Astrometry in Gaia DR1

Lennart Lindegren

on behalf of the AGIS team and the rest of DPAC

Gaia DR1 Workshop, ESAC 2016 November 3

Outline of talk

The standard astrometric model

→ kinematic and astrometric parameters

Use of priors in Gaia DR1

→ TGAS and the secondary solution

Overview of the astrometric content of Gaia DR1

→ parameters, uncertainties, excess noise

Limitations of Gaia DR1

→ known or suspected biases

What can be expected from Gaia DR2?

The standard astrometric model for "stars"

In the standard astrometric model the Gaia source is assumed

- to be a point source (more precisely: have a well-defined photocentre), and
- to move through space at constant velocity relative to the Solar System Barycentre

This is probably a good approximation for >80% of unresolved Gaia sources beyond the Solar System (and for many resolved sources)

The standard astrometric model for "stars"

In the standard astrometric model the Gaia source is assumed

- to be a point source (more precisely: have a well-defined photocentre), and
- to move through space at constant velocity relative to the Solar System Barycentre

This is probably a good approximation for >80% of unresolved Gaia sources beyond the Solar System (and for many resolved sources)

In Gaia DR1 the standard astrometric model is used for *all* non-solar system objects (stars, binaries, AGNs, ...)

Deviations are indicated by the *astrometric excess noise* (explained later)

(Future DRs will use more specialised models for some sources - not discussed here)

Kinematic and astrometric parameters

Point source \Rightarrow well-defined barycentric position vector $\mathbf{r}(t)$ Uniform velocity $\Rightarrow \mathbf{r}(t) = \mathbf{r}_0 + (t - t_0)\mathbf{v}$

Kinematic model:

- reference time t_0 and six kinematic parameters x_0 , y_0 , z_0 , v_x , v_y , v_z

Astrometric model:

- reference epoch t_{ep} and six astrometric parameters α , δ , $\overline{\omega}$, μ_{α^*} , μ_{δ} , v_r

The two sets of parameters are *in principle* equivalent, but:

Why use astrometric parameters?

Observations of Solar System can be modelled directly in barycentric coordinates r(t)

For stars and more distant objects the astrometric parameters are preferred:

- they can always be fitted to astrometric observations
- resulting errors are approximately Gaussian
- they work even for sources at "infinite" distance

Why use astrometric parameters?

Observations of Solar System can be modelled directly in barycentric coordinates r(t)

For stars and more distant objects the astrometric parameters are preferred:

- they can always be fitted to astrometric observations
- resulting errors are approximately Gaussian
- they work even for sources at "infinite" distance

Example

Astrometric parameters in Gaia DR1 for the quasar 3C273 (HIP 60936):

 $t_{ep} = 2015.0 \text{ (chosen)}$ $\alpha = 187.277915798^{\circ} \pm 0.312 \text{ mas}^{*}$ $\mu_{\alpha^{*}} = -0.384 \pm 0.443 \text{ mas/yr}$ $\delta = +2.052388638^{\circ} \pm 0.216 \text{ mas}$ $\mu_{\delta} = +0.111 \pm 0.288 \text{ mas/yr}$ $\overline{\varpi} = -0.140 \pm 0.377 \text{ mas}$ $v_{r} = 0 \text{ (assumed)}$

Three remarks on the astrometric parameters

- 1. The sixth parameter, radial velocity v_r (or radial proper motion $\mu_r = \omega v_r / A$), is ignored in Gaia DR1 (assumed = 0)
 - important for a small number of nearby, high-velocity stars (not in DR1 anyway)
 - gives a quadratic variation of position (perspective acceleration)

Three remarks on the astrometric parameters

- 1. The sixth parameter, radial velocity v_r (or radial proper motion $\mu_r = \omega v_r / A$), is ignored in Gaia DR1 (assumed = 0)
 - important for a small number of nearby, high-velocity stars (not in DR1 anyway)
 - gives a quadratic variation of position (perspective acceleration)
- 2. The astrometric parameters describe the instantaneous motion at the specified reference epoch t_{ep} (= 2015.0 for Gaia DR1)
 - especially the position parameters (α , δ) depend on t_{ep} due to proper motion
 - the parameters can be transformed to any desired epoch (see documentation)
 - future releases will use a different reference epoch than 2015.0
 - "epoch" not to be confused with "equinox" (e.g. J2000.0 = ICRS)
 - the "equinox" is always the same: ICRS

