Catalogs of space weather events Rositsa Miteva

Institute of Astronomy with National Astronomical Observatory -Bulgarian Academy of Sciences (IANAO-BAS) Sofia, Bulgaria

rmiteva@nao-rozhen.org

'Heliophysics in Europe and 1st European Heliophysics Community meeting 19-21 November 2024 ONLINE

https://astro.bas.bg/

IANAO-BAS: facilities

Sofia NAO-Rozhen AO-Belogradchik

Institute of Astronomy and

National Astronomical Observatory

The Institute of Astronomy and National Astronomical Observatory carries out fundamental research in astronomy and astrophysics, as well as education of specialists and graduate students in this area.

BG

Archives

Catalogs of space weather events

САТА	CATALOGS OF SOLAR ENERGETIC PROTONS AND SPACE WEATHER EVENTS													
AIM	PROTON EVENTS	SXR FLARES	RADIO BURSTS	GEOMAGNETIC STORMS	TYPE II BURSTS									

llama

Home	Archives
This website contains information on SOHO/ERNE proton events, GOES solar flares, radio emission signatures of in	Meta
situ ACE/EPAM electron events and geomagnetic storms over solar cycles 23 and 24 (1996-2019). The catalogs are still under construction!	> Log in

Contact: rmiteva [at] nao-rozhen.org

Catalogs of Solar Energetic Protons and space weather events 2024. Powered by WordPress

(under completion)

CATALOGS OF SOLAR ENERGETIC PROTONS AND SPACE WEATHER EVENTS

TYPE II BURSTS

Solar Cycle 23 - Protons

Abbreviations:

- AW angular width (in degrees)
- CME coronal mass ejection
- gap data gap
- no no proton event
- SF solar flare
- u uncertain

Notations:

• all times are in UT

• Channels (in MeV): 1: 14-17; 2: 17-22; 3: 21-28; 4: 26-32; 5: 32-40; 6: 40-51; 7: 51-67; 8: 64-80; 9: 80-101; 10: 101-131

- class: flare peak in GOES soft X-ray flux; C-class: *10^(-6) (W/m^2)
- CME speed: linear speed (km/s) from https://cdaw.gsfc.nasa.gov/CME_list/index.html
- flare latitude: North (positive); South (negative)
- flare longitude: West (positive); East (negative)
- SEP peak intensity: protons/(cm^2 sr s MeV)

(under completion)

https://catalogs.astro.bas.bg/

Wind/EPACT proton event catalog

© SRTI-BAS 2024 Last modified 01/10/2019 21:00:15

Solar cycle 23: 1996-2008

Back to list of Catalogs

Solar cycle 24: 2009-2018

Search among all events from 1996 to 2018

This catalog lists the proton enhancements from the <u>Wind/EPACT instrument</u> since 1996 in the two energy channels available. The catalog is organized as a table that presents the solar energetic particles (protons) observed during solar cycle 23 (1996-2008) and the ongoing solar cycle 24 (since 2009). The catalog provides the following information: onset, peak times (in UT) and peak proton intensity at $19\div28$ energy channel and also the peak proton intensity at 28+72 MeV energy channel. In addition, the solar sources (flares and coronal mass ejections, CMEs) of the proton events are identified, where possible, with their properties noted. Further information is given as a comment.

Extensions of the catalog (or corrections if needed) will appear regularly online. For preliminary description and results of the catalog, see <u>Miteva et al. (2016)</u> and <u>Miteva et al. (2017)</u>

Explanatory notes:

Proton data: from CDAweb database provided with 92-sec time resolution.

Onset time: identified as the time of 3-sigma intensity value above pre-event level.

Peak time: identified at the maximum of the particle profile (local enhancements are not considered).

J_p: peak proton intensity after subtraction of the pre-event level.

F_p: onset-to-peak proton fluence.

The reported here onset/peak times and J_p are based on 5-point smoothed data.

