Comparison of dust polarization properties in the submillimeter and visible domains

The Planck Collaboration Presented by V. Guillet (IAS, Orsay, France)

Polarization by dust is observed in 2 ways

Basic physics of grain alignment

Competition between

- alignment processes : various torques (magnetic, radiative, mechanical)
- disalignment processes : mainly gas collisions

<u>Suprathermal rotation (=> gyroscopic effect)</u>

- H2 formation on the surface of grains drive grain rotation to suprathermal velocities (rocket thrust)
- Radiative torques

=> Andersson & Potter (2012) for a recent review

Projection effects of magnetic field orientation

Complexity in interpreting the fractional polarization

Pol. fraction
$$(\lambda) = \int_{1^{05}} \int_{beam} f(dust properties(\lambda), (material, size distribution))$$

dust elongation b/a, (shape)
alignment efficiency (local conditions, size, material)
 $\downarrow \rightarrow ext{ Radiation field (anisotropy, intensity)}$
3D magnetic field) (orientation, structure)

 \Rightarrow At the 1st order, models show that dependencies on elongation, alignment, and magnetic field orientation are similar in extinction and in emission. This hypothesis is tested with our data.

 \Rightarrow Ratio R = (P/I)_s / (p/ τ)_v depends primarly on dust optical properties

Catalogs in extinction : $\tau_v = A_v / 1.086$ is crucial

Polarization catalog : Heiles (2000)

$$\Rightarrow p_{v}, \sigma_{p}, \theta_{v} \qquad \Rightarrow q_{v} = p_{v} \cos(2\theta_{v}) \qquad u_{v} = -p_{v} \sin(2\theta_{v})$$

 \Rightarrow low SNR Av : not used

Several extinction catalogs to control systematics in Av

We build independent samples from:

- 1. Fitzpatrick & Massa (2007) : high quality Av & Rv (147 stars)
- 2. Andersson & Potter (2007) : Taurus, Musca-Chameleon translucent clouds (54 stars)
- 3. Valencic et al (2004) : ~ 300 stars
- 4. Wegner et al (2002,2003) : > 400 stars
- 5. Our own derived Av from Kharchenko & Roeser (2009) : for the rest of stars not present in the litterature : > 3000 stars

Planck data

Planck Map of submillimeter equivalent to E(B-V)

• $E(B-V)_s$, to be compared with E(B-V) to the star

Intensity I @ 353GHz

- Average CMB removed, CMB fluctuations model removed (SMICA), Offset removed
- No sensitivity to Zodiacal light removal in our study

Polarization Q & U @ 353GHz

- Sky-Correction for spectral mismatch, CIB not polarized, CMB polarization negligible @ 353GHz
- Polarization position angle $\theta_s = \frac{1}{2} \arctan(-U,Q)$
- Polarization intensity $P = \sqrt{(Q^2+U^2)}$

I, Q and U smoothed at 7' (FWHM of the smooth = 5') to increase SNR

Comparing polarization fractions in emission and extinction

4 selection criteria

- 1. SNR > 3 for p, E(B-V) (visible), P, and I (submm)
- 2. |b| > 6 deg: high-latitude stars with less depolarizing background

4 selection criteria

ESLAB Symposium, 4th April 2013 - Planck Collaboration - V. Guillet : Comparing dust polarization at 353GHz and in the visible 10 / 21

Dynamics in angles for our selected stars

4. Agreement in polarization angles : $|\theta_{v} - \theta_{v}| < systematic + noise$

We take : systematics = 20° (compromise between nb of stars selected and accuracy of selection). Not crucial (same polarization ratio with systematics = 10° or 5°).

Correlation study of $R = \frac{(P/I)_{353GHz}}{(p/\tau)_V}$

- $P = \sqrt{(Q^2 + U^2)}$ and p_v are biased by noise (.e.g Simmons & Stewart 1985), not Q and U.
- Q/I correlates with q_v/τ , and U/I with u_v/τ when polarization angles agree
- Slope is -R (orthogonality in angles is responsible for the sign) :
- Fit with systematics added to error bars (2% in P/I, 0.5 in p/τ)

ESLAB Symposium, 4th April 2013 - Planck Collaboration - V. Guillet : Comparing dust polarization at 353GHz and in the visible 12 / 21

Correlation study of $R = \frac{(P/I)_{353\text{GHz}}}{(p/\tau)_V}$

Join fit of $Q/I = f(q/\tau)$ and $U/I = f(u/\tau)$ forced through the origin

What the models predict (Draine & Fraisse 2009, Martin 2007)

ESLAB Symposium, 4th April 2013 - Planck Collaboration - V. Guillet : Comparing dust polarization at 353GHz and in the visible 14 / 21

What the models predict (Draine & Fraisse 2009, Martin 2007)

ESLAB Symposium, 4th April 2013 - Planck Collaboration - V. Guillet : Comparing dust polarization at 353GHz and in the visible 15 / 21

Conclusions

• We find a uniform polarization ratio in the diffuse ISM

$$R = \frac{(P/I)_{353\text{GHz}}}{(P/\tau)_V} = 4.5 \pm 0.1 (random) \pm 0.5 (systematic)$$

- Globally consistent with existing dust models, with « tensions »
- Constraint to be completed with the spectral dependency of P/I : see Tuhin Ghosh's Poster.

The scientific results that we present today are a product of the Planck Collaboration, including individuals from more than 100 scientific institutes in Europe, the USA and Canada

