

Data Analysis and Software in Heliophysics (DASH)

COMMUNITY COORDINATED MODELING CENTER

Exploring the validation results of ASPECS within ADVISOR

Athanasios Papaioannou¹, George Vasalos¹, Kathryn Whitman², Philip Quinn³, Anastasios Anastasiadis¹, Markus Leila Mays⁴, Janet Barzilla³, Chinwe Didigu⁴, Christopher Light⁴, Claudio Corti⁴, Joycelyn Jones⁴, Anna Chulaki⁴, Hannah Hermann⁴, Edward Semones⁵

¹National Observatory of Athens/IAASARS, Athens, Greece ²KBR, 2400 NASA Pkwy, Houston, TX 77058, USA ³Leidos, 555 Forge River Rd, Webster, TX 77598, USA ⁴NASA Goddard Space Flight Center, 8800 Greenbelt Rd, Greenbelt, MD 20771, USA ⁵NASA Johnson Space Center, 2101 E NASA Pkwy, Houston, TX 77058, USA

The ASPECS tool

ASPECS - Advanced Solar Particle Events Casting System

Data Analysis and Software in Heliophysics (DASH) | 15.10.2024

The ASPECS tool

ASPECS About Nowcasting Forecasting Run On Demand (Nowcasting) Run On Demand (Forecasting) Contact Info Help

SAWS-ASPECS Tool - Run On Demand (Nowcasting)

Data Analysis and Software in Heliophysics (DASH) | 15.10.2024

The ASPECS tool

ASPECS About Nowcasting Forecasting Run On Demand (Nowcasting) Run On Demand (Forecasting) Contact Info Help

SAWS-ASPECS Tool - Run On Demand (Nowcasting)

Data Analysis and Software in Heliophysics (DASH) | 15.10.2024

The ADVISOR project

ADVISOR - OptimizAtion, DeliVery & Installation of the ASPECS tOol for Space WeatheR research within ISEP

