Solar Orbiter Archive: New Features – Python/TAP/TOPCAT Access and Docs

M. Cruz¹, J. Cook¹, H. Perez¹, A. Carasa¹, A. Andres¹, A. Trejo¹, L. Masselos¹, V. Olmedo¹ A. Masson², H. Middleton², R. Bhatawdekar² and J. Oliveira³

¹STARION Group for ESA, ²European Space Agency, ³Telespazio for ESA

The ESAC Science Data Centre (ESDC) plays a crucial role in preserving and providing long-term access to data from all ESA space science missions.

Recent enhancements to the Solar Orbiter Archive (SOAR) aim to provide researchers with more intuitive and powerful tools for data access. These updates include the ability to search data by solar distance and utilize Field of View (FoV) tables. The contents of the Solar Orbiter mission orbit file have been ingested and is available via our standard TAP interface. This allows users to search a rich set of metadata based on Distance and Latitude. Integration with commonly used tools like Python, TOPCAT, and SunPy has further streamlined data access and interoperability. The redesigned help page demonstrates how to interact with these data and includes new tutorials and instrument

Orbit File

Metadata accessible via TAP:

CDF orbit file provides detailed information about the spacecraft's trajectory and position in space over time.

Solar distance refers to the distance between the spacecraft and the Sun expressed in Astronomical Units (au). Includes perihelion (0.28 au) and aphelion passes (1.02 au).

> Get the EPOCH and Heliocentric distance directly via TAP instead of downloading a CDF file, and easily plot and extract time intervals using a DataFrame for a given solar distance

•		Table Access Pro	otocol (TAP) Query			
🖋 😢 😰 🗙						
	Select Servic	e Use Service	Resume Job 🕂 Running Jo	obs		
[Metadata						
Find: time_series.v_solo_anc Or		○ Service ● A	DQL 🛛 🖲 Schema 👘 🗨 Table	e 💿 Columi	O FKeys	Hints
🗹 Name 🗌 Descrip	Name	Type Unit	Indexed Description UCI	D Utype	Xtype Flags	flags ref
Sort: 🗿 Service 🔵 Alphabetic	epoch	long				0
TAP Service (2/148)	hci_pos	double				0
time_series (2/75)	hee_pos	double	Ö			0
	index ner enoch	int				0
time_series.v_solo_anc_socorbit_0	nidex_per_epoen	shar	ŏ			0

documentation.

Epoch and Heliocentric distance can be extracted as:

https://soar.esac.esa.int/soar-sltap/tap/sync?REQUEST=doQuery&LANG=ADQL&FORMAT=JSON&PHASE=RUN&QUER Y=SELECT+epoch,hcentric dist+FROM+time series.v solo anc socorbit 1

Data accessible via web interface:

E DATA	SEARCH		
SCIENCE	AUXILIARY		
	 Time (from/to) 		
	• File Name	Please insert a single string like kernels-complete or 2023	
	Include:	Spice Kernels V CDF Orbit File	

Orbite	r Archive		Ce e
	SEARCH		
SCIENCE	AUXILIARY		
	Time (from/to)		
	 Instrument 	All	
	Processing level	All	
	6 File Name	Please insert a single string HRI or MAG*burst	
6	SOOP Name/Type	All	
	Solar distance	0.28 - 1.02	
	Include also:	Low Latency Inactive files	

2022-03-07 21:55:50 - 2022-04-14 01:55:50 2024-03-15 21:55:50 - 2024-04-23 05:55:50 024-09-11 15:55:50 - 2024-10-03 16:55:5

Use of sunpy-soar – A SunPy affiliated package that integrates with Fido to search for Solar Orbiter data using solar distance attributes from the Solar Orbiter Archive.

