Dr. Sébastien Clesse TU Munich, T70 group: Theoretical Physics of the Early Universe Excellence Cluster *Universe*

> Based on S.C., B. Garbrecht, Y. Zhu, Non-gaussianities and curvature perturbations in hybrid inflation, in preparation

New Insights in Hybrid Inflation

ESLAB Symposium – 2nd to 5th April 2013 – The Universe seen by Planck

Outline

- I. Original, F-term, Dterm models (unified description)
- **II.** Initial conditions of the field Fine tuning problem
- III. Usual regime: 1-field slow-roll + fast waterfall
- **IV. Mild waterfall regime (adiabatic)**
- V. Mild waterfall regime (adiabatic + entropic)
- VI. New constraints from Planck...
- **VII.** Conclusion

I. Original, F-term, D-term models

- Classical Inflaton ϕ (slow-roll inflation in the valley)
- Higgs-type auxiliary field ψ
- Hybrid potential (A. Linde, astro-ph/9307002)
- F-term/D-term potential (E.Copeland et al., astro-ph/9401011, P.Benitury, G.Dvali, hep-ph/9606342)

	Original model (5 parameters)	F-term model (2 parameters)	D-term model (3 parameters)
Natural Initial Field values			
Fast Waterfall k=aH along the valley			
Mild waterfall k=aH in phase 2 N>>60 (generic)			
Mild waterfall k=aH in phase 1 N≥60 (tuned)			

II. Initial conditions of the fields

Original Hybrid Model: Thin successful band along the valley - Fine-Tuning Problem

Mendes, Liddle, astro-ph/0006020, Tetradis, astro-ph/9707214 S.C., J. Rocher, arXiv:0809.4355, S.C, C. Ringeval, J. Rocher, arXiv:0909.0402

Depending on the potential parameters: => up to 20% successful IC => fractal boundaries => trajectories reach the valley (attractor)

Generic for other Hybrid Models *Original, F-term, shifted, Smooth, Radion*

MCMC analysis (initial fields, velocities, potential parameters) => Natural Constraints

04/04/13

Original model: $\mu > 0.3 m_{pl}$

 $\phi_c < 0.004 \, m_{pl}$ F-term: $M < 0.009 \, m_{Pl}$

	Original model (5 parameters)	F-term model (2 parameters)	D-term model (3 parameters)
Natural Initial Field values	$\phi_c < 0.004 m_{pl}$ $\mu > 0.3 m_{pl}$	$M < 0.009 m_{Pl}$	
Fast Waterfall k=aH along the valley			
Mild waterfall k=aH in phase 2 N>>60 (generic)			
Mild waterfall k=aH in phase 1 N≥60 (tuned)			

III. 1-field slow-roll + fast waterfall

- Usual regime: => Inflation along the valley
 - => Nearly instantaneous waterfall phase
 - => Domain walls (ruled out) or Cosmic Strings

Observable Predictions: Original model: $n_s \ge 1$

F-term / D-term: R.Battye, B.Garbrecht, A.Moss, arXiv:1001.0769

	Original model (5 parameters)	F-term model (2 parameters)	D-term model (3 parameters)
Natural Initial Field values	$\phi_c < 0.004 m_{pl}$ $\mu > 0.3 m_{pl}$	$M < 0.009 m_{Pl}$	
Fast Waterfall k=aH along the valley	n _s >1 Domain walls Ruled out	$0.98 < n_s < 1$ Cosmic Strings tension with WMAP	$n_s \simeq 1$ Cosmic Strings Ruled out
Mild waterfall k=aH in phase 2 N>>60 (generic)			
Mild waterfall k=aH in phase 1 N≥60 (tuned)			

The exact 2-field classical dynamics of waterfall trajectories S.C., arXiv:1104.3494

