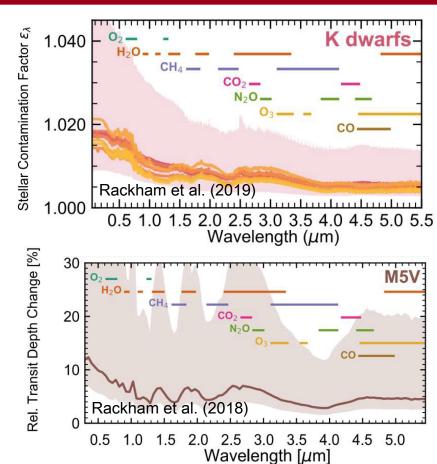
Activity model and chromatic effects on transit depths from ground-based multiband photometry

Manuel Perger

Institut d'Estudis Espacials de Catalunya (IEEC) Institut de Ciéncies de l'Espai (ICE-CSIC)

Albert Rosich, Enrique Herrero Matthias Mallonn Ignasi Ribas, Juan Carlos Morales


Chromatic effects on transit depths

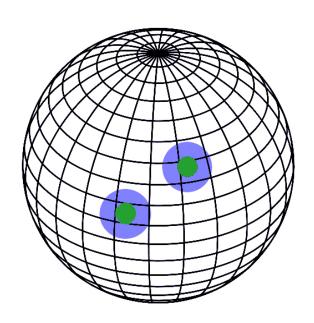
chromatic transit depth components

- limb darkening
- surface phenomena
- planet atmosphere

chromatic correction
photometric variation to estimate spot
filling factor and temperature contrast

$$\mathcal{D}'(\lambda) = \frac{\mathcal{D}_0}{1 - \delta_{\rm sp} \left(1 - \frac{F_{\lambda, \rm sp}}{F_{\lambda, \rm ph}}\right)}$$

STARSIM, Herrero et al. (2016)


Activity model F

Set of stellar parameters *θ*T_{eff}, P_{rot}, log(g), [Fe/H], i

differential rotation
facula-to-spot Q

Grid of surface elements S

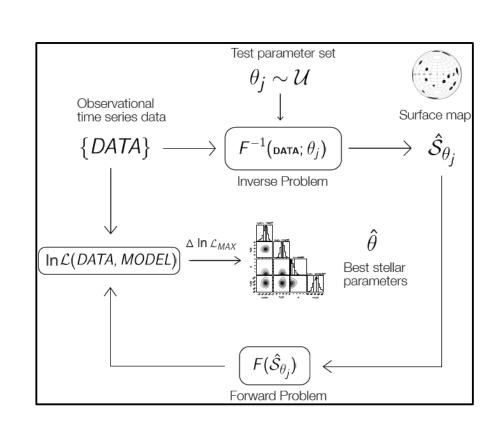
- immaculate photosphere, $T_{\rm ph}$
- dark spots, $T_{\rm sp}$
- bright faculae, T_{fac}
- t, dt, r, position
- Doppler shifts
- convective shifts
- limb darkening/brightening
- projection effects

Forward problem

$$\mathbf{X} = \mathsf{F}(\mathcal{S}, \theta) + \epsilon$$

Time-series data X

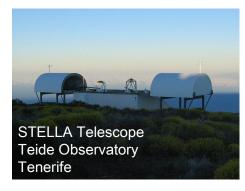
integrated over spectra or CCFs: RV, photometry, activity indicators time series


STARSIMs inverse problem, Rosich et al. (in prep.)

$$\hat{S}_{\theta} = \mathbf{F}^{-1}(\mathbf{X}, \theta)$$
 S surface map X observables $\boldsymbol{\theta}$ stellar parameters

$$J(S, \theta) = \sum_{j}^{\text{ODS.}} a_{j} \ln \mathcal{L}_{j}(\mathbf{X}_{j} | \mathcal{M}_{j}(S, \theta))$$
J figure of merit
M STARSIM model

$$\mathcal{L}_j = \prod_i^N \frac{1}{\sqrt{2\pi}(\sigma_i^2 + s_j^2)} \exp\left[-\frac{(y_i - \mathcal{M}_{ij})^2}{2(\sigma_i^2 + s_j^2)}\right]$$