Data Analysis and Software in Heliophysics (DASH) | 15.10.2024

Validation

• The SEP Model Validation Working Meeting (SEPVAL) sample

flare_date] flare_longitude	flare_magnitude	flare_class	cme_m2m_date	cme_m2m_speed	cme_m2m_width	cme_donki_date	cme_donki_speed	cme_donki_width	cme_soho_date	cme_soho_speed	cme_soho_width cme_cactus1_date cn
2011-03-07 19:43:00	48	0.000037	M3.7	N/A	N/A	N/A	2011-03-07 20:00:00	1980	90	2011-03-07 20:00:00	2125	360 2011-03-07 20:12:00
1023-02-25 18:40:00	42	0.000063	M6.3	N/A	N/A	N/A	2023-02-25 19:24:05	920) 116	2023-02-25 19:24:05	1170	360 2023-02-25 20:00:00
1014-02-25 00:41:00	-77	0.00049	X4.9	N/A	N/A	N/A	2014-02-25 01:25:00	1670	132	2014-02-25 01:25:00	2147	360 2014-02-25 01:25:00
I/A	N/A	N/A	N/A	N/A	N/A	N/A	2015-10-29 02:36:00	535	i 40	2015-10-29 02:36:00	530	202 2015-10-29 02:24:00
2017-09-10 15:35:00	88	0.00082	X8.2	2017-09-10 16:00:00	2314	116	N/A	N/A	N/A	2017-09-10 16:00:00	3163	360 2017-09-10 16:48:00
2017-09-04 20:28:00	16	0.000055	M5.5	N/A	N/A	N/A	N/A	N/A	N/A	2017-09-04 20:36:00	1418	360 2017-09-04 20:48:00
1012-03-07 01:05:00	-27	0.00013	X1.3	N/A	N/A	N/A	N/A	N/A	N/A	2012-03-07 01:30:24	1825	360 2012-03-07 01:25:00
1013-05-22 12:30:00	75	0.00005	M5.0	2013-05-22 13:25:00	1756	128	N/A	N/A	N/A	2013-05-22 13:25:00	1466	360 2013-05-22 14:00:00
2012-01-23 03:38:00	20	0.000087	M8.7	N/A	N/A	N/A	2012-01-23 04:00:00	2211	124	2012-01-23 04:00:00	2175	360 2012-01-23 04:24:00
1012-07-06 23:01:00	50	0.00011	X1.1	N/A	N/A	N/A	2012-07-06 23:24:00	1200	80	2012-07-06 23:24:00	1828	360 2012-07-06 23:48:00
1012-09-27 23:36:00	26	0.000037	C3.7	2012-09-28 00:12:00	1252	94	N/A	N/A	N/A	2012-09-28 00:12:00	947	360 2012-09-28 00:12:00
1012-05-17 01:25:00	89	0.000051	M5.1	N/A	N/A	N/A	N/A	N/A	N/A	2012-05-17 01:48:00	1582	360 2012-05-17 02:12:00
1012-03-13 16:21:00	59	0.000079	M7.9	N/A	N/A	N/A	2012-03-13 17:36:00	2250	120	2012-03-13 17:36:00	1884	360 2012-03-13 17:36:00
1017-07-14 01:07:00	33	0.000024	M2.4	N/A	N/A	N/A	2017-07-14 01:25:00	750	98	2017-07-14 01:25:00	1200	360 2017-07-14 01:36:00
2021-05-28 22:19:00	68	0.0000094	C9.4	2021-05-28 23:12:00	949	88	N/A	N/A	N/A	2021-05-28 23:12:00	971	197 2021-05-28 23:12:00
√/A	N/A	N/A	N/A	2014-01-06 08:00:00	1138	102	N/A	N/A	N/A	2014-01-06 08:00:00	1402	360 2014-01-06 08:00:00
1014-09-10 17:21:00	-5	0.00016	X1.6	N/A	N/A	N/A	2014-09-10 18:00:00	1400	90	2014-09-10 18:00:00	1267	360 2014-09-10 18:00:00
1017-09-06 11:53:00	34	0.00093	X9.3	2017-09-06 12:24:00	1636	90	N/A	N/A	N/A	2017-09-06 12:24:00	1571	360 2017-09-06 12:12:00
1012-01-27 17:37:00	90	0.00018	X1.8	N/A	N/A	N/A	2012-01-27 18:27:00	2200	110	2012-01-27 18:27:00	2508	360 2012-01-27 18:48:00
1014-04-18 12:31:00	29	0.000073	M7.3	2014-04-18 13:25:00	1244	94	N/A	N/A	N/A	2014-04-18 13:25:00	1203	360 2014-04-18 13:25:00
2022-04-02 12:56:00	61	0.000039	M3.9	N/A	N/A	N/A	2022-04-02 13:36:00	1370	90	2022-04-02 13:36:00	1433	360 2022-04-02 13:36:00
2011-08-09 07:48:00	69	0.00069	X6.9	N/A	N/A	N/A	2011-08-09 08:12:00	1175	i 40	2011-08-09 08:12:00	1610	360 2011-08-09 08:24:00
1014-01-07 18:04:00	11	0.00012	X1.2	N/A	N/A	N/A	N/A	N/A	N/A	2014-01-07 18:24:00	1830	360 2014-01-07 18:36:00
2022-08-27 01:52:00	62	0.000048	M4.8	N/A	N/A	N/A	2022-08-27 02:24:00	1372	80	2022-08-27 02:24:00	1284	360 2022-08-27 02:24:00
√/A	N/A	N/A	N/A	2012-07-23 02:36:00	2395	108	N/A	N/A	N/A	2012-07-23 02:36:00	2003	360 2012-07-23 02:36:00
1011-08-04 03:41:00	39	0.000093	M9.3	N/A	N/A	N/A	2011-08-04 04:12:00	1950	120	2011-08-04 04:12:00	1315	360 2011-08-04 04:12:00
2022-01-20 05:41:00	76	0.000055	M5.5	N/A	N/A	N/A	2022-01-20 06:12:00	1426	88	2022-01-20 06:12:00	1431	211 2022-01-20 06:12:00
1022-03-28 10:58:00	1	0.00004	M4.0	N/A	N/A	N/A	2022-03-28 12:00:00	662	90	2022-03-28 12:00:00	702	360 2022-03-28 12:00:00
1012-07-12 15:37:00	2	0.00014	X1.4	N/A	N/A	N/A	2012-07-12 16:48:00	1400	140	2012-07-12 16:48:00	885	360 2012-07-12 15:24:00
2021-10-28 15:17:00	4	0.0001	X1.0	N/A	N/A	N/A	2021-10-28 15:48:00	1109	98	2021-10-28 15:48:00	1519	360 2021-10-28 16:00:00
2011-06-07 06:16:00	53	0.000025	M2.5	N/A	N/A	N/A	2011-06-07 06:49:00	1400	92	2011-06-07 06:49:00	1255	360 2011-06-07 10:20:00
2013-09-29 21:43:00	33	0.0000012	C1.2	N/A	N/A	N/A	2013-09-29 22:12:00	1100) 140	2013-09-29 22:12:00	1179	360 2013-09-29 22:24:00
2013-04-11 06:55:00	-12	0.000065	M6.5	N/A	N/A	N/A	N/A	N/A	N/A	2013-04-11 07:24:00	861	360 2013-04-11 07:36:00
		0.00000						10000				

