LiteBIRD

A Small Satellite for the Studies of **B**-mode Polarization and Inflation from Cosmic Background Radiation Detection

Masashi Hazumi

Institute of Particle and Nuclear Studies High Energy Accelerator Research Organization (KEK) Tsukuba, Japan

On behalf of the LiteBIRD working group

Overview

- Candidate for JAXA's future missions on "fundamental physics"
- Working group authorized by Steering Committee for Space Science (SCSS) of Japan
- One of eight most important future projects by astronomy/astrophysics division of Science Council of Japan
- Japanese High Energy Physics (HEP) community has also identified CMB polarization measurements and dark energy survey as two important areas of their "cosmic frontier".

LiteBIRD working group

✤ 64 members (as of Mar. 1, 2013)

✤ International and interdisciplinary

KEK Y. Chinone K. Hattori	JAXA H. Fuke I. Kawano	UC Berkeley A. Ghribi W. Holzapfel	MPA E. Komatsu	ATC/NAOJ K. Karatsu T. Noguchi	RIKEN K. Koga C. Otani		
M. Hazumi (PI) M. Hasegawa	H. Matsuhara K. Mitsuda	A. Lee (US PI) H. Nishino	N. Katayama	Y. Sekimoto Y. Uzawa	<u>Tohoku U.</u> M. Hattori		
N. Kimura T. Matsumura	T. Nishibori A. Noda	P. Richards A. Suzuki	<u>Yokohama NU.</u> S. Murayama	<u>Saitama U.</u> M. Naruse	K. Ishidoshiro		
H. Morii R. Nagata S. Oguri	S. Sakai Y. Sato K. Shinozaki	McGill U. M. Dobbs	S. Nakamura K. Natsume	M. Naruse Osaka Pref. U. K. Kimura	Kinki U. I. Ohta		
N. Sato T. Suzuki O. Tajima	H. Sugita Y. Takei N. Vamasaki	<u>LBNL</u> J. Borrill		H. Ogawa			
T. Tomaru M. Yoshida	T. Yoshida K. Yotsumoto		(B	(Berkeley, KEK, McGill, Eiichito)			
SOKENDAI Y. Akiba Y. Inoue	<mark>Tsukuba U.</mark> M. Nagai S. Takada	(JAXA)	nomers				
H. Ishitsuka A. Shimizu H. Watanabe	Okayama U. H. Ishino A. Kibayashi Y. Kibe S. Mima	(JAXA) JAXA engineer Support Grou	rs, Mission Desig p, SE office	Supercond scientists (NAOJ, Oka	ucting device Berkeley, RIKEN ayama, KEK <u>etc</u>		

LiteBIRD mission

• Check representative inflationary models

• requirement on the uncertainty on r

(stat. ⊕ syst. ⊕ foreground ⊕ lensing)

 $\delta r < 0.001$

No lose theorem of LiteBIRD

→ Many inflationary models predict r>0.01 → >10sigma discovery

Representative inflationary models (single-large-field slow-roll models)
have a lower bound on r,
r>0.002, from Lyth relation. $r = \frac{1}{N^2} \left(\frac{\Delta \phi}{m_{\rm Pl}}\right)^2 \approx 2 \cdot 10^{-3} \left(\frac{\Delta \phi}{m_{\rm Pl}}\right)^2$

➢ no gravitational wave detection at LiteBIRD → exclude representative inflationary models (i.e. r<0.002 @ 95% C.L.)</p>

 \triangleright Early indication from non-space-based projects \rightarrow power spectra at LiteBIRD !

