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Teacher’s guide  
CESAR	Science	Case	–	The	Venus	transit	and	the	Earth-Sun	distance	
By:	Abel	de	Burgos	and	Assiye	Süer		

There are different methods to use in this laboratory. Here, three methods are going to be presented.  

• Material that is necessary during the laboratory 
  

o CESAR Astronomical word list 
o CESAR Booklet 
o CESAR Formula sheet 
o CESAR Student’s guide 

o ESA Venus transit photos 
o The software for this Science Case 
o Calculator, paper, ruler, eraser 
o Projector (optional) 

 
     The ESA Venus transit photos can be downloadable on the website for this Science Case as well as the 
astronomical word list, the booklet, the formula sheet and the student’s guide. The software can be found on 
the same website.  

All the images taken from the observation of the Venus transit can be found at the website: 
http://www.sciops.esa.int/sun_monitor/archive/venus_transit_2012/. If you decide to use images from this 
site, note that there is a gap of two hours between Canberra and Svalbard i.e. you need to choose an image 
from Canberra with two hours added to match with an image from Svalbard. Furthermore, all of these images 
have to be horizontally flipped. All the images are named as:  

place_filter_year_month_day_hour_minute_second_number.jpg 

Introduction 

The task that the students need to complete is to calculate the astronomical unit (AU), which is the Earth-
Sun distance. Trigonometry is the key method during this laboratory. Without trigonometry, it is impossible 
to get the value that we are searching for. It is essential for the students to understand the parallax effect, since 
it is the most important theory. Without knowing that Venus is in different positions on the Sun depending on 
the location of the observers, trigonometry cannot be used. Explain the parallax effect to the students, if they 
did not find it descriptive enough in the Student’s guide. The students have to decide which of the three 
methods presented gives the best result. As a science case, their criteria are essential too.  

First of all, the students need to examine the images and edit them so that the sunspots are at the same 
point on the disk as they were during the June 2012 transit. They can use whatever method they want, 
preferably by editing with the software available on the CESAR website for this Science Case or similar 
software. Another option is to project the images on a screen and measure everything on it, but it’s not 
recommended. The three methods combines distance measurements, trigonometry, timing and image 
processing which is a good point since they will learn a bit of it that could be useful in their future.  

At the website you have all the software that is needed for the laboratory, however, the free software 
named GIMP is another good choice (downloadable at http://gimp.com). It might be a good idea to get 
familiar with the chosen software for image processing. A class dedicated to the software, where the teacher 
goes through all the important tools is a plus. 



	 	 				
	
	

2	
	

METHOD	1	
Calculating	the	AU	using	alignments	between	sunspots	and	Venus’s	disk	
	

Below there are two pictures taken from the CESAR website for this science case, one of them was taken 
from Canberra and the other one from Svalbard at almost the same time. Either using the software at the 
CESAR website or using the software GIMP, the first step consists in rotate both of them and then 
merge/superpose them together to see the difference of the position of Venus inside the solar disk and get a 
single image. 

 

It is noticeable that the sunspots are at different locations on both images so we need a reference image. 
One good tip for this that introduce students into database searching is to visit the SOHO website and their 
data archive in order to compare its images with the images taken by the ESA team. The link to the SOHO 
page is http://sohodata.nascom.nasa.gov/cgi-bin/data_query. There, you need to select the image type “HMI 
Continuum”, the “1024” resolution and finally choose the appropriate start and end date (2012-06-06 to 2012-
06-07). The images from SOHO are named as:  

YYYYMMDD_hour_filter_resolution.jpg 

Chose the date of the transit and save an image at almost the same time as your images. Then compare the 
sunspots on their photos with previous combined image using the software. You need to make a horizontal 
flip of the ESA team images if you downloaded them from the database. Rotate the image in order to see the 
sunspots at the same places as the SOHO image. It can be easily done by adjusting the transparency of the 
images. After comparing the ESA image with those from SOHO you can delete the SOHO image and save 
the final image. You may get a picture similar to the one below: 
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The gap that was mentioned earlier is really noticeable on the picture. This is essential since the students 

need to measure that gap to calculate the AU.  

Below is the same processed picture, where a set of sunspots are named, A, B and C. One method is to use 
these sunspots as reference points. There are more sunspots but they are the most noticeable.  

