emergence

 of the CMB from the $\mathbf{7}$ veils of foregrounds/extragalactic sources in perfect agreement with Big Bang Nucleosythesisof the driven "vacuum", accelerating then \& now. differentially? yes then \& now
we may compute it, but if we think we understand it, think again. yet we know more about early-
 inflaton dynamics than late-inflaton dynamics
the "Seven Pillars"

pillar 4
Gaussianity maximal randomness for given C_{L} pillar 5
secondary ΔT nonlinear Compton SZ CIB weak lensing..

pillar 7
 B-polarization
 Gravity Waves

the sound of the U-machine

early-U, NOW

semi-blind \& informed reconstruction of Scalar / Tensor power spectra, acceleration histories

100

Planck1.3 inflation paper

scan $\ln \mathbf{P}_{\mathbf{s}}(\operatorname{lnk}) / \mathrm{A}_{\mathrm{s}}, \ln \mathbf{A}_{\mathbf{s}}=\ln \mathrm{P}_{\mathrm{s}}\left(k_{\text {pivot,s }}\right), \boldsymbol{r}\left(k_{\text {pivot,t }, t}\right) ;$ consistency $=>$ reconstruct $\boldsymbol{\varepsilon}(\operatorname{lnHa}), \mathrm{V}(\Psi)$

$\mathrm{k}\left(\mathrm{Mpc}^{-1}\right)$
Inflation Histories (CMBall+LSS+SN+WL)

[^0]Consistent with single field slow roll, standard kinetic term \& vacuum (with $f_{N L}$ upper limits) uniform acceleration line $\varepsilon \equiv 3 K E /(K E+P E)=$ constant is strongly ruled out
=> early universe acceleration must change over observable scales (as well as to end inflation)

$1+\mathrm{Wt}=-\mathrm{d} / n \mathrm{pt} / \mathrm{d} / \mathrm{na}^{3}=2 / 3 \boldsymbol{\mathcal { E }}(\mathrm{t})$

$$
=2 / 3(1+q(t))
$$

ate-infaton DE trajectories informed $1+3$ parameters, physically motivated $\mathrm{V}_{\mathrm{de}}, \varepsilon_{\mathrm{s}}=(\mathrm{d} \ln \mathrm{V} / \mathrm{d} \psi)^{2} / 4,$.

is the dark energy

 pure "vacuum potential energy" or is there "vacuum kinetic energy"? Iate-infition $D E$ trajectories$\left(1+W_{d e}\right)=-\mathrm{d} / n \rho d e / d / n a^{3}$

($1+$ Wde) now

$1+w$

$$
\begin{aligned}
\varepsilon_{\mathbf{s}} & =(\mathrm{d} \ln \mathrm{~V} / \mathrm{d} \psi)^{2} / 4 \text { @pivot } \mathrm{a}_{\mathrm{eq}} \\
& =0.00+.21 \text { P1.3+SNLS3} \\
& =-0.25+.20-.26 \\
\text { to } & =.005+.031-.025 \text { future }
\end{aligned}
$$

is the dark energy pure "vacuum potential energy" or is there "vacuum kinetic energy"? Iate-inflaton DE trajectories
$\left(1+\mathrm{W}_{\mathrm{de}}\right)=-\mathrm{d} / n \rho \mathrm{de} / \mathrm{d} / n \mathrm{a}^{3}$

[^0]: Friday, 5 April, 13