Much more than 60 e-folds along the waterfall

Classical value of ψ emerges from The quantum diffusion regime

Topological defects stretched outside the Hubble radius

Observable modes leave the Hubble radius during the waterfall

Red power spectrum of adiabatic perturbations

NUMERICALLY: Homogeneous Multi-field dynamics

ANALYTICALLY: 2-fields, slow-roll, 2 phases

$$\begin{array}{ll} \textbf{2 regimes:} & 3H\dot{\phi} = -\frac{2\Lambda^4\phi}{\mu^2} \left(1 + \frac{2\mu^2\psi^2}{M^2\phi_c^2}\right) \\ & 3H\dot{\psi} = -\frac{4\Lambda^4\psi}{M^2} \left(\frac{\phi^2 - \phi_c^2}{\phi_c^2} + \frac{\psi^2}{M^2}\right) \\ \textbf{Notation:} & \phi \equiv \phi_c \mathrm{e}^{\xi} \qquad \psi \equiv \psi_0 \mathrm{e}^{\chi} \quad \textbf{1st order expansion:} \quad \phi \simeq \phi_c(1 + \xi) \end{array}$$

NUMERICALLY: Homogeneous Multi-field dynamics

ANALYTICALLY: 2-fileds, slow-roll, 2 phases

NUMERICALLY: Homogeneous Multi-field dynamics

ANALYTICALLY: 2-fileds, slow-roll, 2 phases

$$\begin{array}{ll} \mbox{2 regimes:} & 3H\dot{\phi} = -\frac{2\Lambda^4\phi}{\mu^2} \left(\prod \frac{2\mu^2\psi^2}{M^2\phi_{\rm c}^2} \right) & \mbox{PHASE 2} \\ & 3H\dot{\psi} = -\frac{4\Lambda^4\psi}{M^2} \left(\frac{\phi^2 - \phi_{\rm c}^2}{\phi_{\rm c}^2} + \right) & \mbox{PHASE 2} \end{array} \\ \mbox{Notation:} & \phi \equiv \phi_{\rm c} {\rm e}^{\xi} & \psi \equiv \psi_0 {\rm e}^{\chi} \quad \mbox{1st order expansion:} & \phi \simeq \phi_{\rm c} (1+\xi) \end{array}$$

NUMERICALLY: Homogeneous Multi-field dynamics

ANALYTICALLY: 2-fileds, slow-roll, 2 phases

$$\begin{array}{ll} \mbox{2 regimes:} & 3H\dot{\phi} = -\frac{2\Lambda^4\phi}{\mu^2} \left(\prod \frac{2\mu^2\psi^2}{M^2\phi_{\rm c}^2} \right) & \mbox{PHASE 2} \\ & 3H\dot{\psi} = -\frac{4\Lambda^4\psi}{M^2} \left(\frac{\phi^2 - \phi_{\rm c}^2}{\phi_{\rm c}^2} + 1 \right) & \mbox{PHASE 2} \\ \mbox{Notation:} & \phi \equiv \phi_{\rm c} {\rm e}^{\xi} & \psi \equiv \psi_0 {\rm e}^{\chi} & \mbox{1st order expansion:} & \phi \simeq \phi_{\rm c} (1+\xi) \end{array}$$

Mild waterfall phase ($N \gg 60$) - Original Model: $M \mu \gg M_{pl}^2$ - F-term / D-term: $\kappa \ll M^2 / M_{pl}^2$

1st Case: k = aH in phase 2 ($N \gg 60$, generic) Power spectrum of adiabatic perturbations:

 $P_{\zeta} = \frac{\kappa^2 M_{Pl}^2 N_e^4}{18 \pi^2 M^2} \qquad \text{for F-term}$

 $P_{\zeta} = \frac{\kappa^4 M_{Pl}^2 N_e^4}{9 \pi^2 g^2 m_{FI}^2} \qquad \text{for D-term}$