Three remarks on the astrometric parameters

- 1. The sixth parameter, radial velocity v_r (or radial proper motion $\mu_r = \omega v_r / A$), is ignored in Gaia DR1 (assumed = 0)
 - important for a small number of nearby, high-velocity stars (not in DR1 anyway)
 - gives a quadratic variation of position (perspective acceleration)
- 2. The astrometric parameters describe the instantaneous motion at the specified reference epoch t_{ep} (= 2015.0 for Gaia DR1)
 - especially the position parameters (α , δ) depend on t_{ep} due to proper motion
 - the parameters can be transformed to any desired epoch (see documentation)
 - future releases will use a different reference epoch than 2015.0
 - "epoch" not to be confused with "equinox" (e.g. J2000.0 = ICRS)
 - the "equinox" is always the same: ICRS
- 3. The asterisk signifies that a differential quantity in α is a "true arc":

$$\mu_{\alpha*} = \frac{\mathrm{d}\alpha}{\mathrm{d}t}\cos\delta, \quad \sigma_{\alpha*} = \sigma_{\alpha}\cos\delta, \quad \Delta\alpha* = \Delta\alpha\cos\delta$$

Gaia DR1 Workshop - ESAC 2016 Nov 3

Use of priors in Gaia DR1

Four different kinds of "prior information" are used in Gaia DR1:

For all sources:

sources have no radial motion ($v_r = 0$)

 \rightarrow this is usually an acceptable approximation (except for nearby high- μ stars)

For the primary (TGAS) solution:

positions at epoch 1991.25 are known from Hipparcos or Tycho-2
→ provides useful proper motions and parallaxes with only ~1 year of data

For the secondary solution:

parallaxes and proper motions are small for most stars ("Galactic prior")
→ gives positions at 2015.0 with realistic uncertainties

For the auxiliary quasar solution:

quasars have negligible proper motion

→ accurate quasar positions for alignment with the VLBI reference frame (ICRF)

Number of sources and parameters in Gaia DR1

Solution	No. of sources	Param.	Prior used
Primary (TGAS) sources	2 057 050	5	positions at 1991.25
- of which Hipparcos	93 635	5	- Hipparcos positions
- of which Tycho-2 (excl Hipp)	1 963 415	5	- Tycho-2 positions
Secondary sources	1 140 622 719	2	$\overline{\omega}$, μ_{α^*} , $\mu_{\delta} = 0 \pm \text{few mas}(/\text{yr})$
ICRF sources (*)	2 191	2	$\mu_{\alpha^*}, \mu_{\delta} = 0 \pm 0.01 \text{ mas/yr}$
Total	1 142 679 880		

(*) 2080 of the ICRF sources are also secondary sources (with slightly different positions)

References:

Michalik et al. 2015, A&A 574, A115 (TGAS) Michalik et al. 2015, A&A 583, A68 (secondary solution) Michalik & Lindegren 2016, A&A 586, A26; Mignard et al. 2016, arXiv:1609.07255 (ICRF) Lindegren et al. 2016, arXiv:1609.04303 (Gaia DR1 astrometry in general) Gaia DR1 Workshop - ESAC 2016 Nov 3 L. Lindegren: Astrometry in Gaia DR1 13

Magnitude distributions of Gaia DR1

Primary (TGAS) sources

2.06 M sources, mainly G < 11.5

• this is about 80% of the Hipparcos & Tycho-2 catalogues

Missing sources:

- brights stars (G < 6)
- high-proper motion stars (μ > 3.5 "/yr)
- some 20% of Hip + Tycho-2 with too few observations (quasi-random but with large variations over the sky)

Median **position** uncertainty: 0.23 mas at 2015.0

Median parallax uncertainty: 0.32 mas

Median **proper motion** uncertainty:

- 0.07 mas/yr (Hipparcos subset)
- 1.2 mas/yr (Tycho-2 subset)

TGAS: Sky coverage (equatorial map)

Mean density per pixel (~1 deg²)

