

Earth's atmosphere

(Cosmic rays interactions in the Earth's atmosphere)

Gina Isar

Institute of Space Science – INFLPR Subsidiary Bucharest-Magurele, Romania

Cosmic rays (CRs)

- are charged particles, mainly protons and helium nuclei
- the flux spectrum exhibits a power law over several orders of magnitude, with several features
- the Earth's magnetic field acts as a shield, protecting us from CRs

UHECRs have very low flux, are not isotropic, and are mostly heavy nuclei

component

muonic component.

electromagnetic

component

Where do the UHECRs come from?

Key messages

- The level of cosmic radiation rises with altitude, an important aspect for pilots and astronauts, and moreover for longer human space travels to e.g. Mars
- Cosmic rays help us to advance our knowledge in particle physics at energies far beyond those reached in the laboratories, and in astrophysical phenomena
- Modern international experiments for indirect measurements of UHECRs are great facilities nowadays for other observations like multi-messenger astronomy (CRs, γ -rays, ν , gravitational waves) and atmospheric monitoring, or space-weather
- Observing CRs induced air showers with increased statistics at the highest energies is the goal for the next decade, including the full sky coverage by space-based observations (e.g. JEM-EUSO for Extreme Universe Space Observatory, POEMMA for Extreme Multi-Messenger Astrophysics)

