Image of the Week

 

Are Newton and Einstein in error after all?

 

Figure 1. The star cluster is the object at x=0 and y=0, it moves to the right around the Milky Way's centre which is at the bottom. The upper panel shows the observed Hyades open star cluster with the black points being individual stars. The model is shown in the lower panel. In it, the blue regions show the stars that are leaving. The calculation of the star cluster shows how the front part of the tail, to the right, contains more stars (deeper blue regions) than the back tail to the left of the cluster. The calculation was done in Bonn using the new theory of gravitation by Mordehai Milgrom, Milgromian dynamics (i.e. MOND), using the specially developed computer code "Phantom of Ramses". The same calculation using the old theory by Newton and Einstein shows no difference between the front and back part of the cluster. The observed clusters show the same effect as in this lower panel. Credits: Kroupa, Jerabkova et al.

 

Gaia's new and more accurate data of an extensive set of stars in the Milky Way can be used to look critically at existing theories. Are the observations in line with for example, the current theory of gravitation based on Newton and Einstein. Are they in line as well with different theories? And what does this mean?

Some 400 years ago a brilliant mind thought that the fall of the apple follows the same mathematical law as the movement of the Moon on the sky. Isaac Newton therewith invented the first ever theoretical physics explanation for phenomena thought to be entirely unrelated. He even had to invent a new mathematics to achieve this. Some 300 years later, Albert Einstein reformulated Newton's law of universal gravitation by taking into account that gravitation can spread only with the constant speed of light. Albert Einstein's theory of General Relativity, according to which heavy bodies warp space and time, has been verified incredibly well using observations of how planets move and how black holes distort light. At speeds much smaller than light, Einstein's theory is next-to-identical to Newton's. But even in Einstein's time of 1916, this theory had not been tested on the motions of heavenly bodies beyond the Solar System.

With Gaia's data of stars in the Milky Way, such a test has now been done based on how star clusters loose their stars. Once born, the stars in a star cluster orbit around within it and are constantly pulled this way and that way by their siblings that also move around in the same star cluster. These constant gravitational pulls lead to some of the stars gaining enough speed to finally leave the cluster. Each star cluster thus constantly looses its member stars and thereby dwindles into oblivion. The gravitational theory of Newton and Einstein predicts that, as the star cluster circles about the centre of our Milky Way, an equal number of stars leaves the cluster ahead of it and through its back side. The two streams of ex-cluster stars, one at the front, one at the back, are equal with the cluster at the centre.

A large international team of scientists from Europe, China and Iran and centred on Bonn and Prague, used the precise positions and motions of stars as they leave their star clusters. They used data gathered by ESA's Gaia space mission for five nearby star clusters, and found that all have many more stars in the front tail than in the back tail. This fact is completely impossible if the law of universal gravitation is correct. So the scientists applied another theory of gravitation called MOND, formulated by Mordehai Milgrom in 1983, finding that this theory predicts the observed phenomenon. In this theory, the cluster's gravitational pull on each star gets distorted through the Milky Way causing more stars to exit the cluster in the front than in the back, as is observed and shown in the Figure. Star clusters also die more quickly in this theory, and they start to spin up as they loose their stars.

While MOND in many cases has proven to explain galaxies extremely well, this is the first-ever demonstration that this theory also works for star-clusters (on scales of a lightyear, rather than many hundreds of light years), where dark matter plays no role whatsoever. If the membership selection for stars in the tails of open clusters is done correctly, it is not possible to explain the observed phenomenon with a combination of Newtonian gravitation plus dark matter, as is done for galaxies.

This finding can have dramatic consequences for all of physics and for cosmology, because it could mean that gravitation is neither Newtonian nor Einsteinian beyond the Solar System, such that all calculations ever performed of galaxy evolution and of how galaxies form in the Universe are wrong. To investigate if this is the case, it is advised that many more star clusters are observed to verify and deepen our understanding of how stars leave their clusters, and that new computer algorithms are developed to allow such calculations to be done much more precisely and accurately.

 

Further reading:

The paper: "Asymmetrical tidal tails of open star clusters: stars crossing their cluster’s práh challenge Newtonian gravitation", ref. MN-21-4544-MJ.R3 by Kroupa, Jerabkova et al (also available from ArXiv)

 

Credits: Kroupa, Jerabkova et al.