Monte Carlo simulated annealing optimization

WASP-52 and WASP-52b

2 years of photometric observations MEIA2 @ 0.8m Joan Oró; 536 *BR* obs. WiFSIP @ 1.2m STELLA; 269 *BVI* obs.

planet parameters

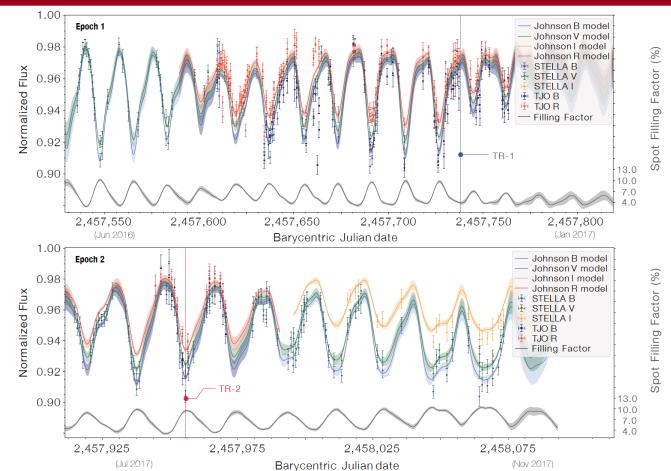
Hébrard+13; Louden+17; Mancini+17; May+18 Oshagh+18; Öztürk & Erdem+19

cloudy sodium-bearing atmosphere Kirk+18; Louden+17; Chen+17; Alam+18

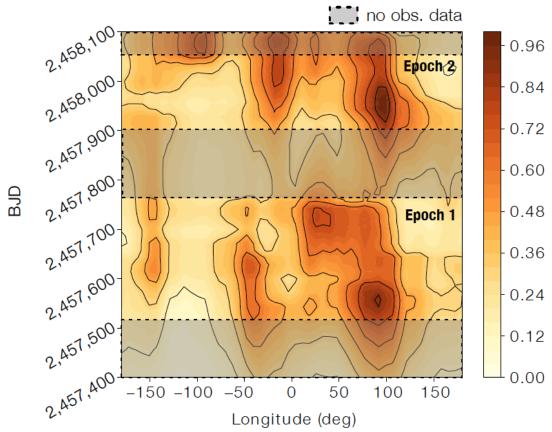
 $\begin{tabular}{ll} \textbf{Table 1.} Important parameters of WASP 52 (top) and WASP 52b (bottom). \end{tabular}$

parameter	unit	value	ref.
α	J2000	23:13:58.75	Ga18
δ	J2000	+08:45:39.9	Ga18
Sp.type	-	K2 V	He13
G	mag	$11.95_{0.36}^{0.13}$	Ga18
μ_{lpha}	mas a ⁻¹	-6.914 ± 0.079	Ga18
μ_{δ}	mas a ⁻¹	-44.248 ± 0.054	Ga18
Distance	pc	175.7 ± 1.3	Ga18
M_*	$ m M_{\odot}$	0.81 ± 0.05	Ma17
R_*	$ m R_{\odot}$	$0.860^{+0.021}_{-0.027}$	Ga18
L_*	L_{\odot}	0.4189 ± 0.0046	Ga18
$T_{eff.}^a$	K	5010^{+80}_{-60}	Ga18
$\log g^a$	cgs	4.582 ± 0.014	He13
age	Ga	$0.4^{+0.3}_{-0.2}$	He13
$\log R'_{ m HK}$	cgs	-4.4 ± 0.2	He13
λ	deg	$5.4^{4.6}_{-4.2}$	Öz18
M	M_{J}	0.46±0.02	He13
r	R_{J}	1.223±0.062	Öz19
P^b	days	1.7497828±0.0000006	Öz19
T_0^b	BJD	2405793.68128±0.00049	Öz19
r/R_*^b	-	0.159 ± 0.0004	Öz19
b/R_*^b	-	0.60 ± 0.02	He13
Orbit inc., i ^b	deg	85.24 ± 0.84	Öz19
a	au	0.0272±0.0003	He13

Notes. (a) fixed parameters in Section 3.3; (b) fixed parameters in Section 4;


