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Algebraic Approach to TDI Analysis

S. V. Dhurandhar, K. R. Nayak and J-Y. Vinet, Phys. Rev. D 65,
102002(2002).

e Systematic approach based on computational commutative al-
gebra.

e All the noises cancellation data combination can be generated
from a set of 4 generators.

e This formalism can easily be extend to alternative geometry or
the follow on missions.

e In the present work, we extend the formalism to include the
motion of LISA(Sagnac effect)
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e This results in large residual laser noise, Hence set of new TDI
solution were proposed.



e We apply the algebraic approach by taking the up and down
path lengths are different for same arm and obtain a set of
generators.

Delay operators used in TDI are defined as,
Ei;A(t) = A(t — Ljj)

in the present case Li; # L; With this extra constraint, we follow
the formalism given for stationary case.

e Earlier results assume a simple module in which LISA rotates
only about its own axis!!

e |n reality the motion of LISA is much more complex and the
our study shows that the main for Sagnac effect comes form
orbital motion.



Sagnac effect in LISA system

Metric in LISA frame, O(Q)

Joo = 1+0(Q?)

Q 3
gor = R-QCOSQt— 2y ggzcosgzt,

. Q .
Jo2 = R@QsttJrix-?stmQt,

Joz = ?Q (x cosQt +y sinQt),
011 = —1=002=03s3

Metric is time dependent!



Sagnac Phase for LISA Beams
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The Generators for the Module

We apply the formalism similar to the stationary case and obtain
the generators,

E13(1—EzsEsz), EmEis—Ezs, 1—ExsEs, 0, 0, 1—ExFEisEs ),
Exs(1—EisEs1), 0, Ex—EsiFss, Exs—EnEis, 0, Ei(1—EisEsr) ),
0, 1-EmFjs, Ess—EEa;, Eip—EisEsy, 1-EisEs, 0 ),
Eio—EisEsp, EpEoi—1, Eszp(ExEin—1), 0, ExnEisEp—1, 0),
ExsEss—1, EsFExs—Ex;, 0, EasEsx—1, 0, ExEsz—Es ),

Eis—EEps, 0, 1-EpEyn, 0, Ex—ExnFiz, 1-EEx ).

The Sagnac and Symmetric Sagnac solutions do not form a
generating set. Any noise cancellation data combination X can
be expressed as,

6
X = Z OC(|)d(I>
=1

where ¢y are polynomial coefficients in six variable Eij.



Sensitivity

The Sensitivity Curves
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Conclusions

e The contribution from Sagnac effect is much lager than earlier
predicted.

e In this case also laser noise cancellation solutions form the first
module of syzygies over polynomial ring in six time delays E;;.

e The analysis can be extended to cancel optical bench noise In
a straight forward manner.

e The generators are non-trivial in this case. The Sagnac and
Symmetric Sagnac combinations do not form a generating set
as in the stationary case.

e The formalism is useful as set of all solution can be parame-
terised in terms of coefficients of generators.
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For a source in given direction: One can get the optimal SNR
same as the above case but the lower bound is zero!
K. R. Nayak, S. V. Dhurandhar, A. Pai, and J-Y. Vinet, Phys. Rev. D 68, 122001 (2003).