min dist = 0.28 $max_dist = 0.49$

df = pd.DataFrame(

"epoch": t,

"distance_km": d, "distance_au": d/AU

condl = df['distance_au'] <= max_dist</pre>

cond2 = df['distance_au'] >= min_dist

import astropy.units as u import sunpy.net.attrs as a from sunpy.net import Fido import sunpy_soar # NOQA: F401

instrument = a.Instrument("EUI") time = a.Time("2022-10-29 05:00:00", "2022-10-29 06:00:00") level = a.Level(2) detector = a.Detector ("HRI EUV") distance = a.soar.Distance(0.45 * u.AU, 0.46 * u.AU)

result = Fido.search(instrument & level & detector & distance) result

*	1442 Results from the SOARClient:									
	QueryRes	ponseTab	le len	gth=1442						
	Instrument	Data product	Level	Start time	End time	Filesize	SOOP Name	Detector	Wavelength	
						Mbyte				
	str3	str19	str2	str23	str23	float64	str48	str7	float64	
	EUI	eui- hrieuv174- image	L2	2022-10-29 05:00:00.231	2022-10-29 05:00:01.881	5.558	R_SMALL_HRES_HCAD_Atmospheric- Dynamics-Structure	HRI_EUV	174.0	
	EUI	eui- hrieuv174- image	L2	2022-10-29 05:00:00.231	2022-10-29 05:00:01.881	5.558	R_SMALL_HRES_HCAD_Atmospheric- Dynamics-Structure	HRI_EUV	174.0	
	EUI	eui- hrieuv174- image	L2	2022-10-29 05:00:05.221	2022-10-29 05:00:06.871	5.532	R_SMALL_HRES_HCAD_Atmospheric- Dynamics-Structure	HRI_EUV	174.0	

Field of View

Solar Orbiter has two telescopes and one instrument onboard that target a certain portion of the Sun in high resolution, i.e. within a Field of View (FoV)

FoV tables have been extracted from each HRI, HRT and SPICE file. These tables can be accessed via TAP and includes

				Select	Service Use Service Resume Job Running Jobs						
Metadata											
Find: fov Or					○ Service ● ADQL ● Schema ● Table ● Columns ○ FKeys Hints						
🗸 Name 🗌 Descrip	Name	Туре	Unit	Indexed	Description	UCD	Utype	Xtype	Flags	flags	ref
Sort: O Service Alphabetic	bepi_pos_lat_deg	double			BepiColombo position longitude in degrees (deg), Stonyhurst heliographic coordinate system						0
	bepi_pos_lon_deg	double			BepiColombo position latitude in degrees (deg), Stonyhurst heliographic coordinate system						0
TAP Service (3/148)	bepi_pos_radius_au	double			BepiColombo position radius in Astronomical Unit (AU), Stonyhurst heliographic coordinate system						0
v soar (3/67)	crota	double			Rotation Angle						0
Ⅲ soar.v_eui_hri_fov	descriptor	char			Filename descriptor						0
soar.v_phi_hrt_fov	earth_pos_lat_deg	double			Earth position longitude in degrees (deg), Stonyhurst heliographic coordinate system						Ø
soar v spice fov	earth_pos_lon_deg	double			Earth position latitude in degrees (deg), Stonyhurst heliographic coordinate system						Ø
m perit phree_eet	earth_pos_radius_au	double			Earth position radius in Astronomical Unit (AU), Stonyhurst heliographic coordinate system						Ø
	end_time	char			End time						0
	filename	char			Filename						0
	fov_earth_bot_left_arcsec_tx	double			FoV bottom left Tx in arcsec as seen from Earth in Helioprojective cartesian reference frame						0
	fov_earth_bot_left_arcsec_ty	double			FoV bottom left Ty in arcsec as seen from Earth in Helioprojective cartesian reference frame						0
	fov_earth_top_right_arcsec_tx	double			FoV top right Tx in arcsec as seen from Earth in Helioprojective cartesian reference frame						0
	fov_earth_top_right_arcsec_ty	double			FoV top right Ty in arcsec as seen from Earth in Helioprojective cartesian reference frame						0
	fov_solo_bot_left_arcsec_tx	double			Fov bottom left 1x in arcsec as seen from Solar Orbiter in Helioprojective cartesian reference frame						0
	fov_solo_bot_left_arcsec_ty	double			Fov bottom left Ty in arcsec as seen from Solar Orbiter in Helioprojective cartesian reference frame						0
-	fov_solo_top_right_arcsec_tx	double			Fov top right Tx in arcsec as seen from Solar Orbiter in Helioprojective cartesian reference frame						0
	tov_solo_top_right_arcsec_ty	double			For top right 1y in arcsec as seen from solar Orbiter in Helioprojective cartesian reference frame						0
	mercury_pos_lat_deg	double			Mercury position longitude in degrees (deg), storyhurst heliographic coordinate system						0
	mercury_pos_ion_deg	double			Mercury position latitude in degrees (deg), storynurst neliographic coordinate system						0
	mercury_pos_radius_au	double			Presenting local						0
	proc_iever	char			FLOCESSING level BCB position longitude in degrees (deg). Stomburst beliegraphic coordinate system						0
	psp_pos_lar_deg	double			PSP position longitude in degrees (degr, aconymitist heliographic coordinate system						0
	psp_pos_ion_ueg	double			PSP position radius in degrees (deg), stonyhurst heliographic coordinate system PSP position radius in Astronomical Unit (AU). Stonyhurst heliographic coordinate system						0
	solo pos lat deg	double			Solar Orbiter position longitude in degrees (deg). Stonyhurst heliographic coordinate system						0
	solo pos lon deg	double			Solar Orbiter position latitude in degrees (deg), Stonyhurst heliographic coordinate system						a
	solo pos radius au	double			Solar Orbiter position radius in Astronomical Unit (AU). Stonyhurst heliographic coordinate system						ä
	soon name	char			Solar Orbiter Observing Plan name						ő
	start time	char			Start time						0
	stereoa pos lat deg	double			Stereo-A position longitude in degrees (deg). Stonyhurst heliographic coordinate system						0
	stereoa pos lon deg	double			Stereo-A position latitude in degrees (deg), Stonyhurst heliographic coordinate system						0
	stereoa pos radius au	double			Stereo-A position radius in Astronomical Unit (AU). Stonyhurst heliographic coordinate system						õ
	version	char			File version						0