 

 
The strategy that we are going to follow will give them the value of the AU. Here there are the steps: 
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o Until now, we have a combined image from Svalbard and Canberra at almost the same time and we have 
edited both images as showed before. The linear distances from the middle of the centre of Venus to the 
sunspots A, B and C should be measured. These measurements are transformed into parts of the solar 
diameter (which is also measured from the photos). 
 

o For each time step (i.e. for each pair of images edited), the dissimilarity between the distance measurements 
from Canberra and Svalbard is calculated, separately for spot A, B and C. 

 
o The moment when Venus, the sunspot and the positions of the two observers go through the same level or 

plane in space, the variance should come close to a minimum: such a constellation should be expected given 
the central position of the sunspots and the long chord that Venus cut through the Sun. In conclusion, the 
students have to choose the minimum value of the differences.  

 
o This value of the minimum distance expressed in kilometres or mm is then supposed to be converted into an 

angular distance in the sky. This can be achieved by multiplying that value (given in parts of the solar 
diameter) with the diameter of the Sun of 31,5 arc-minutes on that day. 
 

o Lastly, the AU can be calculated using this angle, the distance of both observers in a plane perpendicular to 
the Earth-Venus vector and the Sun-Venus distance as explained at the end of this method. 

 
It is important to mention that if we measure more than one pair of images we have more possibilities to 

find a global minimum. For this reason, try to measure at least images of two times (i.e. two pairs). 
The unit of arc-minutes or arc-seconds represents an angle, not a distance or lengths, and is often used by 

astronomers. It is obvious that a circle has 360 degrees, each of which can be divided into 60 minutes of arc. 
Then, each minute can be divided into 60 seconds of arc, or an arc-second.  

To start with, measure the images. The students need to use the cursor tool to handle this task. The 
diameter of the Sun should be measured, in pixels that is. Correspondingly, the sunspot’s positions should 
also be known. This if you chose to get the measurements with software. 

Instead of using the software, another method is to project the picture on a screen, with the distance 
between the screen and projector known. By using a ruler, the distances from Venus to spots A, B and C can 
be taken off the screen with a ruler. The precision of it can be about 1 mm, as an example. Thus in both cases 
the measurements should give values to about x arc-minutes (for example 5 arc-minutes). With a table, like 
the one below, the values of the measurements can be written down just to keep them on track. Remind the 
students to pick a unit of their choice that is the one they think is the right unit.  

Time SVA: V-A CAN: V-A A: CAN-SVA SVA: V-B CAN: V-B B: CAN-SVA 

… … … … … … … 

… … … … … … … 

… … … … … … … 
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This table (note: more timescales are needed depending on the number of pair of images used), has SVA 
as a shortening for Svalbard and CAN for Canberra. The projected distances between Venus and the spots A 
and B is called V-A and V-B. The instant of true parallax, is when the measured value of Canberra distance 
minus the Svalbard distance is equal to the true Venus parallax relative to the Sun. This should be included in 
the covered time interval.  

 

Figure 1: A visualization of the reference spot and the position of Venus. This is not related to the ESA 
images because Venus was not at these points during the transit.          Credit: CESAR 

Now, it should be possible to decide the true parallax (S), i.e. the real angle by which Venus changes 
relative to the disk of the Sun when one switches the location of observation between Canberra and Svalbard. 
As we have seen on the steps, the students have to look if there is a clear global minimum of the value  
(𝑉 − (𝐴,𝐵))!"#  − (𝑉 − (𝐴,𝐵))!"#    in the columns of CAN-SVA at the data table. This can be easily done 
using the software provided due to the students just measure distances and the software provides them the 
value of the global minimum expressed in arc-minutes.   

Canberra and Svalbard are far from each other and one need to know the distance between both places. To 
calculate the distance  AB between the two places (A and B) we can choose different trigonometric formulas. 
The complexity of these formulas depends on the precision that we want to obtain. 

The easiest way is to consider that the Earth is a two dimensional body, so you can for instance use the 
ruler and measure the distance on the screen (using an image of the Earth that contains both sites). However, 
since the Earth is not a two dimensional body, it is better to use another method (see Figure 3) but if you want 
to simplify the mathematical background you could use that.  
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Figure 2: How the parallax is related to the AU. The figure is not in scale.      Credit: CESAR 

The Earth is obviously a rotating sphere. That means that if the student wants to be more precise, they 
cannot just draw a line between the two points, they need to find the value  AB by trigonometry. Here is one 
method that they can use: 

 

Figure 3: Here, the two observers are named as A and B. The distance AB can be deduced from the 
latitudes of the two observer’s places. In the figure, θ1 and θ2 are the latitudes of A and B, and R is the Earth’s 
radius.              Credit: CESAR 

Using trigonometric rules, we see that in the right triangle that divides the isosceles triangle RAB is: 

𝑠𝑖𝑛 θ!! θ!
!