33 SEP events + **30** Non SEP events = 63 Predictions from the tool

"Different" CME catalogues (i.e. CDAW, DONKI, M2M, CACTUS) |inputs

Data Analysis and Software in Heliophysics (DASH) | 15.10.2024

The SEPVAL sample

Comparison of CME widths versus speeds (CMEs associated with SEP yes (blue filled circles) and SEP no (orange crosses) from the SEPVAL sample) for M2M+DONKI in (a), SOHO/CDAW in (b) CACTUS 1 in (c) and CACTUS 2 in (d).

Papaioannou et al., SW, (2024) to be submitted

Data Analysis and Software in Heliophysics (DASH) | 15.10.2024

The SEPVAL sample

Comparison of CME widths versus speeds (CMEs associated with SEP yes (blue filled circles) and SEP no (orange crosses) from the SEPVAL sample) for M2M+DONKI in (a), SOHO/CDAW in (b) CACTUS 1 in (c) and CACTUS 2 in (d).

- SEP Yes True Positive
 SEP No False Positive
- SEP NU Faise P
 C1 O flara
- C1.0 flare
- M1.0 flare
- X1.0 flare

Data Analysis and Software in Heliophysics (DASH) | 15.10.2024

Probability of SEP Occurrence

Data Analysis and Software in Heliophysics (DASH) | 15.10.2024

Probability of SEP Occurrence

P(SEP) E>10 MeV CME input SEP Yes / High prob SEP No / High prob SEP Yes / Low prob SEP No / Low prob

P(SEP) obtained from PROSPER for the CME input overplayed on a parametric space of CME width vs CME speed from M2M+DONKI in (a), SOHO/CDAW in (b) CACTUS 1 in (c) and CACTUS 2 in (d). Colors = high SEP prob. Black = low SEP prob. Size is a function of the P(SEP).