• Spectral index: $n_s = 1 - 4/N_e$

2nd Case: k = aH in phase 1 ($N \ge 60$, tuned) Spectral index: reaches unity

	Original model (5 parameters)	F-term model (2 parameters)	D-term model (3 parameters)
Natural Initial Field values	$\phi_c < 0.004 m_{pl}$ $\mu > 0.3 m_{pl}$	$M < 0.009 m_{_{Pl}}$	
Fast Waterfall k=aH along the valley	n _s >1 Domain walls Ruled out	$0.98 < n_s < 1$ Cosmic Strings tension with WMAP	$n_s \simeq 1$ Cosmic Strings Ruled out
Mild waterfall k=aH in phase 2 N>>60 (generic)	$\mu M \gg M_{ m p}^2$ Effective 1-field: $n_{ m s}=1-rac{4}{N_{ m e}}$ Nearly ruled out	$\kappa \ll rac{M^2}{M_{ m p}^2}$ Effective 1-field: $n_{ m s}=1-rac{4}{N_{ m e}}$ Ruled out	$\kappa \ll rac{m_{ m FI}^2}{M_{ m p}^2}$ Effective 1-field: $n_{ m s}=1-rac{4}{N_{ m e}}$ Ruled out
Mild waterfall k=aH in phase 1 N≥60 (tuned)	n₅ goes to unity possible agreement with CMB	n₅ goes to unity possible agreement with CMB	n₅ goes to unity possible agreement with CMB

- 2-field trajectories (turning)
- Potentially large local non-gaussianities
- Contribution of entropic perturbations to the PS of curvature perturbations Methods:

δN Formalism (analytically and numerically)

Linear Theory of Multi-field Perturbations (numerically)

k = aH in phase 2

Long waterfall phase

 $\kappa \ll \frac{M^2}{M_{\rm p}^2} \qquad \qquad \mu M \gg M_{\rm p}^2$

Local non-gaussianities:

 $f_{NL} \approx -1/N_e \approx -0.03$

Spectral index and Amplitude

As in the adiabatic case

k = aH in phase 1

Moderate waterfall

$$\kappa \approx M^2 / M_{Pl}^2 \qquad \mu M \approx M_{Pl}^2$$

PRFI IMINARY

Local non-gaussianities:

 $f_{NL} \approx \frac{-10 \, p^{1/2} M_{Pl}^2 \varphi_c^{p/2-1} \chi_2}{3 \, M \, \mu^{p/2}} \qquad |f_{NL}| \leq 0.3$

Amplitude of the power spectrum increases by

Several orders of magnitudes

PRELIMINARY

F-term model - Power spectrum

Adiabatic perturbations (dashed)

Curvature perturbations (adiabatic + entropic, plain)

 $n_s = 1 - 4/N_{exit}$ (dotted)

04/04/13

PRELIMINARY

	Original model (5 parameters)	F-term model (2 parameters)	D-term model (3 parameters)
Natural Initial Field values	$\phi_c < 0.004 m_{pl}$ $\mu > 0.3 m_{pl}$	$M < 0.009 m_{_{Pl}}$	
Fast Waterfall k=aH along the valley	n _s >1 Domain walls Ruled out	$0.98 < n_s < 1$ Cosmic Strings tension with WMAP	$n_s \simeq 1$ Cosmic Strings Ruled out
Mild waterfall k=aH in phase 2 N>>60 (generic)	$\mu M \gg M_{ m p}^2$ Effective 1-field: $n_{ m s} = 1 - rac{4}{N_{ m e}}$ $f_{_{NL}} \approx -1/N_e \approx -0.03$ Nearly ruled out	$\kappa \ll rac{M^2}{M_{ m p}^2}$ Effective 1-field: $n_{ m s}=1-rac{4}{N_{ m e}}$ $f_{_{NL}} pprox -1/N_{_{e}} pprox -0.03$ Ruled out	$\kappa \ll rac{m_{ m FI}^2}{M_{ m p}^2}$ Effective 1-field: $n_{ m s} = 1 - rac{4}{N_{ m e}}$ $f_{\scriptscriptstyle NL} \approx -1/N_{\scriptstyle e} \approx -0.03$ Ruled out
Mild waterfall k=aH in phase 1 N≥60 (tuned)	Amplitude increases due to entropic modes fNL <0.3 Ruled out	Amplitude increases due to entropic modes [fNL] <0.3 Ruled out	Amplitude increases due to entropic modes fNL <0.3 Ruled out

VI. New constraints from Planck

PRELIMINARY F-term model, regime of quasi-instantaneous waterfall + cosmic strings

Planck results : Cosmic strings parameters not degenerated with n_s and A_s **Discrepancy with BBN bounds**

