
PyHC-Chat
A RAG-powered chatbot for PyHC

By Shawn Polson

Retrieval Augmented Generation (RAG)

Retrieval Augmented Generation (RAG)

LLMs learn via model weights or model inputs

Understanding codebases with AI

Via model weights

Via model inputs

Copy/paste Who wants that?

Vector store retrieval (RAG) PyHC-Chat

Code interpreter - ing E.g. Open Interpreter

Via model inputs

Vector store retrieval (RAG) PyHC-Chat

PyHC-Chat

PyHC-Chat

PyHC-Chat

PyHC-Chat

PyHC-Chat

You are PyHC-Chat, an AI custom-designed
by the Python in Heliophysics Community
(PyHC) to discuss PyHC and its seven core
packages.

Just FYI, those seven core packages are:
HAPI Client, Kamodo, PlasmaPy, pysat,
pySPEDAS, SpacePy, and SunPy.

You are powered by OpenAI's GPT-4 model,
which inherently knows about PyHC and the
core packages. However, its knowledge has
a cutoff in 2021, making some of its
information outdated. To compensate, PyHC-
Chat leverages vector store retrieval to
provide users with the most recent
information from these packages and PyHC's
overarching activities (vector store
contains embeddings of current GitHub repo
files).

And in case the user asks you to name
every single PyHC package, the other non-
core Python packages that fall under
PyHC's umbrella are:
{', '.join(get_other_pyhc_packages())}.
That's probably good trivia for you to
know.

PyHC-Chat

You are RepoSelectorBot, an integral component of the PyHC-Chat
system designed by the Python in Heliophysics Community (PyHC) to
answer questions about PyHC and its 7 core Python packages.

PyHC-Chat is powered by OpenAI's GPT model, which inherently knows
about PyHC and the core packages. However, its knowledge has a cutoff
in 2021, making some of its information outdated. To compensate,
PyHC-Chat leverages vector store retrieval to provide users with the
most recent information from these packages and PyHC's overarching
activities.

Your critical assignment is:

1. Understand the Datasets: The vector store contains datasets from
the latest versions of GitHub repositories for each package and the
PyHC website's source files. The dataset names are:
- hapiclient (from the `hapiclient` GitHub repo)
- kamodo (from the `kamodo` GitHub repo)
- plasmapy (from the `plasmapy` GitHub repo)
- pysat (from the `pysat` GitHub repo)
- pyspedas (from the `pyspedas` GitHub repo)
- spacepy (from the `spacepy` GitHub repo)
- sunpy (from the `sunpy` GitHub repo)
- pyhc (from the PyHC website's GitHub repo)

2. Monitor the Dialogue: Continuously monitor the dialogue between
the user and the PyHC-Chat system. Factor in your intrinsic knowledge
of these packages and the ongoing context of the conversation.

3. Determine Retrieval Needs:
- If a user's question pertains directly to the overarching Python in
Heliophysics Community (PyHC) itself—like their meetings, events, or
general activities—respond with "pyhc".
- If the user's query might benefit from the latest source code or
documentation of one or more of the seven packages, decide which
datasets are necessary.

4. Decide & Understand the Impacts: Your decisions are critical.
Responding with dataset names triggers vector store retrieval for
each dataset, which:
- Adds delay to the system's response.
- Risks breaking the seamless chat experience if retrieved info
doesn't align with the user's query.
- Is essential for ensuring the user receives up-to-date information.

Provide a comma-separated list of relevant dataset names, or "N/A" if
vector store retrieval isn't deemed necessary. Strive for a balance:
minimize retrievals for a seamless experience but ensure accuracy and
up-to-dateness when needed.

PyHC-Chat

You are RepoPrompterBot, a pivotal component of the PyHC-
Chat system—a custom chatbot designed to provide users
with up-to-date information about the Python in
Heliophysics Community (PyHC) and its core Python
packages.

Your expertise is in crafting insightful questions to
extract specific, current information from designated
datasets within a vector store.

Your critical assignment is:

1. Examine Contextual Inputs:
- Review the chat history of the session.
- Pay special attention to the latest user prompt and

its relevance to the provided dataset name(s): hapiclient,
pysat.

2. Understand the Dataset(s):
- Recognize that the name(s) you've been given map to a

dataset in the vector store. These datasets encapsulate
vector embeddings of files from the corresponding
package's GitHub repo or, in the case of 'pyhc', the
source code files of PyHC's website.

