Image of the Week

 

Signal-to-Noise Ratio for Gaia DR3 BP/RP mean spectra

 

Figure 1: The Signal-to-Noise ratio as a function of absolute wavelength averaged over sources within magnitude bins. Image credit: ESA/Gaia/DPAC - CC BY-SA 3.0 IGO Acknowledgement: ESA/Gaia/DPAC, F. De Angeli, P. Montegriffo and the whole of CU5 and DPCI teams.

 

The upcoming 3rd Gaia Data Release (Gaia DR3) will introduce for the first time BP/RP mean spectra in the wide range of Gaia data products. The exact number of sources for which BP/RP mean spectra will be published is still undefined but it is expected to be of the order of 100 million. The vast majority of these sources will be brighter than 17.6 in G but a few specific selections of fainter sources will also be included.

The Blue (BP) and Red (RP) Photometers spectra cover the wavelength ranges [330, 680] nm and [640, 1050] nm respectively with varying resolution depending on the wavelength and on the position in the focal plane and Field of View (the approximate ranges being 100 to 30 for BP and 100 to 70 for RP in λ/Δλ, see Figure 3 in Carrasco et al., 2021).

The community is eagerly awaiting this data set. With the aim of helping future users assess the suitability of this data for their use cases and defining strategies to achieve the best results, we provide in this image of the week an estimate of the expected signal-to-noise ratio (SNR) in the BP/RP mean spectra in Gaia DR3. Software utilities to facilitate the usage of BP/RP spectra are also being developed and will be released to the community in advance of Gaia DR3.

This analysis is based on a selection of sources of intermediate colour (0.0 < BP-RP < 2.0), far from the Galactic Plane, (nominally) not affected by crowding and covering a wide magnitude range (5 < G < 20). This wide magnitude range was selected for completeness, even though very few sources with BP/RP mean spectra in DR3 will be fainter than G=17.6. An additional criterion applied in the selection process was that only sources with a number of transits between 30 and 40 would be selected. This is to ensure that these results are representative of the Gaia DR3 release, however users should remember that due to the Gaia scanning law, sources in various areas in the sky will get significantly different numbers of observations. Of course the SNR is expected to increase with the number of observations.

It should also be mentioned that in the case of Solar system objects, the lower average number of observations and the challenges due to the significant motion of these objects during a transit across the focal plane, lower SNR is to be expected.

BP/RP mean spectra will be provided as a continuous function defined by a combination of a set of basis functions. In order to estimate the SNR at different wavelengths, the spectra have been sampled at regular intervals (every 10 nm) in the absolute reference system. This provides a value and corresponding error in units of W nm-1m-2. The SNR for each sample is defined as the ratio between the value and its error.

The plot above shows the SNR as a function of absolute wavelength averaged over sources within magnitude bins. Some of the features seen in the plot can be explained knowing the characteristics of the instrument and the available observing strategies. The oscillations in SNR for sources in the magnitude range 5 < G < 11 for instance are due to different effective exposure times applied when observing sources in different magnitude ranges. The drop in SNR between 630 and 640 nm is due to the switch between the red edge of the BP spectrum (where the resolution is about 20 nm per sample) and the blue edge of the RP spectrum (with a resolution of about 6 nm per sample). Other features are an effect of the procedures that lead to the generation of absolute spectra: the steep slope in the transition between 630 nm and 640 nm is artificial and is due to the algorithm adopted to “merge” the BP and RP spectra into a single absolute spectrum.

 

Figure 2: The Signal-to-Noise ratio as a function of absolute wavelength averaged over sources within magnitude and effective temperature bins. Image credit: ESA/Gaia/DPAC - CC BY-SA 3.0 IGO Acknowledgement: ESA/Gaia/DPAC, F. De Angeli, P. Montegriffo and the whole of CU5, DPCI and CU8 teams.

 

Figure 2 shows the effect of temperature on the SNR. Spectra of about 50 sources randomly selected far from the Galactic plane in a grid of magnitude and temperature were used to generate an average SNR. Different magnitudes are shown with different colours, while different line styles are used for different temperature ranges. As expected for a given magnitude hotter source will have higher SNR in the bluest wavelength regions.