 = 
!"
!
!

    (1) 

Where the distance is:  

𝐴𝐵 = 2𝑅𝑠𝑖𝑛 θ1+ θ2
2    (2) 
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Let the students know that if the both locations are in the same hemisphere, the angles and also the 
geometrical situation changes if the cities are on different longitudes. Allow the student look up the latitudes 
and altitudes for each location, which is Canberra and Svalbard. The values can be found by using a search 
engine of your choice and must be introduced in the formula in absolute value. With that, they should get an 
equation that gives the angle β, using θ1 and θ2 in the equation. Note that β is the new angle that is between 
the two locations. After calculating that value, the equation for AB (that gives a value in km) should be: 

𝐴𝐵 = 2𝑅𝑠𝑖𝑛 β 
2      (3) 

This method already involves trigonometry, but it could be performed. In fact, having the coordinates for 
both sites i.e. their longitudes and latitudes, we could use the next formula to calculate the angular distance 
between both sites, and then calculate the linear distance 𝐴𝐵 that is approximately 11700 km. 

cosβ′ =  sin α1 sin α2 +  cos α1 cos α2 cos (δ2 −  δ1)  (4)   where α is the latitude and δ the longitude 

The coordinates for both sites could be obtained using some free software as Google Earth. It could be an 
extra for the students to obtain that value. However here they are: 

Svalbard: 𝛼! = 78,22° 𝑁 𝑎𝑛𝑑 𝛿! = 15,55 𝐸 Canberra: 𝛼! = 35,4° 𝑆 𝑎𝑛𝑑 𝛿! = 149,02 𝐸 

Note that the value of: 𝛼 = 35,4° 𝑆 must be introduced as a negative number in (4). 

Lastly, the student need to use all the data and calculate the AU (see figure 2). With S and 𝐴𝐵 already 
determined, and with the value of the Sun-Venus distance given, the AU can be determined. It is rather 
straightforward when one considers three triangles, which can be seen on the figure above. The math is the 
following: 

!
!
= 𝑡𝑎𝑛(𝑄) =  !"

(!!!)
     (5)     

 Where E is the astronomical unit AU;  𝑉 = 106411476 𝑘𝑚 and the value of E is then: 

𝐸 = 𝐴𝐵
𝑆 + 𝑉 (6) 

To sum everything up, the students should review their values and the laboratory. A discussion is good to 
have among the students, since some of them may not fully understand the concept. They should understand 
that the result is very sensitive to both S and  𝐴𝐵. For example, if S were just x arc-minutes larger and 𝐴𝐵 x 
km smaller, our AU would shrink by x million km. Finally, the value of the Earth-Sun distance for the day of 
the observations was 151800000km instead of the 149597870km of an AU. 
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METHOD	2	
Calculate	the	AU	measuring	strings	
	

Here is another example of how the distance between the Earth and the Sun can be calculated. The idea is 
the same but with a small difference. As in the previous method, the simultaneous (or almost) images from 
two different locations are going to be used, but now we are necessary going to use all of them. The 
observable that is measured is the distance between the centers of the shadow of Venus of the disk of the Sun 
as seen from two sites using strings. 

 
Figure 1: Synchronized observation of the transit of Venus in front of the disk of the Sun from two 

different locations M1 and M2 at the same time. The image is not in scale and it does not represent the 
June 2012 transit. This should only be used as a visualization of the geometry.   Credit: CESAR 

 
Let us say that the geometry of the transit looks like the one in Figure 1. Point O is the centre of the Earth, 

C is the centre of the Sun and V1 and V2 the observed centers of the projection of Venus from the locations M1 
and M2. The angles D1 and D2 are the separation between the centres of the Sun and Venus observed from M1 

and M2 separately. That is, these are the angles of parallax CM1V1 and CM2V2. With the similar method, we 
can explain the angles 𝜋! and 𝜋! as the angular separations between M1 and M2 viewed from Venus and the 
Sun, correspondingly. These are the angles M1CM2 and V1VV2. By definition we have: 

 

sin  π! ≅
𝑑
𝑅!"

  and  sin  π! ≅
𝑑
𝑅!"