[Published: 26/10/2022]

Image of the Week Archive

2025

15/01: 61 Cygni marks the end of Gaia's science observation phase

2024

03/12: The Gaia ESA Archive: a first step towards GAia Data release 4

20/08: Gaia discovers interesting duo belonging to the Milky Way halo: an ultracool subdwarf with a white dwarf companion

25/07: 10 years of Gaia science operations

23/07: How binary stars change their stellar dance with age

25/06: Dynamical masses across the Hertzsprung-Russell diagram

28/05: Did Gaia find its first neutron star?

26/04: A textbook solar eruption

22/04: Gaia's contribution to discovering distant worlds

16/04: Gaia spots Milky Way's most massive black hole of stellar origin

02/04: The Gaia Cataclysmic Variable hook

2023

19/12: 10 Science topics to celebrate Gaia's 10 years in space

31/10: Gaia observes cosmic clock inside a heavenly jewel

10/10: Gaia Focused Product Release stories

27/09: Does the Milky Way contain less dark matter than previously thought?

22/09: Mass-luminosity relation from Gaia's binary stars

13/09: Gaia DPAC CU8 seminars

13/06: Gaia's multi-dimensional Milky Way

18/05: Mapping the Milky Way

15/05: Goonhilly station steps in to save Gaia science data

25/04: The Gaia ESA Archive

05/04: Dual quasar found to be hosted by an ongoing galaxy merger at redshift 2.17

21/03: GaiaVari: a citizen science project to help Gaia variability classificaton

09/02: Missing mass in Albireo Ac: massive star or black hole?

31/01: Gaia reaches to the clouds – 3D kinematics of the LMC

25/01: Meet your neighbours: CNS5 - the fifth catalogue of nearby stars

18/01: A single-object visualisation tool for Gaia objects

2022

25/11: 100 months of Gaia data

23/11: The astonishment

09/11: Gamma-Ray Burst detection from Lagrange 2 point by Gaia

04/11: Gaia's first black hole discovery: Gaia BH1

26/10: Are Newton and Einstein in error after all?

21/10: Gaia ESA Archive goes live with third data release

06/10: Mapping the interstellar medium using the Gaia RVS spectra

26/09: Gaia on the hunt for dual quasars and gravitational lenses

23/09: Gaia's observation of relativistic deflection of light close to Jupiter

13/06: Gaia Data Release 3

10/06: MK classification of stars from BP/RP spectrophotometry across the Hertzsprung-Russell diagram

09/06: BP/RP low-resolution spectroscopy across the Hertzsprung-Russell diagram

27/05: Cepheids and their radial velocity curves

23/05: The Galaxy in your preferred colours

19/05: GaiaXPy 1.0.0 released, a tool for Gaia's BP/RP spectra users

11/05: Systemic proper motions of 73 galaxies in the Local group

28/03: Gaia query statistics

16/03: Gaia's first photo shooting of the James Webb Space Telescope

08/03: Gaia's women in science - coordination unit 8

25/02: Not only distances: what Gaia DR3 RR Lyrae stars will tell us about our Galaxy and beyond

11/02: Gaia's women in science

31/01: Astrometric orbit of the exoplanet-host star HD81040

12/01: The Local Bubble - source of our nearby stars

05/01: A Milky-Way relic of the formation of the Universe

2021

23/12: Signal-to-Noise ratio for Gaia DR3 BP/RP mean spectra

22/12: The 7 October 2021 stellar occultation by the Neptunian system

01/12: Observation of a long-predicted new type of binary star

24/09: Astrometric microlensing effect in the Gaia16aye event

22/09: the power of the third dimension - the discovery of a gigantic cavity in space

16/09: An alternative Gaia sky chart

25/08: Gaia Photometric Science Alerts and Gravitational Wave Triggers

09/07: How Gaia unveils what stars are made of

23/06: Interviews with CU3

27/04: HIP 70674 Orbital solution resulting from Gaia DR3 processing

30/03: First transiting exoplanet by Gaia

26/03: Apophis' Yarkovsky acceleration improved through stellar occultation

26/02: Matching observations to sources for Gaia DR4

2020

22/12: QSO emission lines in low-resolution BP/RP spectra

03/12: Gaia Early Data Release 3

29/10: Gaia EDR3 passbands

15/10: Star clusters are only the tip of the iceberg

04/09: Discovery of a year long superoutburst in a white dwarf binary

12/08: First calibrated XP spectra

22/07: Gaia and the size of the Solar System

16/07: Testing CDM and geometry-driven Milky Way rotation Curve Models

30/06: Gaia's impact on Solar system science

14/05: Machine-learning techniques reveal hundreds of open clusters in Gaia data

20/03: The chemical trace of Galactic stellar populations as seen by Gaia

09/01: Discovery of a new star cluster: Price-Whelan1

08/01: Largest ever seen gaseous structure in our Galaxy

2019

20/12: The lost stars of the Hyades

06/12: Do we see a dark-matter like effect in globular clusters?

