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Why measuring H0?

Hubbles Law

The distance of an object is proportional to the velocity with which
it recedes.

• The Hubble constant H0 links luminosity distance DL with the
redshift parameter z and some cosmological parameters:

DL(z) =
(1 + z)c

H0

z∫
0

dz ′√
ΩM(1 + z ′)3 + ΩΛ

• To establish H0, luminosity distance and redshift have to be
measured.

• Precise knowledge of H0 over a range of z allows to probe
Dark Energy
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Why using GW to determine H0?

• Sources are gravitationally bound binary systems of compact
objects, i. e. simple systems

• NS-NS, BH-BH, BH-NS

• No modelling of internal physics needed

• GW are emitted during “orbital” phase

• Signals can be very well predicted, depend only on masses,
spins and distance (and sky position and orientation)

• Measurement through independent distance scale

Because we can!
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How to find the luminosity distance of a GW source
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from a
MBH-MBH binary
with a SNR 500,
Baker et al.

• GW signal shape depends on masses m1, m2, and on
skyposition and orientation ~θ

• Signal amplitude depends on (m1,m2, ~θ) and DL

• Parameters (m1,m2, ~θ,DL) can be extracted from the signal
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Measuring the redshift

• Redshift cannot be extracted from the signal, as only a
combination of mass and redshift can be measured

m = (1 + z)mlocal

• Some observation of EM counterpart is necessary to assess
redshift

• Direct observation relies on EM event associated with GW
event

• Statistical method uses distribution of host galaxies
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Direct observation of EM event

• Best candidate for direct detection are MBH coalescences
• Large signal-to-noise ratio, resulting in tight error-box for sky

position (few arcmin) and DL (∼ 1 %)
• Large event rate (100/yr)

• EM signature likely, but exact mechanism (and timing)
unknown

• Problem: Most of the signals will come from events with
z > 2, where gravitational lensing has significant influence

• Need sources that are closer (z < 1)
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Extreme Mass Ratio Inspirals
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Figure: Typical
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“generic” EMRI
system (Babak et
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• Capture of compact objects (M ∼ M�) by MBH
(M ∼ 106M�)

• Capture events in almost every galaxy

• Signals from z < 2 expected

• Problem: Almost certainly no EM signature

• Use a statistical method
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Statistical method for obtaining the redshift

δΩ

ẑ

p(z)

ẑ ẑ ′̂z

• Detect a signal, extract the sky position and look for possible
host galaxies

• Use prior information on H0 to establish a “first guess” ẑ for
the redshift of the signal

• Look for host galaxies at around ẑ

• Use clustering of galaxies to improve pdf on z

• Repeat for as many signals as you can get
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ẑ ẑ ′

ẑ
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Does it work?

Assuming realistic galaxy clustering and LISA error boxes, is there
enough redshift information to be useful?

Proof of concept using statistical redshift information

• Assume (simplified) LISA error boxes

• Take galaxy redshifts from the SDSS

• Possible estimate for precision of H0

∆H0

H0
< 1 %

• About 20 detected EMRI signals up to z = 0.5 needed

MacLeod & Hogan, PRD 77 (4), February 2008
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Ideas for future work

• Using better estimates for LISA error boxes

• Using information from simulations on structure forming

• Re-visit gravitational lensing problem

• Use signals from MBH coalescence

• . . .