Abbreviations:

N/A: onset not found and/or it was fully masked by previous ongoing event nd: next day $% \left({{{\rm{D}}_{\rm{A}}}} \right)$

pd: previous day

- p: peak is poorly defined
- SXR: soft X-ray
- u: uncertain
- v: visual

If you want to use the data in a paper, book, or any other kind of electronic publication, please give credit to Wind/EPACT proton event catalog http://newserversiti.bas.bg/SEPcatalog/ together with the dedicated catalog paper: *R. Miteva, S. W. Samwel* and *M. V. Costa-Duarte* The Wind/EPACT Proton Event Catalog (1996-2016) (2018) Solar Physics, 293: 27 [DOI:10.1007/s11207-018-1241-5].

Acknowledgements:

We use proton data provided by: <u>CDAweb database</u>; flare information from: <u>GOES flare listings</u> and <u>www.Solarmonitor.org</u>; and CME information from: <u>CDAW LASCO CME catalog</u>.

Contact: R. Miteva

Links: Space Climate Group Homepage Space Research and Technology Institute Homepage

Wind/EPACT proton event catalog

Solar cycle 23: 1996-2008 © SRTI-BAS 2024 Last modified 01/21/2019 11:49:21

	<u>B</u>	ack to list o	f Catalogs	Back to Wind/EPA	ACT Solar cy	cle 24: 2009-2018		
Event date	19-28 MeV			28-72 MeV	Flare	СМЕ	Comment	
yyyy-mm-dd			$J_{\rm p}~({\rm cm}^2~{\rm s~sr~MeV})^{-1}/F_{\rm p}~({\rm cm}^2~{\rm sr~MeV})^{-1}$	$J_{\rm p}~({\rm cm^2~s~sr~MeV})^{-1}/F_{\rm p}~({\rm cm^2~sr~MeV})^{-1}$	SXR class/ onset time (UT)/ location	time (UT)/ speed (km s ⁻¹)/ width (deg)		
1996-10-04	11:17	12:15	0.3006/416	0.0042/u	uncertain	03:15/255/28		
1996-11-30	11:32	12:32	0.0089/37	-	M1.0/20:16 ^{pd} /S06W47	uncertain		
1996-12-24	14:50	15:58	0.0092/39	0.0010/7	C2.1/13:03/N05W95 ^v	13:29/325/69		
1997-04-07	17:43	23:39	0.0118/254	0.0014/26	C6.8/13:50/S30E19	14:27/878/360		
1997-05-12	07:59	12:05	0.0202/249	0.0031/30	C1.3/04:42/N21W09	05:30/464/360		
1997-05-21	N/A	00:33 nd	0.0040/u	0.0006/u	M1.3/20:03/N05W12	21:01/296/165		
1997-07-25	N/A	00:43 nd	0.0083/u	0.0009/u	uncertain	21:01/611/84		
1997-09-09	-	-	-	-	-	-	data gap	
1997-09-24	N/A	07:28	0.0059/u	0.0017/17	M5.9/02:43/S31E19	03:38/532/76		
1997-09-24	N/A	11:11	0.0048/u	0.0013/u	uncertain	uncertain		
1997-10-07	15:59	16:39	0.0108/30	0.0012/3	uncertain	13:30/1271/167		
1997-11-04	07:03	13:34	0.9518/13186	0.2148/1069	X2.1/05:52/S14W33	06:10/785/360		
1997-11-06	13:02	02:19 nd	18.13/gap	2.933/gap	X9.4/11:49/S18W63	12:11/1556/360		
1997-11-13	23:34	02:25 nd	0.0365/362	0.0060/17	uncertain	22:26/546/288		
1997-11-14	N/A	16:47	0.0101/u	0.0014/u	C4.6/09:05/N21E70	10:14/1042/86	u	
1998-01-26	N/A	04:21 nd	0.0050/u	0.0005/u	M1.3/21:26 ^{pd} /N22E53	22:20 ^{pd} /596/84	u	
1998-04-05	23:36	08:32 nd	0.0080/344	0.0007/u	uncertain	uncertain	p, u	