Gaia DR1 Workshop - ESAC 2016 Nov 3

TGAS: Standard uncertainty in proper motion (semi-major axis of error ellipse) - All sources

Median uncertainty per pixel (~1 deg²)

Overall median = 1.32 mas/yr

Gaia DR1 Workshop - ESAC 2016 Nov 3

TGAS: Standard uncertainty in proper motion (semi-major axis of error ellipse) - Hipparcos

Median uncertainty per pixel (~16 deg²)

Overall median = 0.07 mas/yr

Gaia DR1 Workshop - ESAC 2016 Nov 3

TGAS: Standard uncertainty in parallax

Median uncertainty per pixel (~1 deg²)

Overall median = 0.32 mas

Gaia DR1 Workshop - ESAC 2016 Nov 3

Can TGAS parallaxes be trusted?

Gaia DR1 Workshop - ESAC 2016 Nov 3

Improved distances to nearby stars

Hipparcos

Gaia DR1 (TGAS)

Gaia DR1 Workshop - ESAC 2016 Nov 3

More stars within parallax horizon ($\varpi/\sigma_{\varpi} > 5$)

Hipparcos

Gaia DR1 (TGAS)

Gaia DR1 Workshop - ESAC 2016 Nov 3

Important:

- source_id
- ref_epoch (always = 2015.0 in DR1)
- ra, dec
- ra_error, dec_error
- astrometric_excess_noise
- hip, tycho2_id
- parallax, pmra, pmdec
- parallax_error, pmra_error, pmdec_error

TGAS only

Important:

- source_id
- ref_epoch (always = 2015.0 in DR1)
- ra, dec
- ra_error, dec_error
- astrometric_excess_noise
- hip, tycho2_id
- parallax, pmra, pmdec
- parallax_error, pmra_error, pmdec_error

Less important, but still very useful:

- correlations (ra_dec_corr, etc)
- astrometric_delta_q

TGAS only

HIP subset of TGAS only

Important:

- source_id
- ref_epoch (always = 2015.0 in DR1)
- ra, dec
- ra_error, dec_error
- astrometric_excess_noise
- hip, tycho2_id
- parallax, pmra, pmdec
- parallax_error, pmra_error, pmdec_error

Less important, but still very useful:

- correlations (ra_dec_corr, etc)
- astrometric_delta_q

For specialists:

- number of observations (astrometric_n_*)
- scan_direction_strength_*, scan_direction_mean_*

Gaia DR1 Workshop - ESAC 2016 Nov 3

TGAS only

HIP subset of TGAS only

Important:

- source_id
- ref_epoch (always = 2015.0 in DR1)
- ra, dec
- ra error, dec error

astrometric_excess_noise

- hip, tycho2_id
- parallax, pmra, pmdec
- parallax_error, pmra_error, pmdec_error

Less important, but still very useful:

- correlations (ra_dec_corr, etc)
- astrometric_delta_q

For specialists:

- number of observations (astrometric_n_*)
- scan_direction_strength_*, scan_direction_mean_*

Gaia DR1 Workshop - ESAC 2016 Nov 3

TGAS only

HIP subset of TGAS only

Astrometric excess noise: Background

The astrometric solution can be formulated as a chi-square minimisation problem $\sqrt{2}$

$$\arg\min X^{2}(\boldsymbol{s},\boldsymbol{a},\boldsymbol{c}) = \sum_{\text{sources } i} \sum_{\text{obs } j \in i} \left(\frac{R_{ij}}{\sigma_{ij}}\right)^{2}$$

where **s**, **a**, **c** are the source, attitude, calibration parameters, R_{ij} the residuals of source *i* in observation *j*, and σ_{ij} the formal uncertainty of the observation.

If the model is correct, we expect $X_{\min}^2 \sim \chi_n^2$, so $X_{\min}^2/n \simeq 1$ where n = degrees of freedom.

In practice the model is never correct, at least not for all sources, so typically we find $X_{\min}^2/n \gg 1$, too much weight are given to bad sources, and the uncertainties of *s*, *a*, *c* are underestimated.