VII. Conclusion

	Original model (5 parameters)	F-term model (2 parameters)	D-term model (3 parameters)
Natural Initial Field values	$\phi_c < 0.004 m_{pl}$ $\mu > 0.3 m_{pl}$	$M < 0.009 m_{_{Pl}}$	
Fast Waterfall	$n_s > 1$	0.98< <i>n</i> _s <1	0.98< <i>n</i> _s <1
along the valley	Domain walls Ruled out	Cosmic Strings Disfavored by Planck	Cosmic Strings Disfavored by Planck
Mild waterfall k=aH in phase 2 N>>60 (generic)	$\mu M \gg M_{ m p}^2$ Effective 1-field:	$\kappa \ll rac{M^2}{M_{ m p}^2}$ Effective 1-field:	$\kappa \ll \frac{m_{\rm FI}^2}{M_{\rm P}^2} \\ {\rm Effective \ 1-field:} \end{cases}$
	$n_{ m s}=1-rac{4}{N_{ m e}}$ Nearly ruled out	$n_{ m s}=1-rac{4}{N_{ m e}}$ Ruled out	$n_{ m s}=1-rac{4}{N_{ m e}}$ Ruled out
Mild waterfall k=aH in phase 1 N≥60 (tuned)	Amplitude increases due to entropic modes fNL <0.3 Ruled out	Amplitude increases due to entropic modes fNL <0.3 Ruled out	Amplitude increases due to entropic modes [fNL] <0.3 Ruled out

VII. Conclusion

Still to be done: - Full MCMC analysis of F/D-term with Planck data

- Regime where 10<N<60 during the waterfall ?

VII. Conclusion

Still to be done: - Full MCMC analysis of F/D-term with Planck data

- Regime where 10<N<60 during the waterfall ?

Thank you for your attention...

PRELIMINARY

PRELIMINARY

26

1. Basics on Inflation

- Horizon Problem
- Flatness Problem
- Topological defects

Number of e-folds:
$$N_{
m end} \equiv \ln rac{a_{
m end}}{a_{
m i}} > 60$$

- Inflation : Period of accelerated expansion of the universe, that is $\ddot{a} > 0$, where a is the scale factor
- Simplest realisation : Fill the universe with an homogeneous scalar field ϕ , slowly rolling along its potential (ex: $V(\phi) = m^2 \phi^2$)

$$\begin{split} H^{2} &= \frac{8\pi}{3m_{\rm p}^{2}} \begin{bmatrix} \frac{1}{2}\dot{\phi}^{2} + V(\phi) \end{bmatrix} & \ddot{\phi} + 3H\dot{\phi} + \frac{\mathrm{d}V}{\mathrm{d}\phi} = 0 & \text{Slow-roll} \\ \frac{\ddot{a}}{a} &= \frac{8\pi}{3m_{\rm p}^{2}} \begin{bmatrix} -\dot{\phi}^{2} + V(\phi) \end{bmatrix} & \phi(x,t) = \bar{\phi}(t) + \delta\phi(x,t) \end{split}$$

Cosmological Perturbations :

$$g_{\mu
u} = ar{g}_{\mu
u} + \delta g_{\mu
u}$$

• **Power spectrum** of scalar pert of the metric, in SR approximation:

$$\mathcal{P}_{\zeta}(k) = C\left(\frac{k}{k_{*}}\right) \int_{V}^{n_{s}-1} \epsilon_{1} = \frac{m_{p}^{2}}{16\pi} \left(\frac{\frac{dV}{d\phi}}{V}\right)^{2} \ll 1$$

$$C \sim \frac{H_{*}^{2}}{\pi\epsilon_{1*}} \int_{V}^{04/04/13} \frac{H_{*}^{2}}{n_{s}-1} = -2\epsilon_{1*} - \epsilon_{2*} \rightarrow \epsilon_{2} = \frac{m_{p}^{2}}{4\pi} \left[\left(\frac{V'}{V}\right)^{2} - \frac{V''}{V}\right] \ll 1$$

$$27$$

Other realisation : Fill the universe with TWO scalar fields

F.L. equations:
$$H^{2} = \frac{8\pi}{3m_{p}^{2}} \left[\frac{1}{2} \left(\dot{\phi}^{2} + \dot{\psi}^{2} \right) + V(\phi, \psi) \right]$$
$$\frac{\ddot{a}}{a} = \frac{8\pi}{3m_{p}^{2}} \left[-\dot{\phi}^{2} - \dot{\psi}^{2} + V(\phi, \psi) \right]$$
K.G. equations: $\ddot{\phi} + 3H\dot{\phi} + \frac{\mathrm{d}V}{\mathrm{d}\phi} = 0$ $\ddot{\psi} + 3H\dot{\psi} + \frac{\mathrm{d}V}{\mathrm{d}\psi} = 0$

