Image of the Week

Preliminary View of THE Gaia sky in colour

Figure 1: The map shows a source density distribution in the sky in Galactic coordinates. Each HEALPix of level 7 is colour coded depending on the density of sources within the pixel. HEALPix of level 7 implies a pixel size of approximately 750 square arcmin or 0.21 square degree. A selection of sources with G<17 was used for this plot.

 

In September 2016 Gaia released its first results along with the most precise, all-sky astrometric map ever produced. But Gaia is just getting started. There is much more to come!

The photometric catalogue part of the first Gaia data release contained a measurement of the average flux in the G band for over 1.1 billion sources. Even though no colour information was released at that time (in agreement with the release plan), many scientists have already made effective use of the single G-band photometry in a number of publications. Often this required cross-matching the Gaia catalogue with other photometric catalogues to acquire photometry in some additional bands, with the effect of reducing the number of usable sources and possibly introducing some inconsistencies due to the different origins of the photometry.

Figure 2: The map shows the (BP-RP) colour distribution in the sky in Galactic coordinates. Each HEALPix of level 7 is colour coded depending on the median colour of sources within the pixel. HEALPix of level 7 implies a pixel size of approximately 750 square arcmin or 0.21 square degree. A selection of sources with G<17 was used for this plot.

The second data release is planned for April 2018 and will present a significant advance in all photometry-based investigations by providing photometry in 3 bands (the G broad-band and the integrated BP and RP bands) for a large number of sources (the exact number is still to be defined and will depend on the DPAC validation results) calibrated to a consistent and homogeneous photometric system. A full description of the 3 passbands will be provided together with photometric zero-points linking the internal photometric system to the absolute one. Using these three bands, the DPAC is estimating stellar effective temperatures and line-of-sight extinctions for many stars brighter than about G=17, and where good parallaxes are available, their luminosities and radii too. The aim is to publish these in the second data release, with parameters based on the full BP/RP spectra following in the third release.

One of the major challenges in the Gaia photometric processing is caused by the large number of different instrument configurations that can be activated during the acquisition of an observation. This results in effectively different instruments that need to be calibrated to a homogeneous system. Today there is no external catalogue available offering the accuracy and amount of data required to calibrate such a complex instrument. For this reason, the definition of a reference system homogeneous over the entire set of instrument configurations must rely on the Gaia data itself. External data is only used to link the internal photometric reference system to the absolute one. For more details on the photometric calibration algorithms refer to Carrasco et al. (A&A 595, A7, 2016 and A&A 601, C1, 2017).

The calibration of the low-resolution spectra, in particular the dispersion and geometric calibrations, as well as the correct treatment of crowded or contaminated spectra, require a good knowledge of the source positions, at an accuracy that only Gaia itself can provide. This is why no colours were released in Gaia DR1 when there had been no iteration yet between the astrometric and photometric processing. For Gaia DR2, the photometric processing will have used high accuracy astrometric data from Gaia itself and therefore will produce much improved colours. However no special treatment of crowded or contaminated spectra will be in place yet. This will affect the accuracy of the colour information in crowded areas and in regions around very bright sources. The extent of this will be assessed by the DPAC validation activities and documented.

As an appetizer to the second Gaia data release, we present here a coloured all-sky view of the stars in our Galaxy and its neighbours, based on the first two years of observations from ESA’s Gaia satellite, taken from July 2014 to May 2016.

Figure 1 shows the sky density map (number of sources per pixel) and the colour distribution in the sky can be found in Figure 2. These plots are based on preliminary results and on a random selection of sources brighter than magnitude 17 in the G-band. The pixelization scheme adopted here is HEALPix level 7 (implying a pixel size of approximately 750 square arcmin or 0.21 square degree). Each HEALPix pixel in the colour sky map is colour coded according to the median colour (BP-RP) of all sources falling in the corresponding area in the sky. These images were released in coordination with a story on ESA Science & Technology.

The colour sky distribution offers a taste of the extraordinary photometric catalogue that will become available in April 2018. High-extinction star-forming regions close to the Galactic plane show up with lower density in the density map, stand out in the colour map thanks to the reddening effects. Streams and stellar associations are also clearly visible in both density and colour maps. These are just a few of the features that can be researched with such a catalogue.

The plots on this page have been generated using TOPCAT on a restricted sample of the preliminary photometric catalogue. We wish to thank M. Taylor for developing such a fantastic tool!