ACE/EPAM Electron Event Catalog

@ NRIAG

Last modified 25/05/2021

Solar cycle 23: 1996-2008 Solar cycle 24: 2009-2019

This catalog lists the electron enhancements from the <u>ACE/EPAM instrument</u> since 1997 in two energy channels. The catalog is organized as a table that presents the solar energetic particles (electrons) observed during solar cycle 23 (1996-2008) and solar cycle 24 (2009-2019). The catalog provides the following information: onset, peak litems (in UT), peak electron intensity, and onset-to-peak electron fluence at 103-175 keV energy channel and also the peak electron intensity. and the onset-to-peak fluence at 175-315 keV energy channels. In addition, the solar sources (flares and coronal mass ejections) of the electron events are identified, where possible, with their properties noted. Furthermore, intensity and onset-to-peak fluence of the tessociated solar energetic proton events (which have the same solar origin of the solar energetic electrons) at two energy channels; 19-28 MeV and 28-72 MeV, are listed. The properties of proton events are taken from Miteva R, Samwel S.W., Costa, Durate M.V., The Wind/EPACT Proton Event Catalog (1986-2016), 2018, Sol. Phy, 293: 27. Further information is given as a comment. Extensions of the catalog (or corrections if needed) will appear regularly online.

- · Explanatory notes:
- · Electron data: from CDAweb database provided with 12-sec time resolution.
- · Onset time (UT): identified as the time of 3-sigma intensity value above pre-event level.
- Peak time (UT): identified at the maximum of the particle profile (local enhancements are not considered).
- Je (cm² s sr keV) ⁻¹: peak electron intensity after subtraction of the pre-event level
- Fe (cm² s sr keV) ⁻¹: Onset- to- peak electron fluence
- Jp (cm² s sr MeV) ⁻¹: Peak proton intensity after subtraction of the pre-event level
- F_p (cm² s sr MeV) ⁻¹: Onset- to- peak proton fluence
- · The reported here onset/peak times and Je are based on 5-point smoothed data.
- · Abbreviations:
- no: no event identified
- nd: next day
- pd: previous day
- u: uncertain
- gap: data gap
- v: Visual

ACE/EPAM Electron Event Catalog

Solar cycle 23: 1996-2008

@ NRIAG 2021

Last modified 25/05/2021

Back to: Home Page

Solar cycle 24: 2009-2019

If you want to use the data in a paper, book, or any other kind of electronic publication, please give cred

Acknowledgements:	Date	Electrons	ons 103-175 keV		175-315 keV GOES SXR Flare		SOHO/L		0/LASCO CME			19-28 MeV		28-72 MeV		Comments			
We use electron data provided by: <u>CDAweb database</u> fare information from: <u>GDES flare listings</u> and <u>Solarmonitor.org</u>	yyyy mm d	dd Onset	Peak	Je	Fe	Je	Fe	Onset	Peak	Class Location	time	Speed	AW	MPA	Jp	Fp	Jp	Fp	
CME information from: CDAW LASCO CME catalog	1997 9	9 20:59	23:00	97.897655	667146	41.631	103008	20:04	20:11	B7.1 u	20:06	726	101	303	no	no	no	no	
Links: National Research Institute of Astronomy and Geophysics (NRIAG)	1997 9	18 00:41	01:00	294.480444	291933	39.422	43255	17:45 ^{pd}	18:03 ^{pd}	M1.0 N21W84	20:29 ^{pd}	377	360	263	no	no	no	no	
<u>http://newserver.stil.bas.bg/SEPcatalog/index.html</u> This Database was done under <u>SCOSTEP VarSITI</u> scientific program with the project 'Solar energetic electron:	1997 9	18 19:13	22:29	378.120216	2326729	no	no	17:05	17:10	C1.5 N22W9	v 18:03	285	55	268	no	no	no	no	
 This balabase was only under <u>Scoprey variant</u> scienting program with the project solar energence electron: 'On the relationship between major space weather phenomena in solar cycle 23 and 24. 	1997 9	20 03:45	06:22	291.9095	2027564	37.457	57980	00:27	00:48	B8.0 u	00:44	522	39	247	no	no	no	no	Occulted