2.1. δN formalism:

- Based on the separable Universe approximation
- i : initial flat hypersurface, f : final hypersurface of uniform density

Curvature Perturbation: $\zeta = \delta N_{\rm i}^{\rm f}$

• Curvature perturbation when a pivot scale k_{ρ} leaves the Hubble radius

$$\zeta \simeq \sum_{i=1}^{n} N_{,i} \delta \phi_{i} + \frac{1}{2} \sum_{i,j=1}^{n} N_{,ij} \delta \phi_{i} \delta \phi_{j} \qquad N_{,i} \equiv \frac{\partial N^{\rm f}}{\partial \phi_{i}^{\rm i}}, N_{,ij} \equiv \frac{\partial^{2} N^{\rm f}}{\partial \phi_{i}^{\rm i} \partial \phi_{j}^{\rm i}}$$

Level of (local) non-gaussianities: $f_{\rm NL} = -\frac{5}{6} \frac{\sum_{i,j} N_{,i} N_{,j} N_{,ij}}{(\nabla - 2\pi)^{2}}$

- Level of (local) non-gaussianities: $f_{\rm NL} = -\frac{3}{6} \frac{\Delta i, j = 0}{\left(\sum_{i} N_{,i}^2\right)^2}$
- Power spectrum Amplitude: $A_{\zeta}^2 = \frac{H_*^2}{4\pi} \sum_i N_{,i}^2$

• Spectral index: $n_{\rm s} - 1 = -2\epsilon_{1*} + \frac{2\sum_{ij}\dot{\phi}_{i*}N_{,j}N_{,ij}}{H_*\sum_i N_{,i}^2}$

ONLY needs the background dynamics 29

2.1. δN formalism:

04/04/13

- Numerical Implementation:
 - 1. 1st Integration of the background dynamics, to find Nend
 - 2. 2nd Integration, up to $k_p = aH$
 - 3. Take a grid of 9 initial conditions around this point
 - 4. Integration until the final surface of uniform density find N
 - 5. Calculate N,i and N,ij
 - 6. Compute f_{NI}, A_s, n_s

2.2. Linear Theory of multi-field perturbations:

- Metric (longitudinal gauge): $ds^2 = a^2 \left[-(1+2\Phi) d\eta^2 + (1-2\Psi) \gamma_{ij} dx^i dx^j \right]$
- First order Einstein equations and perturbed Klein Gordon equation
- Quantification of field perturbations \rightarrow Initial conditions (k>>aH)
- Perturbations orthogonal to the trajectory can source the curvature perturbations
- Snapshot of the equations...

2.2. Linear Theory of multi-field perturbations:

$$-3\mathcal{H}(\Phi' + \mathcal{H}\Phi) + \nabla^2 \Phi = \frac{4\pi}{m_p^2} \sum_{i=1}^n \left(\phi'_i \delta \phi'_i - \phi'^2_i \Phi + a^2 \frac{\partial V}{\partial \phi_i} \delta \phi_i \right)$$
$$\Phi' + \mathcal{H}\Phi = \frac{4\pi}{m_p^2} \sum_{i=1}^n \phi'_i \delta \phi_i ,$$
$$\Phi'' + 3\mathcal{H}\Phi' + \Phi \left(2\mathcal{H}' + \mathcal{H}^2 \right) = \frac{4\pi}{m_p^2} \sum_{i=1}^n \left(\phi'_i \delta \phi_i - \phi'^2_i \Phi - a^2 \frac{\partial V}{\partial \phi_i} \delta \phi_i \right)$$

$$\delta\phi_i'' + 2\mathcal{H}\delta\phi_i' - \nabla^2\delta\phi_i + \sum_{j=1}^n a^2\delta\phi_j \frac{\partial^2 V}{\partial\phi_i\partial\phi_j} = 2(\phi_i'' + 2\mathcal{H}\phi_i')\Phi + 4\phi_i'\Phi'$$