References. He13: Hébrard et al. (2013); Ki16: Kirk et al. (2016); Ma17: Mancini et al. (2017); Os18: Oshagh et al. (2018); Ga18: Gaia Collaboration et al. (2018); Öz19 (Öztürk & Erdem 2019)

Fits on photometry


unocculted spots!

photometric variability 4-7% filling factor 3-10%

example transits
TR-1: low-activity, ff=3%
TR-2: high-activity, ff=10%

Institute of Space Sciences

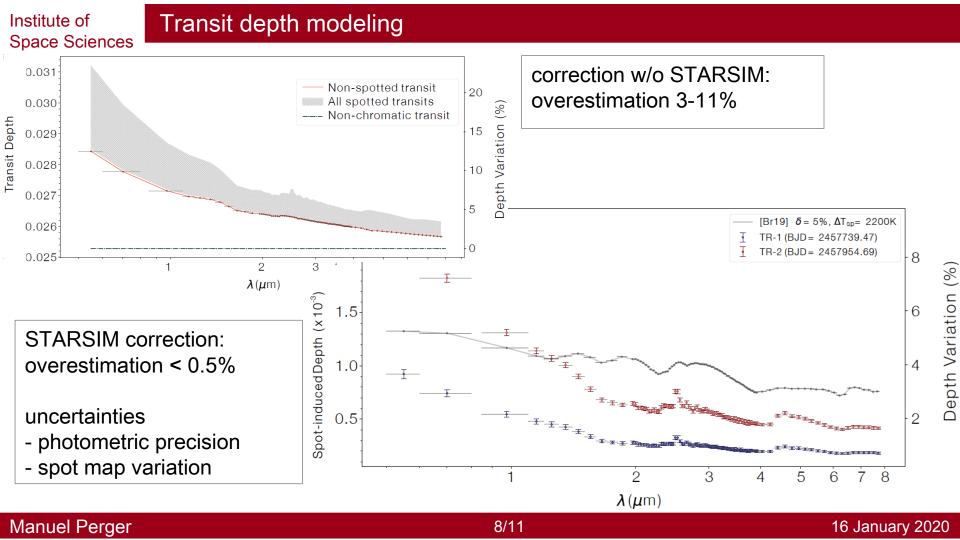
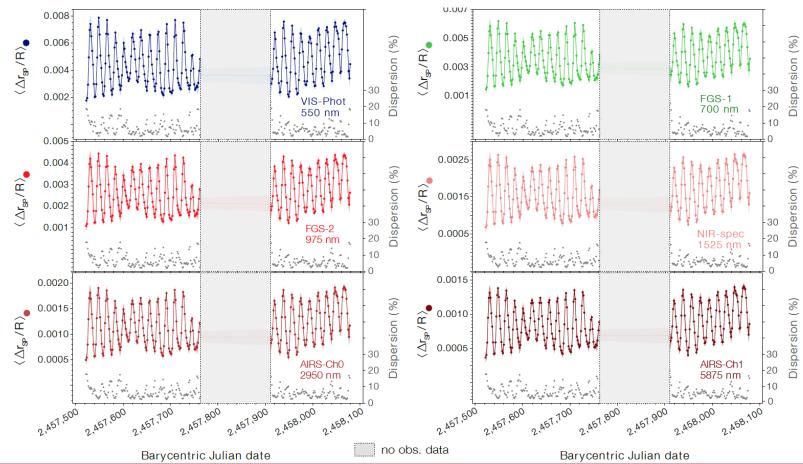


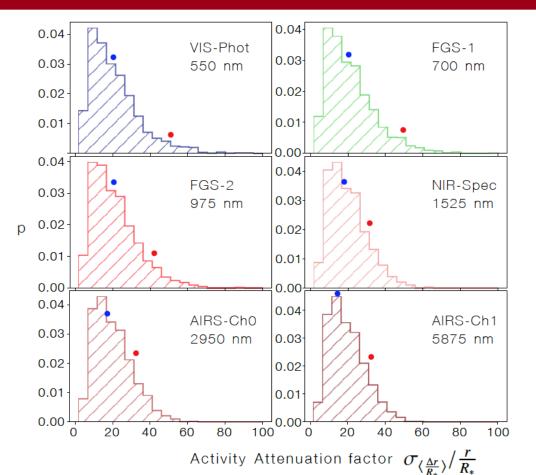
Table 2. Statistics of equivalently significant ~ 200 fitted StarSim parameters (top) and adjusted photometric offsets (bottom). As prior to the fitting process, the parameter values were uniformly distributed within their limits for all four parameters.