12/11: Hypervelocity star ejected from a supermassive black hole

17/09: Instrument Development Award

08/08: 30th anniversary of Hipparcos

17/07: Whitehead Eclipse Avoidance Manoeuvre

28/06: Following up on Gaia Solar System Objects

19/06: News from the Gaia Archive

29/05: Spectroscopic variability of emission lines stars with Gaia

24/05: Evidence of new magnetic transitions in late-type stars

03/05: Atmospheric dynamics of AGB stars revealed by Gaia

25/04: Geographic contributions to DPAC

22/04: omega Centauri's lost stars

18/04: 53rd ESLAB symposium "the Gaia universe"

18/02: A river of stars

2018
21/12: Sonification of Gaia data
18/12: Gaia captures a rare FU Ori outburst
12/12: Changes in the DPAC Executive
26/11:New Very Low Mass dwarfs in Gaia data
19/11: Hypervelocity White Dwarfs in Gaia data
15/11: Hunting evolved carbon stars with Gaia RP spectra
13/11: Gaia catches the movement of the tiny galaxies surrounding the Milky Way
06/11: Secrets of the "wild duck" cluster revealed
12/10: 25 years since the initial GAIA proposal
09/10: 3rd Gaia DPAC Consortium Meeting
30/09: A new panoramic sky map of the Milky Way's Stellar Streams
25/09: Plausible home stars for interstellar object 'Oumuamua
11/09: Impressions from the IAU General Assembly
30/06: Asteroids in Gaia Data
14/06: Mapping and visualising Gaia DR2