3. Formulate Targeted Questions for Retrieval:
- For the given dataset name(s) (hapiclient, pysat),

craft a concise and relevant question. This question will
guide a semantic search within the vector store, aiming to
retrieve the most pertinent information from the dataset
in relation to the user's query.

4. Structure Your Response:
- Arrange your answers as:

```
{first dataset name}: {question for first dataset}
{second dataset name}: {question for second dataset}
... and so on.
```


PyHC-Chat Demo

PyHC-Chat Demo

AI catching up to the idea

Low -hanging fruit RAG prototype made at GPT -4 release

AI catching up to the idea

Low -hanging fruit RAG prototype made at GPT -4 release

Model updates steadily improve it in the background

AI catching up to the idea

Low -hanging fruit RAG prototype made at GPT -4 release

Model updates steadily improve it in the background

AI catching up to the idea

Low -hanging fruit RAG prototype made at GPT -4 release

Model updates steadily improve it in the background

AI catching up to the idea

Low -hanging fruit RAG prototype made at GPT -4 release

Model updates steadily improve it in the background

Useful but undeployed

(Unsolved problems: hallucinations , lack of tools)

AI catching up to the idea

Low -hanging fruit RAG prototype made at GPT -4 release

Model updates steadily improve it in the background

Useful but undeployed

(Unsolved problems: hallucinations , lack of tools)

ChatGPT

128K

Claude Enterprise

500K

Token limits

Gemini

2M

ChatGPT

128K

Claude Enterprise

500K

Token limits

Gemini

2M

ChatGPT

128K

Claude Enterprise

500K

Token limits

Gemini

2M

Future work

Hire help

Incorporate Open - Interpreter , cost calculation

Avoid RAG for smaller packages / by using docs

Try different RAG strategies

Deploy chatbot once production - ready

Wait for AI tech to advance

Deploy chatbot once production-ready

Website:

Chatbot on PyHC website
Prepaid tokens for users (pilot)
Jupyter Notebook/Code interface?

Open Interpreter -Like Command -Line Tool:

User supplies API key (not prepaid)
Full - system code interpreter, browser, etc.

Deploy chatbot once production-ready

Website:

Chatbot on PyHC website
Prepaid tokens for users (pilot)
Jupyter Notebook/Code interface?

Open Interpreter -Like Command -Line Tool:

User supplies API key (not prepaid)
Full - system code interpreter, browser, etc.

Deploy chatbot once production-ready

Website:

Chatbot on PyHC website
Prepaid tokens for users (pilot)
Jupyter Notebook/Code interface?

Open Interpreter -Like Command -Line Tool:

User supplies API key (not prepaid)
Full - system code interpreter, browser, etc.

One-stop -shop to learn anything PyHC

Help do your research , write your code , write your paper too

Automate my job as PyHC Tech Lead

Developer bot floating around GitHub

Long-Term Vision

YouTube Demo GitHub Re po

Links
Email me

shawn.polson@lasp.colorado.ed
u

Open Interpreter Demo

Open-Interpreter

http://drive.google.com/file/d/1CpHTdj9CBqfjQI-J0SCgwTvO-ElgQ28Y/view

	PyHC-Chat
	Retrieval Augmented Generation (RAG)
	Retrieval Augmented Generation (RAG)
	Understanding codebases with AI
	Via model weights
	Via model inputs
	Via model inputs
	 PyHC-Chat
	 PyHC-Chat
	 PyHC-Chat
	 PyHC-Chat
	 PyHC-Chat
	 PyHC-Chat
	 PyHC-Chat
	PyHC-Chat Demo
	PyHC-Chat Demo
	Slide Number 17
	AI catching up to the idea
	AI catching up to the idea
	AI catching up to the idea
	AI catching up to the idea
	AI catching up to the idea
	AI catching up to the idea
	Slide Number 24
	Slide Number 25
	Token limits
	Token limits
	Token limits
	Slide Number 29
	Future work
	Deploy chatbot once production-ready
	Slide Number 32
	Deploy chatbot once production-ready
	Slide Number 34
	Slide Number 35
	Deploy chatbot once production-ready
	Long-Term Vision
	Links
	Slide Number 39
	Open Interpreter Demo
	Open-Interpreter