Astrometric excess noise: Definition

The problem is instead formulated as

$$\arg\min X^{2}(\boldsymbol{s},\boldsymbol{a},\boldsymbol{c}) = \sum_{\text{sources } i} \sum_{\text{obs } j \in i} \frac{R_{ij}^{2}}{\sigma_{ij}^{2} + \varepsilon_{i}^{2}}$$

For every source, the excess source noise ε_i is set to the smallest value for which

$$\sum_{\text{obs } j \in i} \frac{R_{ij}^2}{\sigma_{ij}^2 + \varepsilon_i^2} \le n_i$$

where n_i is the number of degrees of freedom for source *i*

Remarks:

- The excess noise is an angle (in mas)
- Binaries and other badly fitting sources should get large values of ε_i
- Unfortunately, attitude and instrument modelling errors also increase ε_i

Excess noise versus magnitude (TGAS)

Gaia DR1 Workshop - ESAC 2016 Nov 3

Excess noise versus magnitude (TGAS)

Gaia DR1 Workshop - ESAC 2016 Nov 3

L. Lindegren: Astrometry in Gaia DR1

Excess noise versus colour index (TGAS)

Excess noise versus colour index (TGAS)

Excess noise distribution (TGAS/Hip)

Gaia DR1 Workshop - ESAC 2016 Nov 3

Binary sequence in HR diagram

Binary sequence in HR diagram

Distribution of excess noise for sample S and B

Excess noise > 1 mas is twice as common in sample B as in S

Gaia DR1 Workshop - ESAC 2016 Nov 3

Systematic errors (bias) in Gaia DR1

There are systematic errors in Gaia DR1!

Systematic errors (bias) in Gaia DR1

There are systematic errors in Gaia DR1!

They are complicated (and largely unknown) functions of many things: position, magnitude, colour, number of observations, prior used, ...

Systematic errors (bias) in TGAS parallaxes: - Comparison with Hipparcos (FvL 2007)

Gaia DR1 Workshop - ESAC 2016 Nov 3

Split FoV

Gaia DR1 Workshop - ESAC 2016 Nov 3

Systematic errors (bias) in TGAS parallaxes: Comparing solutions from split FoV

Systematic errors (bias) in TGAS parallaxes: Comparing solutions with and w/o colour terms

Systematics in Gaia DR1 parallaxes

Due to known limitations in the astrometric processing

- a global offset of ±0.1 mas may be present
- there are colour dependent, spatially correlated errors of ±0.2 mas
- over large spatial scales, parallax zero point errors reach ±0.3 mas
- in a few small areas even ±1 mas

Parallax uncertainties should be quoted as $\varpi \pm \sigma_{\varpi}$ (random) ± 0.3 mas (syst.)

Averaging parallaxes e.g. in a cluster does not reduce the systematics!

Reference frame from observations of quasars

Gaia DR1 is aligned with the International Celestial Reference Frame through Gaia's observations of ~2000 faint (17-20 mag) quasars with accurate VLBI positions.

Gaia's observations show:

(1) excellent agreementbetween radio and opticalpositions (RMS < 1 mas)

(2) that the Hipparcosreference frame rotates wrtQSOs by 0.24 mas/yr

Secondary solution: Reality check on new sources (overlay on HST image - in Baade's Window)

What can be expected from Gaia DR2?

- Will be completely independent of Hipp/Tycho-2
- Based on a longer stretch of data (22 versus 14 months)
- Improved attitude and instrument models will reduce the modelling errors and hence both random and systematic errors in results
- Parallax accuracies of about 50 µas can be reached for sources down to G ~ 15 mag, larger errors for fainter sources

What can be expected from Gaia DR2?

- Will be completely independent of Hipp/Tycho-2
- Based on a longer stretch of data (22 versus 14 months)
- Improved attitude and instrument models will reduce the modelling errors and hence both random and systematic errors in results
- Parallax accuracies of about 50 µas can be reached for sources down to G ~ 15 mag, larger errors for fainter sources
- Proper motions of about 100 µas yr⁻¹ (comparable to the Hipparcos subset of TGAS) down to G ~ 15 mag
- This will be obtained for many tens of millions of sources
- Improved and more photometry (G, BP, RP) will enhance the scientific usefulness enormously
- Gaia DR1 is a good training set to get prepared for the real thing!