Data Analysis and Software in Heliophysics (DASH) | 15.10.2024

Metrics

#	#Event	s TP	FP	ΤN	FN	%POD	%FAR	%PC	%HSS	%TSS
flare_probabilities	60	22	12	18	8	73	35	66	33	33
flare_50cl	60	22	12	18	8	73	35	66	33	33
flare_90cl	60	22	12	18	8	73	35	66	33	33
cme_m2m_probabilities -	58	6	1	29	22	21	14	60	18	18
cme_soho_probabilities	63	30	13	17	3	90	30	74	48	47
cme_cactus1_probabilities	60	5	2	25	28	15	28	50	7	7
cme_cactus2_probabilities	60	15	6	21	18	45	28	60	22	23
flare_cme_m2m_probabilities	55	19	11	19	6	76	36	69	38	39
flare_cme_m2m_50cl	55	18	7	23	7	72	28	74	48	48
flare_cme_m2m_90cl	55	18	10	20	7	72	35	69	38	38
flare_cme_soho_probabilities	60	27	21	9	3	90	43	60	20	20
flare_cme_soho_50cl	60	26	16	14	4	86	38	66	33	33
flare_cme_soho_90cl	60	27	18	12	3	90	40	65	30	30
flare_cme_cactus1_probabilities	57	24	9	18	6	80	27	73	46	46
flare_cme_cactus1_50cl	57	18	6	21	12	60	25	68	37	37
flare_cme_cactus1_90cl	57	21	7	20	9	70	25	71	43	44
flare_cme_cactus2_probabilities -	57	27	11	16	3	90	28	75	50	49
flare_cme_cactus2_50cl	57	25	7	20	5	83	21	78	57	57
flare_cme_cactus2_90cl -	57	26	10	17	4	86	27	75	50	49

P(SEP) E>10 MeV

Summary heatmap that depicts ASPECS flavors at each row, number of events, elements of the contingency table and corresponding metrics at each of the columns.

Flare input POD=73% FAR=35%

Flare+CME (CACTUS 2) input POD=90% FAR=28%

Data Analysis and Software in Heliophysics (DASH) | 15.10.2024

Peak flux

Scatter plots of predicted vs observed peak proton fluxes for E>100 MeV SEPs. The red dashed line is the dichotomous. The predictions of the peak flux at a 90% CL are depicted with orange dots, while those at 50% CL with blue dots.

Strongest cc Flare+CME input

P(SEP) E>100 MeV

A correlation coefficient heatmap that depicts the obtained Pearson cc obtained from the comparison of the observed versus the predicted peak fluxes at E>10 MeV and E>100 MeV. For each energy, there are three columns: (a) PROSPER, (b) 24hrs and (c) 48 hrs.

IAASARS

Observed -	1	1	1	1	1	1	
Flare 50% -	0.011	0.015	0.027	0.3	0.36	0.36	
Flare 90% -	0.041	0.023	0.061	0.29	0.35	0.35	
Flare & M2M 50%-	0.44	0.47	0.47	0.99	0.99	0.99	
Flare & M2M 90%-	0.55	0.58	0.58	0.99	0.98	0.98	
Flare & CDAW 50% -	0.078	0.05	0.13	0.3	0.37	0.39	
Flare & CDAW 90% -	0.12	0.048	0.2	0.3	0.36	0.39	
Flare & CACTUS1 50% -	0.36	0.4	0.41	0.93	0.53	0.53	
Flare & CACTUS1 90%	0.43	0.47	0.48	0.91	0.5	0.5	
Flare & CACTUS2 50% -	0.25	0.27	0.28	0.93	0.51	0.51	
Flare & CACTUS2 90% -	0.24	0.28	0.28	0.89	0.47	0.47	
	PROSPER	24h	48h	PROSPER	24h	48h	
	FROSFLIN	2411	4011	TROJER	2411	4011	_

Correlation with Observed Peak Flux (10 MeV) Correlation with Observed Peak Flux (100 MeV)

Data Analysis and Software in Heliophysics (DASH) | 15.10.2024

SEP time profile

What is the best metric to use?