Simiar to LHC Higgs case (Occam's razor)

2013/04/04

2013/04/04

47th ESLAB Symposium: The Universe seen as by Planck, ESA-ESTEC, Noordw "LiteBIRD" Masashi Hazumi (KEK)

ands

Three key technologies to make LiteBIRD light

- Small mirrors (~60cm)
- Warm launch with mechanical coolers
 - Technology alliance with SPICA for pre-cooling (ST/JT)
 - Alliance with DIOS (X-ray mission) for ADR
- Multi-chroic focal plane
 - ~2000 TES (T_{bath} =100mK, $\delta v/v \sim 0.3$), or equivalent MKIDs
 - Technology demonstration with groundbased projects (POLARBEAR, POLARBEAR-2, GroundBIRD)

Prototype crossed Mizuguchi-Dragone mirror

2ST/JT BBM

Systems Engineering for LiteBIRD

2013/04/04

2013/04/04

47th ESLAB Symposium: The Universe seen as by Planck, ESA-ESTEC, Noordwijk, The Netherlands "LiteBIRD" Masashi Hazumi (KEK)

Foreground removal and observing bands

• Foreground removal $\rightarrow \geq 4$ bands in 50-270GHz

N. Katayama and E. Komatsu, ApJ 737, 78 (2011) (arXiv:1101.5210)

pixel-based polarized foreground removal (model-independent) very small bias r~0.0006 with 60,100,240GHz (3 bands)

2013/04/04

LiteBIRD band selection for multi-chroic pixels

We chose the band locations with the following reasons.

- 1. Katayama-Komatsu (2010) suggested the range of frequency from 50-270 GHz based on the template subtraction.
- 2. We want to exclude the CO lines.
- 3. From the practical consideration such as AR coating on a lenslet array, it is reasonable to limit the bandwidth to $\Delta v/v \sim 1$.

Above three constraints naturally put us to the band locations.

- Some room for low frequencies.
- Interesting option of distributed band centers (more studies needed).

2013/04/04

2013/04/04

LiteBIRD focal plane design

tri-chroic(140/195/280GHz)

"LiteBIRD" Masashi Hazumi (KEK)

2013/04/04

Expected sensitivity on r

Systematic Error Mitigation

- Detailed studies with JAXA engineers are in progress
- One of the areas we should learn a lot from Planck !
- Lots of sources due to "differential XX" can be mitigated by continuously-rotating HWP. Full demonstration at ground-based projects is a key to our success.

Ex) pointing knowledge

Pointing error (instantaneous) = random ⊕bias

bias is mitigated by
good cross linking
→ requirement on bias

(instantaneous) is <2arcmin.

(requirement on random error is less stringent)

GroundBIRD "satellite on the ground"

- Spinning telescope for 1/f noise suppression
- \blacktriangleright Access to | < 10 (fsky=30%)
- \succ Sparse wire grid for absolute angle cal.
- Test-bench for LiteBIRD technologies
- \blacktriangleright Initial tests in Japan in 2014, then to Atacama

test of rotating stage @ KEK

sium: The Universe seen as by Planck, ESA-ESTEC, Noordwijk, The "LiteBIRD" Masashi Hazumi (KEK)

Summary

- CMB polarization will be the frontier in the post-Planck era
 - Best probe to discover primordial gravitational waves
 - Unique tests of inflation and quantum gravity
- The full success of LiteBIRD is to achieve $\delta r < 0.001$.
- LiteBIRD (with focusing on r measurements)

 ground-based super-telescopes will be one of the most cost-effective ways for broad scientific objectives
- No show-stopper in design studies so far. Technology verification in ground-based projects in next ~3 years will be crucial. The LiteBIRD roadmap includes such ground-based projects.

Backup Slides

L2 vs. LEO

Both cases satisfy the requirement on statistical error

2013/04/04

Delensing with SuperPOLARBEAR

47th ESLAB Symposium: The Universe seen as by Planck, ESA-ESTEC, Noordwijk, The Netherlands "LiteBIRD" Masashi Hazumi (KEK)

2013/04/04

The design goal for LiteBIRD is to achieve $2 \ \mu K \operatorname{arcmin}$ and the requirement is $3 \ \mu K \operatorname{arcmin}$. Throughout this memo we assume the observational time of 2 years with full efficiency and 70 % of sky coverage. With these assumptions, the corresponding combined NET over all the bolometers on the focal plane, so called "NET array", is $\underline{NET}_{arr} = 0.9 \ \mu K \sqrt{s}$ and $1.4 \ \mu K \sqrt{s}$ for the goal and requirement, respectively.

