General Remarks:

- A 6-parameter model provides an exquisite fit to the Planck data
- The value of H_0 can be derived assuming this model $(\Omega_b h^2, \Omega_c h^2)$
- Direct measurements of H₀ are *required* to test the model
- The key element is understanding the systematics affecting the accuracy of these measurements
- Given that Planck is measuring the universe at early times, and the direct H_0 measurements are being made at z~0 with completely independent techniques, underlying physics, etc., the 2-2.5- σ agreement is rather remarkable
- **Pre-HST 30 < H**₀ < 110 km/sec/Mpc **
- 2-2.5-σ discrepancies are not interesting for claiming new physics
- There are many upcoming improvements to the direct measurements

General Remarks:

- A 6-parameter model provides an exquisite fit to the Planck data
- The value of H_0 can be derived assuming this model $(\Omega_b h^2, \Omega_c h^2)$
- Direct measurements of H₀ are *required* to test the model
- The key element is understanding the systematics affecting the accuracy of these measurements
- Given that Planck is measuring the universe at early times, and the direct H₀ measurements are being made at z~0 with completely independent techniques, underlying physics, etc., the 2-2.5-σ agreement is rather remarkable
- Pre-HST 30 < H₀ < 110 km/sec/Mpc **
- 2-2.5-σ discrepancies are not interesting for claiming new physics
- There are many upcoming improvements to the direct measurements

General Remarks:

- A 6-parameter model provides an e
- The value of H₀ can be derived assu
- Direc
- The k of the
- Giver direct indep is rat

What did you do wrong?... ... The SN Ω_m people already adjusted their results. What's taking you so long?

> at z~0 with completely sics, etc. , the 2-2.5-σ agreement

- **Pre-HST 30 < H_0 < 110 km/sec/Mpc**
- 2-2.5-σ discrepancies are not interesting for claiming new physics
- There are many upcoming improvements to the direct measurements

General Remarks:

- A 6-parameter model provides an e The value of H can be derived assi What did
- The value of H₀ can be derived assu
- Direc
- The k of the
- Giver direct indep is rat

... The S adjusted taking yo

at z~0

sics, et

- **Pre-HST 30 < H_0 < 110 km/sec/Mpc**
- 2-2.5-σ discrepancies are not interesting for claiming new physics
- There are many upcoming improvements to the direct measurements

Recent Direct Measurements of H₀

- Carnegie Hubble Project: $H_0 = 74.3 \pm 2.0 \text{ [stat]} \pm 2.1 \text{ [sys] km s}^{-1} \text{ Mpc}^{-1} \pm 2.9 \text{ [} 4\% \text{]}$
- Carnegie supernovae: in progress
- SH₀ES (Riess et al. 2011) : $H_0 = 73.9 \pm 2.4 \text{ km s}^{-1} \text{ Mpc}^{-1}$ [3%]
- GL (Suyu et al. 2010): $H_0 = 70.6 \pm 3.1 \text{ km s}^{-1} \text{ Mpc}^{-1}$ [4%]

Recent improvements in direct measurements of H₀:

- mid-IR (Spitzer) independent Cepheid zero point [Milky Way + LMC]
- HST parallaxes for Milky Way Cepheids
- Improved metallicity constraints for Cepheids [direct [Fe/H] abundances]
- HST Cepheid distances to more SNeIa H-band (Riess et al.)
- Higher precision observations of nearby SNe (CfA + CSP2 <= NIR)
- Gravitational lensing detailed modeling (Suyu et al.)
- H₂O megamasers (Braatz et al)

Sources of Systematic Errors in H₀

Freedman & Madore ARAA (2010) - dominant sources of error

Known	Key Project	Revisions	Anticipated	Basis
Systematics	(2001)	(2007/2009)	Spitzer/JWST	
(1) Cepheid Zero Point	± 0.12 mag	± 0.06 mag	± 0.03 mag	Galactic Parallaxes
(2) Metallicity	\pm 0.10 mag	± 0.05 mag	± 0.02 mag	IR + Models
(3) Reddening	± 0.05 mag	± 0.03 mag	± 0.01 mag	IR 20-30x Reduced
(4) Transformations	± 0.05 mag	± 0.03 mag	± 0.02 mag	Flight Magnitudes
Final Uncertainty	± 0.20 mag	± 0.09 mag	± 0.04 mag	Added in Quadrature
Percentage Error on H _o	$\pm 10\%$	±5%	±2%	Distances

We are here

Improvements to Systematics:

1. HST parallaxes

2. NGC 4258 scatter

3. Few SN calib.s

Decreasing the Uncertainties in H₀

[±10%]

[±3-4%]

 $[\pm 2-3\%]$

HST Key Project:

- Several methods with independent checks
- 5% statistical uncertainties
- Robust tests of 10% final uncertainty
 - Cepheids (RR Lyraes, TRGB, PNLF)
 - SNeIa, TF, SBF, PNLF, SNII

Current H₀ Measurements:

- Require additional tests to confirm Cepheid and SNeIa distances at the 3-4% level.
- Not yet available, but in progress.

Future H₀ Measurements:

- Spitzer RR Lyrae independent distances (2% level)**
- Gaia parallaxes (<1%) for Cepheids and RR Lyraes.
- IR measurements of SNeIa
- Gravitational lensing, masers, Planck SZ clusters

What is needed for H_0 to 1%?

• Several independent methods capable of 1%

 \checkmark

Paper XVI

"We emphasize here that the CMB estimates are highly model dependent. It is important therefore to compare with astrophysical measurements of H0, since any discrepancies could be a pointer to new physics."