The BP and RP instrument design was driven by the need to achieve two main goals: providing accurate and detailed colour information for the calibration of chromaticity effects in the astrometric solution and allowing source classification (for stars, galaxies, QSOs, Solar system objects, etc.) and parametrization (e.g. Teff, [M/H], log(g), etc.) for all targets across the astrophysical parameter space with particular attention to those types that are considered critical for the unravelling of the structure and formation history of the Milky Way.

Even at the low resolution of the BP and RP instruments, the resulting spectral energy distributions contain key astrophysical information for a vast number of sources. Gaia DR3 will contain many results from the analysis of these data and this will help the user to more efficiently exploit the spectra.

Thanks to the excellent signal to noise ratio in some wavelength ranges and calibration in flux at the few percent level, the availability of BP/RP mean spectra for a large subset of the Gaia DR3 catalogue (a subset of size comparable to current photometric surveys) will open exciting opportunities for the scientific community.

 

Credits: ESA/Gaia/DPAC, F. De Angeli, P. Montegriffo and the whole of CU5 and DPCI teams.

 

Published: 23/12/2021

Updated on 26/05/2022: addition of Figure 2.

 

Image of the Week Archive

2024

03/12: The Gaia ESA Archive: a first step towards GAia Data release 4

20/08: Gaia discovers interesting duo belonging to the Milky Way halo: an ultracool subdwarf with a white dwarf companion

25/07: 10 years of Gaia science operations

23/07: How binary stars change their stellar dance with age

25/06: Dynamical masses across the Hertzsprung-Russell diagram

28/05: Did Gaia find its first neutron star?

26/04: A textbook solar eruption

22/04: Gaia's contribution to discovering distant worlds

16/04: Gaia spots Milky Way's most massive black hole of stellar origin

02/04: The Gaia Cataclysmic Variable hook

2023

19/12: 10 Science topics to celebrate Gaia's 10 years in space

31/10: Gaia observes cosmic clock inside a heavenly jewel

10/10: Gaia Focused Product Release stories

27/09: Does the Milky Way contain less dark matter than previously thought?

22/09: Mass-luminosity relation from Gaia's binary stars

13/09: Gaia DPAC CU8 seminars

13/06: Gaia's multi-dimensional Milky Way

18/05: Mapping the Milky Way

15/05: Goonhilly station steps in to save Gaia science data

25/04: The Gaia ESA Archive

05/04: Dual quasar found to be hosted by an ongoing galaxy merger at redshift 2.17

21/03: GaiaVari: a citizen science project to help Gaia variability classificaton

09/02: Missing mass in Albireo Ac: massive star or black hole?

31/01: Gaia reaches to the clouds – 3D kinematics of the LMC

25/01: Meet your neighbours: CNS5 - the fifth catalogue of nearby stars

18/01: A single-object visualisation tool for Gaia objects

2022

25/11: 100 months of Gaia data

23/11: The astonishment

09/11: Gamma-Ray Burst detection from Lagrange 2 point by Gaia

04/11: Gaia's first black hole discovery: Gaia BH1

26/10: Are Newton and Einstein in error after all?

21/10: Gaia ESA Archive goes live with third data release

06/10: Mapping the interstellar medium using the Gaia RVS spectra

26/09: Gaia on the hunt for dual quasars and gravitational lenses

23/09: Gaia's observation of relativistic deflection of light close to Jupiter

13/06: Gaia Data Release 3

10/06: MK classification of stars from BP/RP spectrophotometry across the Hertzsprung-Russell diagram

09/06: BP/RP low-resolution spectroscopy across the Hertzsprung-Russell diagram

27/05: Cepheids and their radial velocity curves

23/05: The Galaxy in your preferred colours

19/05: GaiaXPy 1.0.0 released, a tool for Gaia's BP/RP spectra users

11/05: Systemic proper motions of 73 galaxies in the Local group

28/03: Gaia query statistics

16/03: Gaia's first photo shooting of the James Webb Space Telescope

08/03: Gaia's women in science - coordination unit 8

25/02: Not only distances: what Gaia DR3 RR Lyrae stars will tell us about our Galaxy and beyond