$$\begin{split} \zeta &= \Phi + \frac{\mathcal{H}}{\sigma'^2} \sum_{i=1}^n \phi'_i \delta \phi_i \qquad \qquad \zeta' \ = \ \frac{2\mathcal{H}}{\sigma'^2} \nabla^2 \Phi - \frac{2\mathcal{H}}{\sigma'^2} \left[a^2 \sum_{i=1}^n \phi'_i \frac{\partial V}{\partial \phi_i} - \frac{a^2}{\sigma'^2} \left(\sum_{i=1}^n \phi'_i \frac{\partial V}{\partial \phi_i} \right) \left(\sum_{i=1}^n \phi'_i \delta \phi_i \right) \right] \\ &= \ \frac{2\mathcal{H}}{\sigma'^2} \nabla^2 \Phi - \frac{2\mathcal{H}}{\sigma'^2} \bot_{ij} a^2 \frac{\partial V}{\partial \phi_i} \delta \phi_j \ , \end{split}$$

$$v_i = \sqrt{2}ak^{3/2}\delta\phi_i \qquad \lim_{k/aH \to +\infty} v_{k,i}(\eta) = \frac{\sqrt{8\pi}}{m_p}ke^{-ik(\eta - \eta_i)}$$

04/04/13

2.2. Linear Theory of multi-field perturbations:

• Numerical Implementation:

- 1. 1st integration of the background to find Nend
- 2. Loop over the wavelength modes
- 3. Integration of the background, up to k = C aH, with C>>1
- 4. Loop over the fields
- 5. Fix the initial conditions for the perturbations for the field *i*
- 5. Integration of the Background + Perturbations until the end of inflation
- 6. Compute the exact power spectrum of curvature perturbations

$$\mathcal{P}_{ab} = \frac{k^3}{2\pi^2} \sum_{m=1}^{n_{\sigma}} \left[\nu_m^a(k)\right]^* \left[\nu_m^b(k)\right]$$

δN formalism	Multi-field perturbations
Background dynamics only	Background + Perturbations
Several assumptions	Exact power spectrum
Straightforward calculation of the level of non-gaussianities	Possibility to follow the mode evolution and to separate the contributions from adiabatic/entropic perturbations
Numerical implementation: • Easy • Fast	Numerical implementation: • Not so easy • Rather slow

4. The waterfall phase

WATERFALL PHASE

- Initially, $ar{\psi}=0\,$ and $\psi(x,t)=\delta\psi(x)$
- Inflation driven by ϕ
- $H \simeq \mathrm{cst}$ and $N \simeq Ht$
- After Fourier mode expansion,

$$\delta\ddot{\psi}_k + 3H\delta\dot{\psi}_k + \left[\frac{k^2}{a^2} + m_{\psi}(\phi)^2\right] = 0$$

- Exponential growth of long wavelength modes ${
 m s}^{b/m_{
 m pl}}$
- In typically less than 1 e-fold:

 \rightarrow Linear theory no longer valid (need of lattice simulations),

-5

-10

-15

-0.1

Instability point

0.0

→ Long wavelength fluctuations interpreted as classical waves,

→ Rapid energy transfer of the homogeneous scalar field into the energy of inhomogeneous oscillations

INFLATION

0.1

04/04/13

TACHYONIC PREHEATING

1.0

 $\phi/m_{
m pl}$

4. The waterfall phase

WATERFALL PHASE - Case of Study

- Initially, $ar{\psi}=0$ and $\psi(x,t)=\delta\psi(x)|_{\phi/m_{
 m pl}}$
- Inflation driven by ϕ
- $H \simeq \mathrm{cst}$ and $N \simeq Ht$
- After Fourier mode expansion,

$$\delta\ddot{\psi}_k + 3H\delta\dot{\psi}_k + \left[rac{k^2}{a^2} - m^2
ight] = 0$$

- For long wavelength modes, $k/a \ll m$

$$\delta \psi_k \propto e^{-\frac{3}{2}Ht(1-\sqrt{1+4m^2/9H^2})}$$

- In the regime, $9H^2 \ll 4m^2$ exponential growth $\delta \psi_k \propto {
m e}^{mt}$