Credits: ESA/Gaia/DPAC/CU5/DPCI/CU8/F. De Angeli, D.W. Evans, M. Riello, M. Fouesneau, R. Andrae, C.A.L. Bailer-Jones

[Published: 16/08/2017]

 

Image of the Week Archive

2024

20/08: Gaia discovers interesting duo belonging to the Milky Way halo: an ultracool subdwarf with a white dwarf companion

25/07: 10 years of Gaia science operations

23/07: How binary stars change their stellar dance with age

25/06: Dynamical masses across the Hertzsprung-Russell diagram

28/05: Did Gaia find its first neutron star?

26/04: A textbook solar eruption

22/04: Gaia's contribution to discovering distant worlds

16/04: Gaia spots Milky Way's most massive black hole of stellar origin

02/04: The Gaia Cataclysmic Variable hook

2023

19/12: 10 Science topics to celebrate Gaia's 10 years in space

31/10: Gaia observes cosmic clock inside a heavenly jewel

10/10: Gaia Focused Product Release stories

27/09: Does the Milky Way contain less dark matter than previously thought?

22/09: Mass-luminosity relation from Gaia's binary stars

13/09: Gaia DPAC CU8 seminars

13/06: Gaia's multi-dimensional Milky Way

18/05: Mapping the Milky Way

15/05: Goonhilly station steps in to save Gaia science data

25/04: The Gaia ESA Archive

05/04: Dual quasar found to be hosted by an ongoing galaxy merger at redshift 2.17

21/03: GaiaVari: a citizen science project to help Gaia variability classificaton

09/02: Missing mass in Albireo Ac: massive star or black hole?

31/01: Gaia reaches to the clouds – 3D kinematics of the LMC

25/01: Meet your neighbours: CNS5 - the fifth catalogue of nearby stars

18/01: A single-object visualisation tool for Gaia objects

2022

25/11: 100 months of Gaia data

23/11: The astonishment

09/11: Gamma-Ray Burst detection from Lagrange 2 point by Gaia

04/11: Gaia's first black hole discovery: Gaia BH1

26/10: Are Newton and Einstein in error after all?

21/10: Gaia ESA Archive goes live with third data release

06/10: Mapping the interstellar medium using the Gaia RVS spectra

26/09: Gaia on the hunt for dual quasars and gravitational lenses

23/09: Gaia's observation of relativistic deflection of light close to Jupiter

13/06: Gaia Data Release 3

10/06: MK classification of stars from BP/RP spectrophotometry across the Hertzsprung-Russell diagram

09/06: BP/RP low-resolution spectroscopy across the Hertzsprung-Russell diagram

27/05: Cepheids and their radial velocity curves

23/05: The Galaxy in your preferred colours

19/05: GaiaXPy 1.0.0 released, a tool for Gaia's BP/RP spectra users

11/05: Systemic proper motions of 73 galaxies in the Local group

28/03: Gaia query statistics

16/03: Gaia's first photo shooting of the James Webb Space Telescope

08/03: Gaia's women in science - coordination unit 8

25/02: Not only distances: what Gaia DR3 RR Lyrae stars will tell us about our Galaxy and beyond

11/02: Gaia's women in science

31/01: Astrometric orbit of the exoplanet-host star HD81040

12/01: The Local Bubble - source of our nearby stars

05/01: A Milky-Way relic of the formation of the Universe

2021

23/12: Signal-to-Noise ratio for Gaia DR3 BP/RP mean spectra

22/12: The 7 October 2021 stellar occultation by the Neptunian system

01/12: Observation of a long-predicted new type of binary star

24/09: Astrometric microlensing effect in the Gaia16aye event

22/09: the power of the third dimension - the discovery of a gigantic cavity in space