- FoV in arcsec from a Solar Orbiter perspective.
- FoV in arcsec from an Earth perspective.

EUI HRI | PHI HRT | SPICE

- Position of Solar Orbiter, PSP, Bepi, STEREO-A.
- Positions of Earth and Mercury.

The following queries can be used to access the FoV tables and plot SOAR and Earth based views with help of sunpy.

vo.dal.TAPService("https://soar.esac.esa.int/soar-sl-tap/tap") fits_item_resulset = service.search("SELECT * FROM soar.v_eui_sc_fits WHERE filename='solo_L2_euifsi174-image_20221024T190050195_V01.fits'")

first_item = fits_item_resulset[0] fsi_obs_date = first_item["date_average"

fov_eui_resultset = service.search("SELECT * FROM soar.v_eui_hri_fov WHERE filename='solo L2 eui-

SELECT * FROM soar.v_spice_fov WHERE filename='solo_L2_spice-n-

Three different perspectives: Location of Solar Orbiter and related helio missions; Sun from a Solar Orbiter perspective; Sun from an Earth perspective at the same time (as observed by SDO).

Solar Orbiter perspective (EUI 174 Å) 2022-10-24T19:00:55.195

Earth perspective (AIA 171 Å) 2022-10-24T19:00:57.35

SunPy Access to SOAR Data and Metadata

Search by instrument, detector name, distance to the Sun and Solar Orbiter Observing Plan name using SunPy Fido:

Help Page

https://www.cosmos.esa.int/web/soar

Points in red have been redesigned:

- Each Solar Orbiter Instrument provides a Data Product Description Document (DPDD).
- The web interface user guide is up-to-date to include detailed navigation steps.
- Guidance on how to search by cadence for MAG, EPD, SWA 3D and PAD with units.
- Added data tutorials such as finding time intervals when searching by distance, examples with sunpy-soar and more.

solar	orbiter archiv	/e			esa
Home	Getting to Data 👻	Resources -	Documentation -	Contact us	
GETT	ING TO DATA		RESOURCES	DOCUMENTA	TION

CONTACT INFO

Mikel Cruz Ruiz mikel.cruz@ext.esa.int

European Space Astronomy Centre (ESAC) Camino Bajo del Castillo s/n 28692 Villanueva de la Cañada, Madrid, Spain

ESAC Science Data Centre

STARION