Predicted SEP time profiles against data for the SEP events that took place on 23/01/2012, 04/08/2011, 13/03/2012 and 07/03/2012

		23/01	/2012		04/08/2011					
CL (%)	E>10 (50%)	$\frac{\mathbf{MeV}}{(90\%)}$	E>100 (50%)	MeV (90%)	E>10 (50%)	MeV (90%)	E>100 (50%)	MeV (90%)		
cc	0.57	0.57	0.65	0.70	0.78	0.78	0.74	0.77		
RMSLE	3.39	0.97	0.46	0.27	0.51	4.08	0.25	0.39		
MAPE	0.94	2.87	0.71	0.63	0.62	66.18	0.52	2.53		
		13/03	/2012			07/03	/2012			
CL (%)	E>10 (50%)	MeV (90%)	E>100 (50%)	MeV (90%)	E>10 (50%)	MeV (90%)	E>100 (50%)	MeV (90%)		
сс	0.43	0.51	0.12	0.30	0.89	0.89	0.40	0.42		
RMSLE	1.49	2.27	0.30	0.23	3.16	0.97	2.97	1.87		
MAPE	1.09	17.30	0.70	2.16	0.90	1.77	0.98	0.87		

Data Analysis and Software in Heliophysics

COMMUNITY COORDINATE MODELING CENTER

(DASH) | 15.10.2024

Validation toolbox

Predicted Profiles

	Pe	Pearson R			RM	ISLE		МАРЕ				
	E>10 MeV	E>30 MeV	E>100 MeV	E>300 MeV	E>10 MeV	E>30 MeV	E>100 MeV	E>300 MeV	E>10 MeV	E>30 MeV	E>100 MeV	E>300 MeV
50% CL	0.58	0.34	0.93	0.81	2.26	2.83	2.16	0.69	0.92	0.95	0.93	0.88
90% CL	0.58	0.34	0.93	0.81	0.87	1.17	1.14	0.31	1.14	0.79	0.84	1.20

Data Analysis and Software in Heliophysics (DASH) | 15.10.2024

Validation toolbox

Proton Fluence Spectra Worst Case Proton Fluence 90 CL 90 CL linear fit (γ=1.72) 50 CL linear fit (y=1.54) 50 CL linear fit (y=2.10) 13 13 Log(Predicted Proton Fluence (cm⁻²)) Log(Predicted Proton Fluence (cm⁻²)) 12 12 11 11 10 10 9 9 8 8 7 7 6 6 5 5 4 4 3 3 1.2 2.6 1.0 1.4 1.6 1.8 2.0 2.2 2.4 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 Log(Energy (MeV)) Log(Energy (MeV))

IAASARS

Data Analysis and Software in Heliophysics (DASH) | 15.10.2024

Community Coordinate Modeling Center

2.6

Validation toolbox

Download JSON

Intervals Indexer

2000-07-14 10:04:00 2000-07-14 10:34:00 2000-07-14 11:04:00 2000-07-14 11:34:00 2000-07-14 12:04:00 2000-07-14 12:34:00 2000-07-14 13:04:00 2000-07-14 13:34:00 2000-07-14 14:04:00

SAWS-ASPECS Validation Toolbox

Import Validation JSON

Browse	No file selected.
/isualize	

Choose Validation Flavor

- Time Range
- O Custom Input

Time Range

Start:	200	0-07-14 10:04:00
End:	200	0-07-14 14:04:00
Start Validation		

Data Analysis and Software in Heliophysics (DASH) | 15.10.2024

COMMUNITY COORDINATE MODELING CENTER

-or-

Conclusions & Open Questions

IAASARS

SEPVAL offers a common basis for SEP model developers to compare their models and concepts

ASPECS via the ADVISOR implementation offers granulation of the obtained validation results

A Validation Toolbox has been implemented allowing for external users to run the tool on demand, while predictions evolve with time

What is the best metric to use for the SEP time profile predictions ?

How to build upon SEPVAL?

How can users take advantage of the Validation Toolbox?

Data Analysis and Software in Heliophysics (DASH) | 15.10.2024