16/09: An alternative Gaia sky chart

25/08: Gaia Photometric Science Alerts and Gravitational Wave Triggers

09/07: How Gaia unveils what stars are made of

23/06: Interviews with CU3

27/04: HIP 70674 Orbital solution resulting from Gaia DR3 processing

30/03: First transiting exoplanet by Gaia

26/03: Apophis' Yarkovsky acceleration improved through stellar occultation

26/02: Matching observations to sources for Gaia DR4

2020

22/12: QSO emission lines in low-resolution BP/RP spectra

03/12: Gaia Early Data Release 3

29/10: Gaia EDR3 passbands

15/10: Star clusters are only the tip of the iceberg

04/09: Discovery of a year long superoutburst in a white dwarf binary

12/08: First calibrated XP spectra

22/07: Gaia and the size of the Solar System

16/07: Testing CDM and geometry-driven Milky Way rotation Curve Models

30/06: Gaia's impact on Solar system science

14/05: Machine-learning techniques reveal hundreds of open clusters in Gaia data

20/03: The chemical trace of Galactic stellar populations as seen by Gaia

09/01: Discovery of a new star cluster: Price-Whelan1

08/01: Largest ever seen gaseous structure in our Galaxy

2019

20/12: The lost stars of the Hyades

06/12: Do we see a dark-matter like effect in globular clusters?

12/11: Hypervelocity star ejected from a supermassive black hole

17/09: Instrument Development Award

08/08: 30th anniversary of Hipparcos

17/07: Whitehead Eclipse Avoidance Manoeuvre

28/06: Following up on Gaia Solar System Objects

19/06: News from the Gaia Archive

29/05: Spectroscopic variability of emission lines stars with Gaia

24/05: Evidence of new magnetic transitions in late-type stars

03/05: Atmospheric dynamics of AGB stars revealed by Gaia

25/04: Geographic contributions to DPAC

22/04: omega Centauri's lost stars

18/04: 53rd ESLAB symposium "the Gaia universe"

18/02: A river of stars

2018
21/12: Sonification of Gaia data
18/12: Gaia captures a rare FU Ori outburst
12/12: Changes in the DPAC Executive
26/11:New Very Low Mass dwarfs in Gaia data
19/11: Hypervelocity White Dwarfs in Gaia data
15/11: Hunting evolved carbon stars with Gaia RP spectra
13/11: Gaia catches the movement of the tiny galaxies surrounding the Milky Way
06/11: Secrets of the "wild duck" cluster revealed
12/10: 25 years since the initial GAIA proposal
09/10: 3rd Gaia DPAC Consortium Meeting
30/09: A new panoramic sky map of the Milky Way's Stellar Streams
25/09: Plausible home stars for interstellar object 'Oumuamua
11/09: Impressions from the IAU General Assembly
30/06: Asteroids in Gaia Data
14/06: Mapping and visualising Gaia DR2

