedorova¹, Alexander Trokhimovskiy¹, François Forget⁴,

- Solar occultations in the $\text{CH}_4\,\nu_3$ band
- Global upper limit = 0.05 ppb
- Is this the end?

Perspectives

- Spectral resolution needed to disentangle species
- Need to investigate possible contaminants
 - G. Villanueva identified several CO₂ weak and isotopic lines in Martian spectra
 - Could it also explain the SAM/Curiosity detection?
- Anonymous referee: « Martian methane was a social construct with social and financial interests »

Conclusions

- IR spectroscopy extremely successful in probing atmospheric chemistry
- But
 - Some species not detectable
 - Very good spectroscopy required to leave ambiguities
 - Spatial & temporal variability
- Carl Sagan: « Extraordinary claim requires extraordinary evidence »