25/04: In-depth stories on Gaia DR2

14/04: Gaia tops one trillion observations
16/03: Gaia DR2 Passbands
27/02: Triton observation campaign
11/02: Gaia Women In Science
29/01: Following-up on Gaia
2017
19/12: 4th launch anniversary
24/11: Gaia-GOSA service
27/10: German Gaia stamp in the making
19/10: Hertzsprung-russell diagram using Gaia DR1
05/10: Updated prediction to the Triton occultation campaign
04/10: 1:1 Gaia model arrives at ESAC
31/08: Close stellar encounters from the first Gaia data release
16/08: Preliminary view of the Gaia sky in colour
07/07: Chariklo stellar occultation follow-up
24/04: Gaia reveals the composition of asteroids
20/04: Extra-galactic observations with Gaia
10/04: How faint are the faintest Gaia stars?
24/03: Pulsating stars to study Galactic structures
09/02: Known exoplanetary transits in Gaia data
31/01: Successful second DPAC Consortium Meeting
2016
23/12: Interactive and statistical visualisation of Gaia DR1 with vaex
16/12: Standard uncertainties for the photometric data (in GDR1)
25/11: Signature of the rotation of the galactic bar uncovered
15/11: Successful first DR1 Workshop
27/10: Microlensing Follow-Up
21/10: Asteroid Occultation
16/09: First DR1 results
14/09: Pluto Stellar Occultation
15/06: Happy Birthday, DPAC!
10/06: 1000th run of the Initial Data Treatment system
04/05: Complementing Gaia observations of the densest sky regions
22/04: A window to Gaia - the focal plane
05/04: Hipparcos interactive data access tool
24/03: Gaia spots a sunspot
29/02: Gaia sees exploding stars next door
11/02: A new heart for the Gaia Object Generator
04/02: Searching for solar siblings with Gaia
28/01: Globular cluster colour-magnitude diagrams
21/01: Gaia resolving power estimated with Pluto and Charon
12/01: 100th First-Look Weekly Report
06/01: Gaia intersects a Perseid meteoroid
2015
18/12: Tales of two clusters retold by Gaia
11/11: Lunar transit temperature plots
06/11: Gaia's sensors scan a lunar transit
03/11: Celebrity comet spotted among Gaia's stars
09/10: The SB2 stars as seen by Gaia's RVS
02/10: The colour of Gaia's eyes
24/09: Estimating distances from parallaxes
18/09: Gaia orbit reconstruction
31/07: Asteroids all around
17/07: Gaia satellite and amateur astronomers spot one in a billion star
03/07: Counting stars with Gaia
01/07: Avionics Model test bench arrives at ESOC
28/05: Short period/faint magnitude Cepheids in the Large Magellanic Cloud
19/05: Visualising Gaia Photometric Science Alerts
09/04: Gaia honours Einstein by observing his cross
02/04: 1 April - First Look Scientists play practical joke
05/03: RR Lyrae stars in the Large Magellanic Cloud as seen by Gaia
26/02: First Gaia BP/RP deblended spectra
19/02: 13 months of GBOT Gaia observations
12/02: Added Value Interface Portal for Gaia
04/02: Gaia's potential for the discovery of circumbinary planets
26/01: DIBs in three hot stars as seen by Gaia's RVS
15/01: The Tycho-Gaia Astrometric Solution
06/01: Close encounters of the stellar kind
2014
12/12: Gaia detects microlensing event
05/12: Cat's Eye Nebula as seen by Gaia
01/12: BFOSC observation of Gaia at L2
24/11: Gaia spectra of six stars
13/11: Omega Centauri as seen by Gaia
02/10: RVS Data Processing
12/09: Gaia discovers first supernova
04/08: Gaia flag arrives at ESAC
29/07: Gaia handover
15/07: Eclipsing binaries
03/07: Asteroids at the "photo finish"
19/06: Calibration image III - Messier 51
05/06: First Gaia BP/RP and RVS spectra
02/06: Sky coverage of Gaia during commissioning
03/04: Gaia source detection
21/02: Sky-background false detections in the sky mapper
14/02: Gaia calibration images II
06/02: Gaia calibration image I
28/01: Gaia telescope light path
17/01: First star shines for Gaia
14/01: Radiation Campaign #4
06/01: Asteroid detection by Gaia
2013
17/12: Gaia in the gantry
12/12: The sky in G magnitude
05/12: Pre-launch release of spectrophotometric standard stars
28/11: From one to one billion pixels
21/11: The Hipparcos all-sky map
15/10: Gaia Sunshield Deployment Test
08/10: Initial Gaia Source List
17/09: CU1 Operations Workshop
11/09: Apsis
26/08: Gaia arrival in French Guiana
20/08: Gaia cartoons
11/07: Model Soyuz Fregat video
01/07: Acoustic Testing
21/06: SOVT
03/06: CU4 meeting #15
04/04: DPCC (CNES) 
26/03: Gaia artist impression 
11/02: Gaia payload testing  
04/01: Space flyby with Gaia-like data
2012
10/12: DPAC OR#2. Testing with Planck
05/11: Galaxy detection with Gaia
09/10: Plot of part of the GUMS-10 catalogue
23/07: "Gaia" meets at Gaia
29/06: The Sky as seen by Gaia
31/05: Panorama of BAM clean room
29/03: GREAT school results
12/03: Scanning-law movie
21/02: Astrometric microlensing and Gaia
03/02: BAM with PMTS
12/01: FPA with all the CCDs and WFSs
2011
14/12: Deployable sunshield
10/11: Earth Trojan search
21/10: First Soyuz liftoff from the French Guiana
20/09: Fast 2D image reconstruction algorithm
05/09: RVS OMA
10/08: 3D distribution of the Gaia catalogue
13/07: Dynamical Attitude Model
22/06: Gaia's view of open clusters
27/05: Accuracy of the stellar transverse velocity
13/05: Vibration test of BAM mirrors
18/04: L. Lindegren, Dr. Honoris Causa of the Observatory of Paris
19/01: Detectability of stars close to Jupiter
05/01: Delivery of the WFS flight models
2010
21/12: The 100th member of CU3
17/11: Nano-JASMINE and AGIS
27/10: Eclipsing binary light curves fitted with DPAC code
13/10: Gaia broad band photometry
28/09: Measuring stellar parameters and interstellar extinction
14/09: M1 mirror
27/08: Quest for the Sun's siblings
 
Please note: Entries from the period 2003-2010 are available in this PDF document.