Space and ground-based coordination for the Solar Orbiter mission

Miho Janvier

European Space Agency (Netherlands) Institut d'Astrophysique Spatiale (France)

Solar Orbiter EUI at 0.5 au from the Sun - highest resolution picture taken in 2022

Credit: ESA/NASA Solar Orbiter / EUI / HRI

Solar Orbiter: a true "heliophysics" spacecraft

#1: Where does the solar wind come from? How is it generated? Why is it so variable?

#2: How are solar flares/solar eruptions happening?

#3: How does the Sun inject high-energy particles in space?

#4: How is the Sun's magnetic field and cycle generated?

6 remote-sensing instruments, 4 in situ

Mission summary

#1: Where does the solar wind come from? How is it generated? Why is it so variable?

#2: How are solar flares/solar eruptions happening?

#3: How does the Sun inject high-energy particles in space?

#4: How is the Sun's magnetic field and cycle generated?

30 days of "remote-sensing" observations per orbit (~ every 6 months) + synoptic program

Launch 9 February 2020 (EST) 10 February 2020 (GMT)

Earth gravity assist manoeuvre 27 Nov 2021

Close approaches to the Sun

Feb 2021 – within 0.5 au* Oct 2022 – within 0.3 au First polar pass > 17° latitude Mar 2025

> First polar pass > 24° latitude Jan 2027

> > First polar pass > 30° latitude Apr 2028

Polar pass > 33° latitude July 2029

Venus gravity assist manoeuvre

03 Sep 2030

ude latitude itude

Coordinated observations (w/ external parties)

Different points of view

- At angles allowing stereoscopy
- Compare corona vs on disk features
- Out of ecliptic / in ecliptic comparisons
- Radial, Parker alignments, footpoint connectivity

Complementary observation dataset

Longer target follow-ups

"Multimessenger" solar and space physics

 Multi wavelengths observations (e.g. Halpha w/ EUV, radio) Multi temperature observations (e.g. IRIS + EIS + SPICE) In situ + Remote-sensing, alignment permitting Small vs large spatial and temporal scales covered

> Persistent features (e.g. coronal holes, active regions) followed by different instruments missions/ground Temporal evolution can be captured via RS + in situ over a longer period due to orbit position

Parker Solar Probe / Solar Orbiter Science goal: observe above the limb the SW source region later sampled by PSP close to the Sun.

29 March 2024 (PSP @0.121 au, SO @0.34)

2024-03-29T00:00:00.000

Point Centre (~14h before, 12h after) Metis + SoloHI for coronal environment

2x East Limb pointing (4/5h) Look at the source region w/ high res

Parker Solar Probe / Solar Orbiter

Previous coordinated observations

2022:

- 3 Solar Orbiter PSP quadratures on 23 + 27 February 2022 & 11 December 2022
- Outside of RSW (only off-points scheduled in advance allowed).
- PSP moves very fast; SO starts observations ~1day before a quadrature
- All RS instruments participated (SoloHI for East limb quadrature only)

2023:

- 5 Solar Orbiter PSP quadratures on 16 + 20 March, 22 June, 27 September and 28 December.
- 20 March 2023 not observed (incompatible Metis observations)
- Disk centre pointing restored so that Metis & SoloHI could observe
- 28 December: off pointing combined with spacecraft roll to have PSP in the Metis FOV *ESA press release

2024:

- Limb scan w/ SPICE and HRI (3 pointings) added to the quadrature on 30 March 2024.
- No special observations for the June 2024 quadrature (SO far from Sun & Earth)

Tl,dr: Solar Orbiter and PSP have coordinated for almost all of the PSP perihelia;

DKIST / Solar Orbiter

12 8 da obse •1h •1 S + 1

12 Oct - 20 Oct 2023 (SO <0.4au)

- 8 days of AR tracking with daily high-resolution observations:
- •1h of daily burst at high cadence (5') for EUI/HRI
 •1 SPICE composition raster / day (~4h)
 + 15' dynamics raster all day long
 •Continuous PHI/HRT observations

Other coordinations / Solar Orbiter

	Optical (space)	Optical (ground)	Others
H1 2022	Hinode, IRIS		
H2 2022	Hinode, IRIS, CHASE (Halpha)	DKIST (1st paper about to be submitted), Mauna Loa (Hawaii, service mode) Big Bear Solar Observatory (California, proposal) Swedish Solar Telescope (Canaries), Themis (Canaries, proposal), Gregor (Canaries)	ALMA (Chile, DDT)
H1 2023	Hinode, IRIS		
H2 2023	Hinode, IRIS	DKIST Big Bear Solar Observatory (California, proposal) Swedish Solar Telescope (Canaries) + Gregor Hida Observatory (Japan)	MWA + ASKAP radio telescopes (Australia) ALMA (Chile, proposal)
H1 2024	Hinode, IRIS	DKIST, ACES, Working groups set w/ several topics, workshop on Thursday (tomorrow)	
H2 2024	Hinode, IRIS	DKIST Swedish Solar Telescope (Canaries) + Gregor	
#1 24			

Lessons learned

What works:

- Coordination works best directly w/ people
- Possibility to systemise the process, workflow eased on all parties
- Rewarding outcomes (numerous working) groups, unique datasets)
- Data generally publicly accessible : solar physics very open source mindset

What doesn't:

- •No easy way for telescopes w/ cycle proposals (e.g. ALMA)
 - Difficult to understand science opportunities for certain missions (e.g. during their cruise phase)
 - Difficulties to gather all the datasets when coordination is not known (+ prioriary period different for some infrastructures)
 - Only solar / space. Opportunities to link with e.g. Earth or other planetary exploration missions/infrastructures?

- •A database of infrastructures (with a structured information workflow to understand when they observe, who to contact, quicklooks at the data)
- •A converging place where to find information on the datasets (e.g. notebooks, archives)
- •How to efficiently spread the word? (For Solar Orbiter: cosmos pages, webinar series)

3 ideas

Conclusions

Examples of PSP and DKIST coordination

Planning happens at different levels (mission, instruments, external parties)

"Multimessenger" solar and space physics

April 8th Solar Eclipse: Solar Orbiter in "Eruption Watch" 2025: first orbit w/ portions out of the ecliptic plane (SWT)

Several papers published/in prep

> All SOOPs + details to be found in the SOOP summary

