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TDI- Approach to supress Laser Noise!

J.W. Armstrong, F.B. Estabrook and M. Tinto, Astrophys. J 527,
814(1999).

• Elegant Approach to cancel the overwhelming (∆ν

ν0
=

10−14Hz/
√

Hz) laser noise in the space based gravitational
wave detectors.
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Algebraic Approach to TDI Analysis

S. V. Dhurandhar, K. R. Nayak and J-Y. Vinet, Phys. Rev. D 65,
102002(2002).

• Systematic approach based on computational commutative al-
gebra.

• All the noises cancellation data combination can be generated
from a set of 4 generators.

• This formalism can easily be extend to alternative geometry or
the follow on missions.

• In the present work, we extend the formalism to include the
motion of LISA(Sagnac effect)
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Sagnac Effect in LISA

N. J. Cornish and R. W Hellings, Class. Quantum Grav. 20,
4851(2003).

D. A. Shaddock, Phys. Rev. D 69, 022001 (2004).

• The Rigid rotation of LISA triangle with period one year about
its own axis results in Sagnac Phase.(' 4~Ω ·~A)
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• The Rigid rotation of LISA triangle with period one year about
its own axis results in Sagnac Phase.(' 4~Ω ·~A)

• As a result up and down light travel time for the laser beam
along same arm is different( by about few Km)

• This results in large residual laser noise, Hence set of new TDI
solution were proposed.
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• We apply the algebraic approach by taking the up and down
path lengths are different for same arm and obtain a set of
generators.

Delay operators used in TDI are defined as,

Ei jA(t) = A(t−Li j)

in the present case Li j 6= L ji With this extra constraint, we follow
the formalism given for stationary case.

• Earlier results assume a simple module in which LISA rotates
only about its own axis!!

• In reality the motion of LISA is much more complex and the
our study shows that the main for Sagnac effect comes form
orbital motion.
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Sagnac effect in LISA system

Metric in LISA frame, O(Ω)

g00 = 1+O(Ω2)

g01 = R�Ω cosΩt−Ω
2

y−
√

3
2

ΩzcosΩt,

g02 = R�Ω sinΩt +
Ω
2

x−
√

3
2

ΩzsinΩt,

g03 =
√

3
2

Ω (x cosΩt +y sinΩt) ,

g11 = −1 = g22 = g33

Metric is time dependent!
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R� ' 150×106Km
L' 5×106Km
Ω' 10−7sec−1

∆φorbit(t)/∆φL ' R/L
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The Generators for the Module
We apply the formalism similar to the stationary case and obtain
the generators,

d(1) =
(

E13(1−E23E32) , E21E13−E23, 1−E23E32, 0, 0, 1−E21E13E32
)
,

d(2) =
(

E23(1−E13E31) , 0, E21−E31E23, E23−E21E13, 0, E21(1−E13E31)
)
,

d(3) =
(

0, 1−E31E13, E32−E12E31, E12−E13E32, 1−E13E31, 0
)
,

d(4) =
(

E12−E13E32, E12E21−1, E32(E21E12−1) , 0, E21E13E32−1, 0
)
,

d(5) =
(

E23E32−1, E31E23−E21, 0, E23E32−1, 0, E21E32−E31
)
,

d(6) =
(

E13−E12E23, 0, 1−E12E21, 0, E23−E21E13, 1−E12E21
)
.

The Sagnac and Symmetric Sagnac solutions do not form a
generating set. Any noise cancellation data combination X can
be expressed as,

X =
6

∑
I=1

α(I)d
(I)

where α(I) are polynomial coefficients in six variable Ei j .
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The Sensitivity Curves
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Conclusions

• The contribution from Sagnac effect is much lager than earlier
predicted.



10

Conclusions

• The contribution from Sagnac effect is much lager than earlier
predicted.

• In this case also laser noise cancellation solutions form the first
module of syzygies over polynomial ring in six time delays Ei j .



10

Conclusions

• The contribution from Sagnac effect is much lager than earlier
predicted.

• In this case also laser noise cancellation solutions form the first
module of syzygies over polynomial ring in six time delays Ei j .

• The analysis can be extended to cancel optical bench noise in
a straight forward manner.



10

Conclusions

• The contribution from Sagnac effect is much lager than earlier
predicted.

• In this case also laser noise cancellation solutions form the first
module of syzygies over polynomial ring in six time delays Ei j .

• The analysis can be extended to cancel optical bench noise in
a straight forward manner.

• The generators are non-trivial in this case. The Sagnac and
Symmetric Sagnac combinations do not form a generating set
as in the stationary case.

• The formalism is useful as set of all solution can be parame-
terised in terms of coefficients of generators.
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Applications(Stationary case)

? Maximisation of SNR: Since each noise cancellation solution
has different signal response, we can determine the data
combination with maximum SNR
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? For a source in given direction: One can get the optimal SNR
same as the above case but the lower bound is zero!
K. R. Nayak, S. V. Dhurandhar, A. Pai, and J-Y. Vinet, Phys. Rev. D 68, 122001 (2003).