          (1) 

Here, 𝑅!" is the distance between the Earth and the Sun, 𝑅!" is the distance between the Earth and Venus, 
and d is the straight line distance between M1 and M2.  

The student can make a list of assumptions that can work as a guideline. The examples given below are 
not the ones they need to come up with. Anything helpful is just as good. 

• The Sun, Venus and Earth are all aligned, so  𝑅!" =  𝑅!"  +  𝑅!", where as we mentioned, 𝑅!" is the 
Venus-Sun distance. 
 

• The two points of observation, M1 and M2 are along the same meridian, so that C, V, M1 and M2 are in 
the same plane. This is also called that they are coplanar. 
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• Since the distance between the celestial bodies are big, and the parallax effect is relative small, we can 
estimate the sinus of the parallax to the parallax itself, that is : sin𝜋𝑖 ≈  𝜋𝑖. 

 

We can define the difference in degrees as  𝛥𝜋 =  𝜋𝑣 −  𝜋𝑠. We also have: 

π! ≅
𝑑
𝑅!"

  and  π! ≅
𝑑
𝑅!"

          (2) 

If we use substitutions (by using (2)) we get: 

π! =
π! ∗ 𝑅!"
𝑅!" − 𝑅!"

          (3) 

Because of the difference: 𝛥𝜋 =  𝜋𝑣 −  𝜋𝑠, a substitution of  𝜋!  gives: 

Δπ = π!
𝑅!"

(𝑅!" − 𝑅!")
− 1 =  π!

𝑅!"
𝑅!" − 𝑅!"

          (4) 

This can also be simplified as: 

π! = Δπ
𝑅!"
𝑅!"

− 1 =
𝑑
𝑅!"

          (5) 

We can now rearrange the equations and get the Earth-Sun distance, 𝑅!" at the time of observations to be: 

𝑅!" =
𝑑

Δ π · (𝑅!"/𝑅!" − 1)
           6  

We find that Δπ is the distance between the centres of Venus’s shadow on the surface of the Sun (has the 
units of radians). 

The ratio 𝑅!"/𝑅!" of the Sun-Earth and Earth-Venus distances that can be obtained using the Kepler’s 
third law as follows: 

If we consider an Earth year as a unit of time, and one AU as a unit of distance, we could define the 
Kepler’s third law as: 

𝑇!

𝑅!
= 1          7  

So if we apply this to any other planet (Venus in this case), then we have: 

𝑅!"#$% = 𝑇!/!          8  

In Venus, a year takes 224,7 days, or in terms of Earth years 0,615. The substitution of that value gives: 

𝑅!"#$% = 𝑇!/! = 0,615!/! = 0,723 𝐴𝑈 
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However instead of that value we could use a more precise one for that day is, that is  𝑅!"/𝑅!" = 1,4265.  

Finally, d can be determined from the two known locations as shown in the previous method and 
expressed in km. 

Let us now take the next step, which is to determine 𝛥𝜋, but first one thing to point out. Over the course of 
the transit, the Earth-Sun distance changes only slightly. This change is about 7,500 km compared to the 
average distance of approximately 150 million km. With this in mind, we can assume that the two ”strings” 
are parallel and now the observable to be measured is not the distance between Venus’ shadows but the 
distance between the two ”strings”. Below is an illustration of it. 

 
Figure 2: Here are the “strings” that have been mentioned. A1A2 and B1B2 is Venus seen by observers at 

the locations M1 and M2 on Earth.          Credit: CESAR 
 

By using Pythagoras’s theorem we can write the following expressions: 
 

𝐴!𝐶 =  !
!

!
−  !!!!

!

 !
       (9)      and    𝐵!𝐶 =  !

!

!
− !!!!

!

 !
         (10) 

 
This means that we can express A’B’ as: 

 

𝐴!𝐵! = 𝐴!𝐶 − 𝐵!𝐶 =  !
!

!
−  !!!!

!

 !
 − !

!

!
− !!!!

!

 !
                   (11) 

 
By measuring the length of the “strings” (A1A2, B1B2) along with the Sun’s diameter (D), we can then 

obtain the parallax with the following formula:  
 

𝐴!𝐵! = !
!

