

Planck unveils the Cosmic Microwave Background

CMB Lensing Reconstruction: **Robustness against foreground residuals** & Cosmological impact

Laurence Perotto,

LPSC-CNRS, on behalf of the Planck Collaboration

Gravitational Lensing by large-scale Structure

Remapping: $T(\hat{\mathbf{n}}) = T^{\text{unlensed}}(\hat{\mathbf{n}} + \nabla \phi(\hat{\mathbf{n}}))$

Lensing
potential:
$$\phi(\hat{\mathbf{n}}) = -2 \int_{0}^{\chi_{*}} d\chi \left(\frac{\chi_{*} - \chi}{\chi_{*}\chi}\right) \Psi(\chi \hat{\mathbf{n}}; \eta_{0} - \chi) \left\{ \begin{array}{c} \text{max. efficiency at z-2} \\ \text{typical size ~300 Mpc} \\ \text{lookback} \\ \text{in a flat universe} \end{array} \right.$$

Observational signature

Lensing typical scales:

- deflection scale \simeq 2.5 arcmin (rms)
- \bullet correlation length $\simeq\!2$ degrees

Signatures:

- C_ℓ^{TT} smoothing (\simeq 10% at $\ell=2000$)
- inducing NG

$$\Delta T(\hat{\mathbf{n}}) \simeq \nabla^i \phi(\hat{\mathbf{n}}) \nabla_i T(\hat{\mathbf{n}}) + \mathcal{O}(\phi^2)$$

10°

Using the NG signature introduced into the T map, the underlying phi potential can be reconstructed

L. Perotto

unlensed T

Observational signature

lensed T

Lensing typical scales:

- deflection scale \simeq 2.5 arcmin (rms)
- correlation length \simeq 2 degrees

Signatures:

• C_ℓ^{TT} smoothing (\simeq 10% at $\ell=2000$)

• inducing NG

$$\Delta T(\hat{\mathbf{n}}) \simeq \nabla^i \phi(\hat{\mathbf{n}}) \nabla_i T(\hat{\mathbf{n}}) + \mathcal{O}(\phi^2)$$

Using the NG signature introduced into the T map, the underlying phi potential can be reconstructed

Reconstruction: methodology

T. Okamoto & W. Hu [astro-ph/0301031]

D

 $\phi(\hat{\mathbf{n}})$ map reconstruction using *quadratic estimators*

$$\hat{\phi}_{LM} = A_L \int d\hat{n} \, \nabla^i Y^*_{LM}(\hat{n}) \, \bar{T}(\hat{n}) \nabla_i \bar{T}'(\hat{n})$$
filtered versions of the T map

normalisation and filters optimisation —>unbiased, minimum variance estimator

$T_L^{\phi\phi}$ reconstruction using the 4-point correlator information

L. Perotto

$$\hat{C}_{L}^{\phi\phi} = \frac{1}{N_{\text{dof}}} \sum_{M} |\hat{\phi}_{LM}|^2 - N_{L}^{(0)} - \mathcal{O}(C_{L}^{\phi\phi})$$

Gaussian bias: disconnected part of the 4-pt correlator

Reconstruction on data: methodology

- 1. data processing steps from timelines to map are critical
 - TOI-processing
 - Map-making

Planck 2013 results. II, III, IV, V Planck 2013 results. VI, VII, VIII, IX, X

Early full-sky reconstructions on the same amount of data

- better model of the time transfert function
- NL-correction in the V->W
- better SSO flagging
- improved 4K-lines corr.
- better glitches removal

2. The astrophysical foreground must be dealt with

masking: • detected point sources

- radio/IR galaxies using PCCS Planck 2013 results. XXVIII.
- SZ clusters using PCC Planck 2013 results. XXIX
- Cold Cores using ECC Planck Early Results. VII

- diffuse emission
- galactic plane Planck 2013 results. XII
- CO regions Planck 2013 results. XIII.

dominant *mean-field* bias at the ϕ_{LM} level: must be subtracted using MC correction

L. Perotto	4 /12	47th ESLAB, 2013-04-05, ESTEC

Foreground cleaning

Baseline T map:

- MV combination of 143 and 217 GHz maps
- corrected for a dust template using the 857GHz map
- \simeq 70% of the sky

Foreground-cleaned T maps: Planck 2013 results. XII

Commander-Ruler

- technique: parametric fg model fit
- 75% of the sky
- resol. \simeq 7 arcmin \rightarrow lower S/N for lensing

NILC

- technique: needlet-based ILC
- 93% of the sky

SEVEM

- technique: internal template fitting
- 85% of the sky

SMICA

- technique: ICA in harmonic space
- 89% of the sky

baseline map for NG studies: Planck 2013 Results. XXIV

6 /12

Robustness against foreground residuals

I. Test on the 70% baseline setup to assess the robustness against foreground residuals

L. Perotto

Increasing the sky coverage

only a maximum <4% improvement of the uncertainties our nominal products are based on the MV 143-217 combination

L. Perotto	8 /12	47th ESLAB, 2013-04-05, ESTEC

Cosmological impact

Information on the matter up to last-scattering \Rightarrow constraints on the post-recombination evolution

9 /12

LCDM6 Planck+WM+highL internal consistency test

 $A_L^{\phi\phi} = 0.99 \pm 0.05$ (68%; Planck + lensing + WM + highL)

LCDM6 model: good description of the universe at $\,z \leq 5\,$

LCDM6 with Planck alone: breaking the A_s - τ degeneracy

 $\tau = 0.097 \pm 0.038$ (68%; Planck) $\tau = 0.089 \pm 0.032$ (68%; Planck + lensing)

Geometrical degeneracy breaking in a non-flat Universe CMB alone (Planck+lensing+WP+highL)

- impose a flat-geometry at percent level;
- $\lesssim 3\sigma$ evidence of Dark Energy
- more than x2 improvement of errors over TT alone

ISW-effect: further info on DE

 $\lesssim 2.5\sigma\,$ detection of the lensing-ISW correlation signature of a late DE domination stage

The neutrino masses signature

- for $\sum_{\nu} m_{\nu} \lesssim 1.3 \, \text{eV}$ (i.e. v still relativistic at recombinaison): tiny constraints from TT alone
- oscillation measure: $\sum m_{
 u} \ge 0.06 \, {
 m eV}\,$ at least 2 u non-relativistic (NR) today

• After the NR transition: contribution to the expansion rate but not to the clustering of small-scale structure.