Nearly instantaneous waterfall phase

- In the regime $4m^2 \ll 9H^2$, one has $\delta \psi_k \propto e^{Htm^2/3H^2}$ Long phase of inflation before the mode explosion $N \simeq Ht > 3H^2/m^2 \gg 1$

0.0

0.5

-0.5

 $\psi/m_{
m pl}$

0.0

0.5

₫**.Ø**1

-0.5

-1.0

-1.5

4. The waterfall phase

WATERFALL PHASE - Hybrid inflation

- Initially, $ar{\psi}=0$ and $\psi(x,t)=\delta\psi(x)$
- Inflation driven by $\phi\,$ in the false vacuum
- $H \simeq \mathrm{cst}$ and $N \simeq H t$
- After Fourier mode expansion,

$$\delta\ddot{\psi}_k + 3H\delta\dot{\psi}_k + \left[\frac{k^2}{a^2} + m_{\psi}(\phi)^2\right] = 0$$

In the usual regime, the transition between $m_{\psi}^2 = 0$ and $-m_{\psi}^2 > H^2$ is nearly instantaneous (N < 1).

Does it exist a regime for which N >60 between $\ m_\psi^2=0$ and $\ -m_\psi^2>H^2$?

04/04/13

YES...

Numerically for the original model: S.C., arXiv:1104.3494 Analitically: H. Kodama et al., arXiv:1102.5612 For the F-term and D-term 37 Models: S.C, B. Garbrecht, arXiv:1204.3540

5. Hybrid models – Instantaneous waterfall regime

ORIGINAL MODEL - PHASE OF INFLATION

- Along the valley $\psi = 0$, effective potential $V(\phi) = \Lambda^4 \left(1 + \frac{\phi^2}{\mu^2} \right)$
- In the false vacuum regime $\phi \ll \mu$
- Slow-roll parameters in the slow-roll approximation:

$$\epsilon_{1} \equiv -\frac{\dot{H}}{H^{2}} \simeq \frac{m_{\rm p}^{2}}{16\pi} \left(\frac{V'}{V}\right)^{2} = \frac{m_{\rm p}^{2}}{4\pi\mu^{2}} \frac{\left(\frac{\phi}{\mu}\right)^{2}}{\left[1 + \left(\frac{\phi}{\mu}\right)^{2}\right]^{2}} \ll 1$$
$$\epsilon_{2} \equiv \frac{\mathrm{d}\ln\epsilon_{1}}{\mathrm{d}N} \simeq \frac{m_{\rm p}^{2}}{4\pi} \left[\left(\frac{V'}{V}\right)^{2} - \frac{V''}{V}\right] = \frac{m_{\rm p}^{2}}{2\pi\mu^{2}} \frac{\left(\frac{\phi}{\mu}\right)^{2} - 1}{\left[1 + \left(\frac{\phi}{\mu}\right)^{2}\right]^{2}} < 0$$

- Scalar spectral index: $n_{
m s}=1-2\epsilon_{1*}-\epsilon_{2*}>1$

BLUE power spectrum strongly disfavored by CMB observations Formation of domain walls at the end of inflation

38

6. Origininal Hybrid model – Mild waterfall regime

- Power spectrum (spectral index) of adiabatic perturbations
- Possible agreement with CMB constraints
- but entropic modes contribution not yet included

for a pivot scale leaving the Hubble radius 60 e-folds³⁹ before the end of inflation

7. F-term and D-term: Mild waterfall regime

Parameter Space Analysis for D-term:

k=aH in phase 2: strong tension with CMB observations provided $g \approx 1, m_{\rm FI} \approx M_{\rm p}, \kappa \approx 10$ k=aH in phase 1: when $N \gtrsim 60$ the spectral index goes from $n_{\rm s} = 1 - \frac{4}{N_{\rm e}}$ to unity 04/04/13 Possible agreement with CMB

9. Power spectrum of curvature perturbations

Numerical results (M=0.05M_{pl} but qualitatively valid for other values):

^{04/}And the spectral index decreases when k=aH in phase 1 instead of increasing up to unity