25/04: In-depth stories on Gaia DR2

14/04: Gaia tops one trillion observations
16/03: Gaia DR2 Passbands
27/02: Triton observation campaign
11/02: Gaia Women In Science
29/01: Following-up on Gaia
2017
19/12: 4th launch anniversary
24/11: Gaia-GOSA service
27/10: German Gaia stamp in the making
19/10: Hertzsprung-russell diagram using Gaia DR1
05/10: Updated prediction to the Triton occultation campaign
04/10: 1:1 Gaia model arrives at ESAC
31/08: Close stellar encounters from the first Gaia data release
16/08: Preliminary view of the Gaia sky in colour
07/07: Chariklo stellar occultation follow-up
24/04: Gaia reveals the composition of asteroids
20/04: Extra-galactic observations with Gaia
10/04: How faint are the faintest Gaia stars?
24/03: Pulsating stars to study Galactic structures
09/02: Known exoplanetary transits in Gaia data
31/01: Successful second DPAC Consortium Meeting
2016
23/12: Interactive and statistical visualisation of Gaia DR1 with vaex
16/12: Standard uncertainties for the photometric data (in GDR1)
25/11: Signature of the rotation of the galactic bar uncovered
15/11: Successful first DR1 Workshop
27/10: Microlensing Follow-Up
21/10: Asteroid Occultation
16/09: First DR1 results
14/09: Pluto Stellar Occultation
15/06: Happy Birthday, DPAC!
10/06: 1000th run of the Initial Data Treatment system
04/05: Complementing Gaia observations of the densest sky regions
22/04: A window to Gaia - the focal plane
05/04: Hipparcos interactive data access tool
24/03: Gaia spots a sunspot
29/02: Gaia sees exploding stars next door
11/02: A new heart for the Gaia Object Generator
04/02: Searching for solar siblings with Gaia
28/01: Globular cluster colour-magnitude diagrams
21/01: Gaia resolving power estimated with Pluto and Charon
12/01: 100th First-Look Weekly Report
06/01: Gaia intersects a Perseid meteoroid
2015
18/12: Tales of two clusters retold by Gaia
11/11: Lunar transit temperature plots
06/11: Gaia's sensors scan a lunar transit
03/11: Celebrity comet spotted among Gaia's stars
09/10: The SB2 stars as seen by Gaia's RVS
02/10: The colour of Gaia's eyes
24/09: Estimating distances from parallaxes
18/09: Gaia orbit reconstruction
31/07: Asteroids all around
17/07: Gaia satellite and amateur astronomers spot one in a billion star
03/07: Counting stars with Gaia
01/07: Avionics Model test bench arrives at ESOC
28/05: Short period/faint magnitude Cepheids in the Large Magellanic Cloud
19/05: Visualising Gaia Photometric Science Alerts
09/04: Gaia honours Einstein by observing his cross
02/04: 1 April - First Look Scientists play practical joke
05/03: RR Lyrae stars in the Large Magellanic Cloud as seen by Gaia
26/02: First Gaia BP/RP deblended spectra
19/02: 13 months of GBOT Gaia observations
12/02: Added Value Interface Portal for Gaia
04/02: Gaia's potential for the discovery of circumbinary planets
26/01: DIBs in three hot stars as seen by Gaia's RVS
15/01: The Tycho-Gaia Astrometric Solution
06/01: Close encounters of the stellar kind
2014
12/12: Gaia detects microlensing event
05/12: Cat's Eye Nebula as seen by Gaia
01/12: BFOSC observation of Gaia at L2
24/11: Gaia spectra of six stars
13/11: Omega Centauri as seen by Gaia
02/10: RVS Data Processing
12/09: Gaia discovers first supernova
04/08: Gaia flag arrives at ESAC
29/07: Gaia handover
15/07: Eclipsing binaries
03/07: Asteroids at the "photo finish"
19/06: Calibration image III - Messier 51
05/06: First Gaia BP/RP and RVS spectra
02/06: Sky coverage of Gaia during commissioning
03/04: Gaia source detection
21/02: Sky-background false detections in the sky mapper
14/02: Gaia calibration images II
06/02: Gaia calibration image I
28/01: Gaia telescope light path
17/01: First star shines for Gaia
14/01: Radiation Campaign #4
06/01: Asteroid detection by Gaia
2013
17/12: Gaia in the gantry
12/12: The sky in G magnitude
05/12: Pre-launch release of spectrophotometric standard stars
28/11: From one to one billion pixels
21/11: The Hipparcos all-sky map
15/10: Gaia Sunshield Deployment Test
08/10: Initial Gaia Source List
17/09: CU1 Operations Workshop
11/09: Apsis
26/08: Gaia arrival in French Guiana
20/08: Gaia cartoons
11/07: Model Soyuz Fregat video
01/07: Acoustic Testing
21/06: SOVT
03/06: CU4 meeting #15
04/04: DPCC (CNES) 
26/03: Gaia artist impression 
11/02: Gaia payload testing  
04/01: Space flyby with Gaia-like data
2012
10/12: DPAC OR#2. Testing with Planck
05/11: Galaxy detection with Gaia
09/10: Plot of part of the GUMS-10 catalogue
23/07: "Gaia" meets at Gaia
29/06: The Sky as seen by Gaia
31/05: Panorama of BAM clean room
29/03: GREAT school results
12/03: Scanning-law movie
21/02: Astrometric microlensing and Gaia
03/02: BAM with PMTS
12/01: FPA with all the CCDs and WFSs
2011
14/12: Deployable sunshield
10/11: Earth Trojan search
21/10: First Soyuz liftoff from the French Guiana
20/09: Fast 2D image reconstruction algorithm
05/09: RVS OMA
10/08: 3D distribution of the Gaia catalogue
13/07: Dynamical Attitude Model
22/06: Gaia's view of open clusters
27/05: Accuracy of the stellar transverse velocity
13/05: Vibration test of BAM mirrors
18/04: L. Lindegren, Dr. Honoris Causa of the Observatory of Paris
19/01: Detectability of stars close to Jupiter
05/01: Delivery of the WFS flight models
2010
21/12: The 100th member of CU3
17/11: Nano-JASMINE and AGIS
27/10: Eclipsing binary light curves fitted with DPAC code
13/10: Gaia broad band photometry
28/09: Measuring stellar parameters and interstellar extinction
14/09: M1 mirror
27/08: Quest for the Sun's siblings
 
Please note: Entries from the period 2003-2010 are available in this PDF document.