UCL

Looking ahead with XMM-Newton ...

- XMM-Newton and Chandra have demonstrated the potential of planetary X-ray astronomy
- XMM-Newton observations during enhanced solar activity & simultaneous with other facilities (Chandra, HST, Gemini, etc.) provide additional unparalleled scientific return
- Must exploit synergy with in-situ missions (like JUNO, 2016-17, and SMILE, 2021 onwards)

- Major objective is to determine how solar wind interacts with planetary magnetospheres (e.g. Jupiter) and exospheres (Mars, & Earth too!) and comets
- XMM-Newton by far the best mission for solar system X-ray studies:
 EPIC large FOV + unique combination of high sensitivity (especially at low energy) with moderate (EPIC) and superb (RGS) energy resolution, and OM (UV) particularly important for comets

Great new physics

e.g. on outer stellar atmosphere, magnetar cooling curves

What is this X-ray source?
e.g. star vs AGN, stellar SpT, magnetar, XRB

e.g.

- stellar flares + rotation with photometric monitoring from space (K2, TESS, PLATO)
- stellar corona vs aurora emission with JVLA, SKA-precursors
- new millisecond pulsars from radio surveys (Parkes, GBT, LOFAR, ASKAP, MeerKAT)
- new transients in the X-ray all-sky monitors (Swift, Fermi-GBM, MAXI, eROSITA)
- new γ Cas analogs or colliding wind binary candidates (eROSITA)

XMM-Newton in the Next Decade

Which use of XMM-Newton will be most important in the Next Decade?

- (A) "stand-alone" science (no need of other facilities)
- (B) simultaneous observations (opt/IR/radio + XMM-Newton)
- (C) "follow-up" science (opt/IR/radio \rightarrow XMM-Newton and vice versa)
- (D) fast triggered observations of Galactic and extra-galactic transients

Need for longer and longer (nearly) uninterrupted observations

e.g.

- YSO accretion events triggered by flares (1-2 days)
- rotational modulation in winds of massive stars (few days to a week)
- rotational/orbital accretion variability (of flux and emission lines): few days

Is a change in policy needed to facilitate new science only accessible with long data sets?

XMM-Newton strategy for "small" samples