Constraint on neutrino masses

In a $\Lambda \text{CDM6} + \sum_{\nu} m_{\nu} \mod \text{with } N_{\text{eff}} = 3 \text{ degenerate massive neutrinos:}$ $\sum_{\nu} m_{\nu} < 0.66 \text{eV} \quad (95\%; \text{Planck} + \text{WM} + \text{highL})$

Constraint on neutrino masses

In a
$$\Lambda \text{CDM6} + \sum_{\nu} m_{\nu} \mod \text{with } N_{\text{eff}} = 3 \text{ degenerate massive neutrinos:}$$

$$\sum_{\nu} m_{\nu} < 0.66 \text{eV} \quad (95\%; \text{Planck} + \text{WM} + \text{highL})$$

$$\sum_{\nu} m_{\nu} < 0.85 \text{eV} \quad (95\%; \text{Planck} + \text{lensing} + \text{WM} + \text{highL})$$

- the constraint *is* tigher (smaller σ of the profile- \mathcal{L})
- TT prefers small masses (negative!)

 $\sum m_{\nu}\searrow \Rightarrow C_{L}^{\phi\phi}\nearrow \Rightarrow \text{ more TT smoothing}$ more level-arm to mitigate the C_{ℓ}^{TT} low-I/high-I tension

• the lensing information in C_{ℓ}^{TT} artificially tighten the constraint on $\sum m_{\nu}$

more details on Marta Spinelli's poster

Conclusions

- integrated mass distribution on almost the full-sky using Planck (observational performancies + high systematic control in the data-processing)
- Our fiducial lensing is based on a fsky \sim 70% MV combination of the 143 and 217GHz frequency maps, after dust correction using the 857GHz map as a template
- extensive suite of checks to ensure the robustness againts foreground contamination
- The foreground-cleaned maps were used to obtained a *robust* lensing reconstruction on 90% of the sky
- Several important cosmological impacts (e.g. As-tau degeneracy breaking, probing the post-recombination history with CMB alone)
 - weaker $\sum m_{\nu}$ constraints than expected
- Perspectives with Planck:
 - 2 more surveys: 25% decrease of the Clphi uncertainties + further investigation of possible systematics, reducing the level of conservatism of some choices (multipole cuts, apodisation, ...)
 - polarization

Lensing results are a stricking success of the whole collaboration.

The scientific results that we present today are a product of the Planck Collaboration, including individuals from more than 100 scientific institutes in Europe, the USA and Canada

Conclusions

- The subtle lensing effect can be reconstructed using Planck, thanks to its data quality and the low-systematic early stages of data-processing.
- Our fiducial lensing is based on a fsky~70% MV combination of the 143 and 217GHz frequency maps, after dust correction using the 857GHz map as a template
- The robustness against foreground contamination was assessed by comparing to results from properly cleaned CMB maps using component separation technique.
- The foreground-cleaned maps were used to obtained a *robust* lensing reconstruction on ~90% of the sky -> Although leading to a marginal decrease of the uncertainties, this map is a stricking success of the whole collaboration.
- The lensing reconstruction has important cosmological impact:
 - breaking of the As-tau degeneracy
 - probing post-recombination history with CMB alone: e.g. more than x2 improvement on the curvature/DE
 - Note: tension between Clphi and CIT in LCDM model -> weaker mnu constraint
- Perspectives with Planck:
 - 2 more surveys: 25% decrease of the Clphi uncertainties + further investigation of possible systematics, reducing the level of conservatism of some choices (Imax,Lmax, apodisation, ...)
 - polarization

Results based on single frequency maps

reconstruction based on the 143 and 217GHz channel maps:

dust template subtraction using the 857GHz map mask cutting ${\simeq}30\%$ of the sky

- 4 methods which deals differently with the mask:
 - **BASELINE** the sky cut is accounted for at the T filtering stage: $N_{pp'}^{-1} = 0$ for masked p, p' pixels
 - *ISO* inpainting of the source mask (constr. Gaussian sim.)
 - apodization of the galactic mask see A. Benoit-Lévy's poster
 - METIS sparse-inpainting of mask (source+galaxy) Perotto et al. (arXiv:1201.5779); Abrial et al. (arXiv:0804.1295)
 - **PATCHES** local method (flat-sky approximation)
 - inpainting of the source mask
 - galactic mask avoided
 Plaszczynski et al. (arXiv:1201.5779)

47th ESLAB, 2013-04-05, ESTEC

excellent agreement same performances (note: patches I>35)

5 /12

Observational signature

Lensing typical scales:

- deflection scale \simeq 2.5 arcmin (rms)
- \bullet correlation length $\simeq\!2$ degrees

Signatures:

• C_ℓ^{TT} smoothing (\simeq 10% at $\ell=2000$)

• inducing NG

 $\Delta T(\hat{\mathbf{n}}) \simeq \nabla^i \phi(\hat{\mathbf{n}}) \nabla_i T(\hat{\mathbf{n}}) + \mathcal{O}(\phi^2)$

utelessed dT T

Using the NG signature introduced into the T map, the underlying phi potential can be reconstructed