𝐷! − (𝐴!𝐴!)! − 𝐷! − (𝐵!𝐵!)!               (12) 

 
As mentioned, we are going to use the “string method”. It is an easy method since we only need to 

determine the lengths of “strings” or lines that create the noticeable path of Venus on the surface of the Sun. 
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As in the Method1, this can be achieved either measuring a projected image or with the software provided for 
this Science Case but the second option is the one that we are going to follow.  

 It is good to know that this method can only be applied if we have more than one pair of images. But this 
can on the other hand be applied even if the weather was bad during the event. The day of the transit in June 
2012, the weather in Svalbard was cloudy and the ingress was not easy to see. With this method, we only 
have to extrapolate the rest of the trajectory which is good.  

Keep in mind that the images for each time must be aligned all together throughout the transit. Due to the 
rotation of the Sun the sunspots will be at a different position each time. This is not a huge movement, but the 
students will probably notice it when they try to align the images. Another point to mention is that the length 
of both “strings” might be very similar, and we have to point out that the value of the diameter of the Sun (D), 
and the length of the lines M1 and M2 should all be measured in the same units.  

As in the Method1, we need to align every image with the SOHO image for that date and time. For both 
paths, try to use as many pictures as possible to draw the string correctly. The final image should be similar to 
the one below.  

 

Figure 3: An image made with astronomical software, with a simulated representation of the “strings”. 
           Credit: CESAR 

The strings join A1 to A2 and B1 to B2 correspondingly as seen in Figure 2. It can be measured both in mm 
or in pixels, depending on if the students decide to measure with a ruler after printing the transit image (not 
recommended), or using the software on the website. Principally, any software that permits one to calculate 
proportions of objects inside an image is helpful. 

Either if you chose to measure the strings in mm or pixels, you must be clear with the units as mentioned 
earlier. This means that you might need measure the Sun’s diameter in mm or pixels once the students get the 
value of the parallax to convert the value into an angular distance. The solar diameter for that day was 31,5 
arc-minutes.  
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Now, we need to calculate the ratio A’B’, where A’B’ is the space between the two strings, a distance 
which is going to be used as the parallax: 𝛥𝜋. Therefore, the expression that we need to use is:  

𝐴!𝐵! =
1
2

𝐷! − (𝐴!𝐴!)! − 𝐷! − (𝐵!𝐵!)!           13  

 
Numerically, equation (13) will give x pixels or mm as an answer. That value has to be converted into an 

angular distance as mentioned and finally turned into radians. Lastly, substituting into equation (6) we get: 
 

𝑅!" =
𝑑

𝐴!𝐵! · (𝑅!"/𝑅!" − 1)
           14  

 

By using the numerical values for each parameter, we will get the value for the AU. Remember to point 
out that they do not need to get the exact value of the Earth-Sun distance. A value close to it is good enough. 
In fact, it may not be possible to get the exact value since the student may not do the exact measurements. 
The point of this science case is to understand the parallax effect and the calculation and science between 
these methods. As a closure, have a discussion time, maybe for 10 minutes, where the students (in groups or 
together) come to conclusions etc. This may clear up any misunderstandings during the lab.  
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METHOD	3	
Calculate	the	AU	timing	the	Venus	transit	
	

Now we are going to describe another method for measure the AU. This method is usually called “The 
Halley’s method” as it was a great idea of the astronomer Edmund Halley.  

As there is not a huge difference of the Venus position in the Sun viewed from two different places on 
Earth, Halley developed another method to measure the distance between the Earth and the Sun. Instead of 
measure the separation between the centres of Venus from two places on Earth, each observer would time the 
duration of the transit. This avoids the problem caused by the proximity of the paths too. They are very close 
together, so it is difficult to measure the separation between them.  

 

Figure 1: A representation of the paths viewed from Canberra and Svalbard, and the separation S between 
them.  Remember that the figure is not in scale.        Credit: CESAR 

Have to be noticed that the path is longer if we see it from Svalbard. Venus will be on the disk longer 
there, with a difference of minutes out of the several hour duration of the transit. We have to point out that we 
can obtain a very good precision using this method if we consider that we are counting seconds.  

