

100

Planck collaboration Presented by Céline Combet (LPSC, Grenoble)

Planck 2013 results XIII. arXiv:1303.5073

ESLAB 2013

Motivation and outline

٠

HFI filters and ¹²CO lines

- Significant CO transmission @ 100, 217, 353 GHz
 - 12 CO, but ~ 10-20% 13 CO as well
- Contaminant foreground for:
 - \rightarrow Intensity + CMB studies
 - \rightarrow Polarisation because of leakage

CO in Planck must be characterized

Motivation and outline

+ preview of Planck's CO science paper results

3 CO products from 3 approaches

• Single-channel approach

TYPE 1 product

- \rightarrow Use diversity of individual bolometer maps to extract independent maps : [1-0], [2-1], [3-2]
- \rightarrow Little contamination by other foregrounds, but noisy
- \rightarrow Suitable for the Galactic plane region

Multi-channel approach

TYPE 2 product

- \rightarrow Use multi-channel information to extract independent maps: [1-0], [2-1]
- \rightarrow High S/N but foreground contamination (in the plane)
- \rightarrow Suitable at high Galactic latitudes
- Multi-line approach

TYPE 3 product

 \rightarrow Combine frequency channels assuming fixed CO line ratios to get the **highest S/N map**

 \rightarrow Useful to detect high-latitude faint CO-emitting regions and guide ground-based follow-up observations

The Planck CO maps

- Velocity-integrated CO brightness temperature map W(CO)
- Healpix pixellisation scheme (N_{side} = 2048)

The Planck CO maps

The Planck CO maps

Internal validation

High latitude checks (where little dust contamination is expected)

- Slope compatible with 1 in all cases
- Component separation methods used for the 3 CO products have also been validated using FFP-2013 simulations

Validation on external data CO [1-0]

Dame et al. (2001) CfA CO(1-0) Galactic survey

- All Planck CO maps show tight correlation with Dame et al. (much tighter than correlation with dust) → we are seeing CO
- TYPE 1 (black dots) map is the most robust
- TYPE 2 and TYPE 3 maps suffer from dust contamination

Validation on external data CO [2-1]

Available data for [2-1] transition are rare:

- Tokyo-NRO (AMANOGAWA data, plane)
- FIRAS fullsky map (7° beam)
- IRAM Polaris flare (43' x 33' field, high lat.)

In all cases, agreement is found within calibration uncertainty

Validation on external data CO [3-2]

Very few data available for comparison

- \rightarrow Full-sky FIRAS CO(3 \rightarrow 2) map (7° beam)
- \rightarrow JCMT HARP/ACSIS ¹²CO(3 \rightarrow 2) Galactic plane data. Small 2°x1° field around ℓ = 13.5°

More extensive characterization of this map is in progress

¹³CO contamination

¹³CO is the main other contributing isotopologue **Not separated in this release but we can estimate its contribution**

CO content of TYPE 1 maps:

The high-latitude CO sky

Large extensions of cloud complexes CO TYPE 3 $\int \frac{1}{2} \int \frac{1}{$

Environment of the Taurus complex If distance ~ 100 pc \rightarrow ~ 50 pc extension

Automated search of new CO "patches" outside previously known regions

- Patchy distribution
- Large extension of known clouds
 - \rightarrow catalogue of new "patches"
- Power-law distribution of size and flux
 - \rightarrow no characteristic scale

The gas that builds up the CO mass

CO brightness distribution

- The bulk of the mass traced by CO(1→0) in the Milky Way has W(CO) ~ 160 K km/s
- Line ratios at the shoulders: $R_{2-1/1-0} = 0.50 \pm 0.05$ $R_{3-2/1-0} = 0.20 \pm 0.05$

 \rightarrow Analyzed in the Large Velocity Gradient approximation

- The bulk of the molecular gas traced by CO is more dilute than 10³ cm⁻³
- It is located in the Molecular Ring (shoulder inexsistant at |v| < 35 km/s)

CO emission of the "dark gas"

"Dark gas": not traced by CO above 1 K km/s or HI (Planck early results XIX, I. Grenier's talk tomorrow) 0.4 MJy/sr < I₃₅₃ < 2.5 MJy/sr or 0.35 mag < A_v < 2.5 mag

CO distribution in 4 dark gas bins

- Non-Gaussian distribution of the CO emission in the weakest ${\rm I}_{\rm 353}$ regions
- The large values in the non-Gaussian tail of the PDF are well above theoretical predictions for such low column densities

The so-called dark gas emits in CO

- Full-sky CO maps of J = 1→0, J = 2→1 and J = 3→2 using Planck data have been delivered to the community.
 - \rightarrow Enables a multitude of ground-based follow-up studies
- Maps have been systematically compared to and found in agreement with external datasets.
- Systematic effects have been identified (dust, ^{13}CO) \rightarrow no major limitations
- Full sky high-sensitivity map → discovery of large and weak extensions of known molecular clouds, catalogue of new patches of CO emission
- First 3 CO line survey of the Inner Galaxy: moderate density of gas traced by CO
- Non-Gaussian distribution of the CO emission of the "dark gas"