parameter limits		value	ref.	
P _{rot} (days)	[5, 50]	$17.75^{+0.33}_{-0.34}$	this work	
		11.8±3.3	He13	
		15.53 ± 1.96	Ma17	
		17.79 ± 0.05	Lo17	
		18.06 ± 0.2	Br19	
$\Delta T_{\rm sp}$ (K)	[200, 2500]	825 ± 150	this work	
		1250 - 1500	Ki16	
		~270	Ma17	
		~950	Br18	
		250	A118	
		2230	Br19	
Q^a	[0, 4]	$0.0^{+0.85}$	this work	
ZB,STELLA	[0.98, 1.1]	$1.059^{+0.007}_{-0.011}$	this work	
ズV,STELLA		$1.054^{+0.008}_{-0.012}$	this work	
ZI,STELLA		$1.047^{+0.005}_{-0.009}$,,	
$z_{\rm B,TJO}$		$1.051^{+0.007}_{-0.011}$,,	
₹R,TJO		$1.041^{+0.007}_{-0.012}$,,	


Notes. (a) Q is unilaterally distributed. (b) z_j calculated from the only fitted $z_{\text{B,STELLA}}$ proceeding as described in Sec. 3.3.2.

References. He13: Hébrard et al. (2013); Ki16: Kirk et al. (2016); Ma17: Mancini et al. (2017); Lo17: Louden et al. (2017); A118: Alam et al. (2018); Br18: Bruno et al. (2018); Br19: Bruno et al. (2019)

Activity-induced radius variation

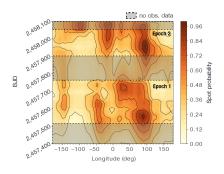


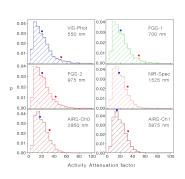
Institute of Space Sciences

Activity attenuation factor

Table 3. Mean values of transit depth variations due to spots, $SP(\lambda)$, on WASP-52 simulated transits. The corresponding planet relative radius variations, $\frac{\Delta r_S p}{R_*}$, are also computed following Equation 12. Values for the low-activity transit TR-1 (top) and the high-activity transit TR-2 (bottom) cases are provided. λ_{eff} means the central wavelength of its corresponding channel.

Instrument	$\lambda_{\rm eff} (\mu {\rm m})$	$\langle SP(\lambda) \rangle \pm \sigma$	$\langle \frac{\Delta r_{SP}}{R_*} \rangle \pm \sigma$			
		$(\times 10^{-3})$	$(\times 10^{-3})$			
low-activity case TR-1						
VIS-Phot	0.55	0.92 ± 0.04	2.91 ± 0.13			
FGS-1	0.7	0.74 ± 0.03	2.33 ± 0.10			
FGS-2	0.975	0.54 ± 0.03	1.71 ± 0.08			
NIR-Spec	1.525	0.33 ± 0.02	1.05 ± 0.06			
AIRS-Ch0	2.95	0.25 ± 0.01	0.80 ± 0.04			
AIRS-Ch1	5.875	0.18 ± 0.01	0.58 ± 0.04			
high-activity case TR-2						
VIS-Phot	0.55	2.33 ± 0.04	7.32 ± 0.14			
FGS-1	0.7	1.82 ± 0.04	5.72 ± 0.12			
FGS-2	0.975	1.31 ± 0.03	4.12 ± 0.09			
NIR-Spec	1.525	0.78 ± 0.02	2.45 ± 0.07			
AIRS-Ch0	2.95	0.59 ± 0.02	1.86 ± 0.05			
AIRS-Ch1	5.875	0.43 ± 0.01	1.35 ± 0.04			




Summary

STARSIM and simultaneous multiband photometry

- independent filling factor and temperature contrast
- absolute filling factor
- precise stellar parameters and activity model
- activity correction factors of 5 to 30

Improvement with observational strategy and photometric precision