The Venus’ drift across the Sun’s disk have to be calculated in order to obtain the distances. For this we 
have to make some considerations. The first one is that both Venus and Earth are orbiting the Sun at different 
velocities (that we call 𝑟! and 𝑟! respectively) due to they are at different distances from the Sun. The second 
one is that we have to calculate the rate of Venus referred to the Earth i.e. not just the difference of angular 
velocities. We are going to call d at that rate. This could be visualized with the next figure. 
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Figure 2: A representation of the distances between planets, their angular velocities and the Venus rate 
viewed from Earth (d).  Remember that the figure is not in scale.      Credit: CESAR 

For the first consideration, we need to calculate the orbital velocity of both planets. For this, we could 
easily divide the angle of a circle by the period of each planet: 

𝑟! = 360°
224,7𝑑𝑎𝑦𝑠 = 0,0668 𝑎𝑟𝑐𝑠𝑒𝑔/𝑠𝑒𝑐              𝑟! = 360°

365,25 𝑑𝑎𝑦𝑠 = 0,0411 𝑎𝑟𝑐𝑠𝑒𝑔/𝑠𝑒𝑐  

It is very important to notice that 𝑟! − 𝑟! is not the right rate viewed from Earth. To calculate this we are 
going to use the Pythagoras’s theorem once again and we need to obtain the value of S’ by multiplying the 
difference of rates by the Venus-Sun distance (𝑅!").  Then, the formula that we need to use is: 

𝑑 =
𝑅!" 𝑟! − 𝑟!
𝑅!" − 𝑅!"

=
𝑟! − 𝑟!

𝑅!"
𝑅!" − 1

          1  

We have already seen how to obtain the value of  𝑅!" 𝑅!" using the Kepler’s third law and we determined 

an approximate value of 1,4265. Finally, the value of d is: 

𝑑 = 0,0257
0,4265 ≅ 0,0602 "/𝑠𝑒𝑐 

Now, we are going to use a procedure similar to the previous method. In fact the formulas are almost the 
same except for in the “Method 2” we measure the string in pixels, and now we are going to time the transit, 
but in fact we are doing the same thing because using the value of d multiplied by the time Venus uses to 
cross the Sun disk we could obtain a distance value. For this reason, we just need to replace some distance 
values in the formulas for time and velocity. 

We can then obtain the parallax with the following formula: 

𝑆 =
𝐷
2

!

−  
𝑡!𝑑
2

 !

 −
𝐷
2

!

−
𝑡!𝑑
2

 !

          2  
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The As the Figure 1 shows, we are going to call S to the distance between the paths. The radius of the Sun 
is going to be D/2. Finally, the Earth-Sun distance is: 

𝑅!" =
𝑑

𝑆 · 𝑅!"/𝑅!" − 1)
           3  

Now, we are going to see how to determinate the time 𝑡! and 𝑡! from the images. Either for 𝑡! or 𝑡!, we 
need to consider that the first useful image is the one in which the centre of Venus crosses the Sun’s disk 
going inside the Sun, and the last image that we need is the one that has the centre of Venus crossing the 
Sun’s disk going outside. Getting the difference of time between both images we obtain the values of 𝑡! and 
𝑡!. 

This is not the best way to get an appropriate value of t because we can’t see the precise moment the 
center of Venus crosses the Sun’s disk. If we want to be more precise, we need a total of four images for 𝑡! 
and another four images for 𝑡! i.e. an image taken the moment when Venus starts entering the Sun’s disk, an 
image taken the moment when Venus totally enter into the Sun’s disk (first pair), and on the other side, an 
image taken when Venus starts going outside the Sun’s disk, an a final image taken when Venus finally 
leaves the Sun’s disk (second pair). 

Once we have these four images for each path, we need to determinate the precise time that Venus crosses 
the solar disk. For this, we just need to calculate the mean time of both pairs and see the difference between 
them.  

 

Figure 3: A representation of the paths considering that both start exactly when the center of Venus 
crosses the Sun’s disk and end when that center goes outside. Remember that the figure is not in scale. 
              Credit: CESAR 

To use this method, you could take the four images for each path from the archive of images located at: 
http://www.sciops.esa.int/sun_monitor/archive/venus_transit_2012/. It is a good practice because students 
have to search and decide which images they should use. You could also use the software available at the 
CESAR website for this case where the students decide the four images for each path of a set of selected 
images. It is preferable because the archive has too many images and we have chosen a set of useful images at 
the website. Each image has attached it’s time and using the software you could obtain the difference of time 
just selecting two of them.  