(external catalog, collaboration)

Summary

• Overview of their instrument / network / project and their expertise and scientific research field

Space weather topics (SEPs, geomagnetic storms, space weather influence on satellites)

• Personal experience of coordinating ground to space (challenges, successes, ideas)

Statistical studies on solar energetic particles, radio emissions and geomagnetic storms

• questions / ideas to discuss with the audience – related to experiences when trying to do any co-ordination or other comments to the community

 (1) Do the heliospheric/space weather communities need event catalogs (particles, flares, geomagnetic storms and their mutual associations)?
 (2) What information do you need from such catalogs? date, time, intensity, location, correlation with other phenomena

Solar observations in Bulgaria

Celestron C11 (Schmidt-Cassegrain optics, diameter 11" (28 cm), focal length 2800 mm, f/10

Credit: images by Pencho Markishki

First test images at AO-Belogradchik (14-Oct-2024)

(in progress)

https://astro.bas.bg/project-sun/

🔅 Project-SUN 👘 👘

Joint Observations and Investigations of Solar Chromospheric and Coronal Activity

Bilateral collaboration between Bulgarian and Austrian solar and space weather researchers on the topic of chromospheric and coronal activity

AIM

To set up the Rozhen Chromospheric Telescope (RCT), and develop standardized solar observing methodology and products, complementary to the Kanzelhohe Patrol Instrument (KPI) by means of strong technical cooperation between the team members.

To carry out combined solar observations with the two instrument suites and external (freely available spacebased) resources, in order to study chromospheric signatures of quiet sun and pre-eruptive active regions and multi-wavelength manifestation of solar eruptive phenomena, their morphology and kinematics.

Acknowledgements

The activities under this bilateral cooperation are supported by the Bulgarian National Science Foundation project No. KP-06-Austria/S (14-08-2023) and Austria's Agency for Education and Internationalisation (OeAD) project No. BG 04/2023.

Share: 👽 👩 🎯

- resolution is sufficient to resolve details
- seeing conditions were bad (wiggly limb), but umbra and penumbra well separated
- filter not in center of line, artefacts
- small flare is visible
- filament is visible
- chromospheric network is visible

LOFAR-BG

https://lofar.bg/

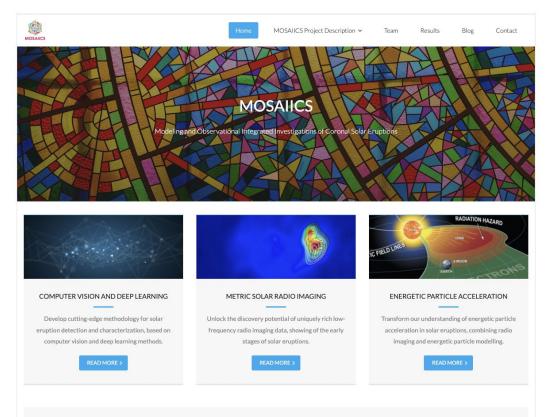
Onsala

The LOFAR-BG project foresees to build and develop:

- Bulgarian observational station of the LOFAR telescope
- human potential for carrying out specialized astrophysical and geophysical research with the LOFAR-BG station and the entire LOFAR telescope
- development of scientific and engineering potential, for enabling the hardware and software support for the telescope

LOFAR-BG is part of the National Roadmap for Scientific Infrastructure (2020-2027), coordinated by the Ministry of Education and Science of Bulgaria (contracts D01-389/18.12.2020 and D01-177/29.07.2022)

Irbene Chilbolton orderstedt Bałdy 🖲 Potsdam Borówiec Jülich Effelsberg Taute Unterweilenbach Nançay Medicina Rozhen


(in progress)

MOSAIICS

Modeling and Observational Integrated Investigations of Coronal Solar Eruptions

(Bulgarian National Science Fund)

https://mosaiics.astro.bas.bg/

MOSAIICS is a 5-year research project, part of the National Science Program "VIHREN". It is hosted at the Institute of Astronomy and National Astronomical Observatory of the Bulgarian Academy of Sciences. The project PI is Assoc. Prof. Kamen Kozarev.