	Aperture & mirror temperatures								
	Bath temperature		$4 \qquad 6$		10	30			
	[mK]		[K]	[K]	[K]	[K]			
	100		0.89 (1.49)	1.09 (1.78) 1.46 (2.30)	2.74(4.15))		
	300		0.94(1.58)	1.15 (1.90) $1.54(2.44)$	2.88 (4.39			
	560		1.00(1.69)	1.22(2.03) $1.64(2.6)$		3.06(4.69)			
Band	Bandwidth	NET	Pixel #	Wafer #	Bolometer $#$	NETarr	Sensitivity		
GHz	%	$[\mu K\sqrt{s}]$	per wafer			$[\mu K \sqrt{s}]$	$[\mu K \operatorname{arcmin}]$		
60	0.23	96	19	8	304	5.4	14.1		
78	0.23	61	19	8	304	3.5	8.9		
100	0.23	44	19	8	304	2.5	6.4		
140	0.3	38	37	5	370	1.9	4.8		
195	0.3	32	37	5	370	1.54	4.0		
280	0.3	39	37	5	370	1.9	4.9		
Total			168	13	2022	$0.9~(1.5^{\dagger})$	$2.3 \ (3.8^{\dagger})$		

Table 2: The summary of the sensitivities. [†]The weighted sensitivity only using the 100 and 140 GHz bands.VVe limit the total number of detectors as ~2000. The MUX factor of 64 (2W/SQUID) will keep the readout power
below 70W.
2013/04/0447th ESLAB Symposium: The Universe seen as by Planck, ESA-ESTEC, Noordwijk, The Netherlands22

Lite (Light) Satellite for the Studies of B-mode Polarization and Inflation from Cosmic Background Radiation Detection

- JAXA-based working group (more than 60 members from JAXA, KEK, Kavli IPMU, NAOJ, Berkeley/LBNL, McGill, Riken, MPA and Japanese universities)
- Scientific objectives
 - Precision B-mode measurements for stringent tests of cosmic inflation
 - Tests of quantum gravity theories
 - Full success: Sr < 0.001 (stat. ⊕ syst. ⊕ foreground ⊕ lensing)
- Observations
 - Full-sky CMB polarization survey at a degree scale (30arcmin @ 150 GHz)
 - 6 bands b/w 50 and 320 GHz
- Strategy
 - Part of technology verification from ground-based projects
 - Synergy with ground-based super-telescopes
- Project status/plan
 - Selected as one of eight most important future projects by astronomy/astrophysics division of Science Council of Japan
 - Recognized as one of key future JAXA missions
 - International and interdisciplinary
 - Synergy with X-ray mission R&D

LEO ~ 600km Target launch7ycesLAB02mposium: The Universe seen as by Planck, ESA-ESTEC, Noordwijk, The Netherlands 2013/04/04 "LiteBIRD^{as} Masashi Hazumi (KEK)

Advantages of LiteBIRD

- Not a pathfinder; small but no compromise in r sensitivity
- More launch options than a big satellite
- Less expensive
 - With LiteBIRD plus ground-based super-telescopes (e.g. O(100K) bolometers w/ arcminute angular resolution) as one package, science reach nearly as good as a large CMB polarization mission with ~1/5 total cost
- Better in terms of cooling (mirrors and baffles)
- The whole spacecraft can be tested in a large cryogenic test chamber
 - Better calibration data \rightarrow less systematic uncertainties
 - Better pre-flight investigations \rightarrow less chance of failure

Block diagram