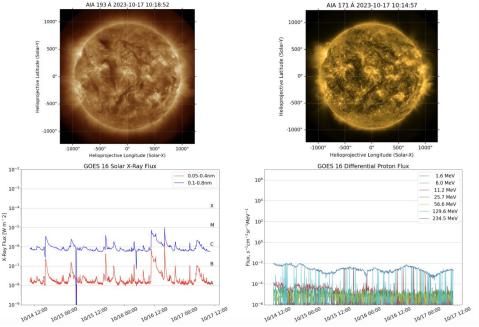
MOSAIICS aims to improve our understanding of the physics of solar eruptions by integrating modern computer vision, advanced solar radio imaging, and energetic particle modeling.

You can learn more about the project, or each topic link. Or let us know if you have any questions, on our Contact form.

SPREADFAST

https://spreadfast.astro.bas.bg/synoptic/

SPREAdFAST Near-Realtime Monitor of Early-Stage SEP Events


SPREAdFAST webpage | SPREAdFAST historical events | SPREAdFAST Logger App (Log-in required)

Prototype of a **forecasting** system, based on physics-based model for acceleration of solar energetic particles and their transport to Earth

(ESA project)

featured in a SEP review (Whitman et al. 2023)

(completed)

Bilateral collaborations

Regional:

Serbia

Active events on the Sun, catalogs of proton events and electron signatures...

Europe:

- Netherlands & Ireland (LOFAR)
- Austria (optical, space weather)

The **origin of solar energetic particles**: solar flares vs. coronal mass ejections solar chromospheric and **coronal activity**

Worldwide:

• India (radio bursts)

Eruptions, flows and waves in the solar atmosphere and their influences on the space weather

• Egypt (space weather)

relationship between major *space weather phenomena* in solar cycles 23 and 24 *space weather effects* at near Earth environment - from remote observations and in situ particle forecasting to impacts on satellites

http://edu-pro.astro.bas.bg/sun/?page_id=368

Acknowledgements

SCOSTEP/PRESTO 2020 grant https://scostep.org/presto/

'On the relationship between major space weather phenomena in solar cycles 23 and 24'

☆Interacademy bilateral projects (BAS)

- Bulgaria-Egypt 'On space weather effects at near Earth environment from remote observations and in situ particle forecasting to impacts on satellites' IC-EG/08/2022-2024'
- Bulgaria-Serbia 'Active Events on The Sun. Catalogs of Proton Events and Electron Signatures in X-Ray, UV and Radio Diapason...'

Bulgarian National Science Fund https://bnsf.bg/

- Bulgaria-Austria 'Joint observations and investigations of solar chromospheric and coronal activity' KP-06-Austria/5 (14-08-2023)
- MOSAIICS 'Modeling and Observational Integrated Investigations of Coronal Solar Eruptions', Vihren project, KP-06-DV-8/18.12.2019

European Space Agency (ESA): <u>https://spreadfast.astro.bas.bg/</u>

⇔EU-Horizon 2020 (twinning project/No 952439): STELLAR (Scientific and Technological Excellence by Leveraging LOFAR Advancements in Radio Astronomy)

☆Ministry of Education, Bulgaria: LOFAR-BG https://www.mon.bg/en/bg/

Scientific Committee on Solar-Terrestrial Physics

ФОНД НАУЧНИ ИЗСЛЕДВАНИЯ

REPUBLIC OF BULGARIA Ministry of Education and Science