11/02: Gaia's women in science

31/01: Astrometric orbit of the exoplanet-host star HD81040

12/01: The Local Bubble - source of our nearby stars

05/01: A Milky-Way relic of the formation of the Universe

2021

23/12: Signal-to-Noise ratio for Gaia DR3 BP/RP mean spectra

22/12: The 7 October 2021 stellar occultation by the Neptunian system

01/12: Observation of a long-predicted new type of binary star

24/09: Astrometric microlensing effect in the Gaia16aye event

22/09: the power of the third dimension - the discovery of a gigantic cavity in space

16/09: An alternative Gaia sky chart

25/08: Gaia Photometric Science Alerts and Gravitational Wave Triggers

09/07: How Gaia unveils what stars are made of

23/06: Interviews with CU3

27/04: HIP 70674 Orbital solution resulting from Gaia DR3 processing

30/03: First transiting exoplanet by Gaia

26/03: Apophis' Yarkovsky acceleration improved through stellar occultation

26/02: Matching observations to sources for Gaia DR4

2020

22/12: QSO emission lines in low-resolution BP/RP spectra

03/12: Gaia Early Data Release 3

29/10: Gaia EDR3 passbands

15/10: Star clusters are only the tip of the iceberg

04/09: Discovery of a year long superoutburst in a white dwarf binary

12/08: First calibrated XP spectra

22/07: Gaia and the size of the Solar System

16/07: Testing CDM and geometry-driven Milky Way rotation Curve Models

30/06: Gaia's impact on Solar system science

14/05: Machine-learning techniques reveal hundreds of open clusters in Gaia data

20/03: The chemical trace of Galactic stellar populations as seen by Gaia

09/01: Discovery of a new star cluster: Price-Whelan1

08/01: Largest ever seen gaseous structure in our Galaxy

2019

20/12: The lost stars of the Hyades

06/12: Do we see a dark-matter like effect in globular clusters?

12/11: Hypervelocity star ejected from a supermassive black hole

17/09: Instrument Development Award

08/08: 30th anniversary of Hipparcos

17/07: Whitehead Eclipse Avoidance Manoeuvre

28/06: Following up on Gaia Solar System Objects

19/06: News from the Gaia Archive

29/05: Spectroscopic variability of emission lines stars with Gaia

24/05: Evidence of new magnetic transitions in late-type stars

03/05: Atmospheric dynamics of AGB stars revealed by Gaia

25/04: Geographic contributions to DPAC

22/04: omega Centauri's lost stars

18/04: 53rd ESLAB symposium "the Gaia universe"

18/02: A river of stars

2018
21/12: Sonification of Gaia data
18/12: Gaia captures a rare FU Ori outburst
12/12: Changes in the DPAC Executive
26/11:New Very Low Mass dwarfs in Gaia data
19/11: Hypervelocity White Dwarfs in Gaia data
15/11: Hunting evolved carbon stars with Gaia RP spectra
13/11: Gaia catches the movement of the tiny galaxies surrounding the Milky Way
06/11: Secrets of the "wild duck" cluster revealed
12/10: 25 years since the initial GAIA proposal
09/10: 3rd Gaia DPAC Consortium Meeting
30/09: A new panoramic sky map of the Milky Way's Stellar Streams
25/09: Plausible home stars for interstellar object 'Oumuamua
11/09: Impressions from the IAU General Assembly
30/06: Asteroids in Gaia Data
14/06: Mapping and visualising Gaia DR2

25/04: In-depth stories on Gaia DR2

14/04: Gaia tops one trillion observations
16/03: Gaia DR2 Passbands
27/02: Triton observation campaign
11/02: Gaia Women In Science
29/01: Following-up on Gaia
2017
19/12: 4th launch anniversary
24/11: Gaia-GOSA service
27/10: German Gaia stamp in the making
19/10: Hertzsprung-russell diagram using Gaia DR1
05/10: Updated prediction to the Triton occultation campaign
04/10: 1:1 Gaia model arrives at ESAC
31/08: Close stellar encounters from the first Gaia data release
16/08: Preliminary view of the Gaia sky in colour
07/07: Chariklo stellar occultation follow-up
24/04: Gaia reveals the composition of asteroids
20/04: Extra-galactic observations with Gaia
10/04: How faint are the faintest Gaia stars?
24/03: Pulsating stars to study Galactic structures
09/02: Known exoplanetary transits in Gaia data
31/01: Successful second DPAC Consortium Meeting
2016
23/12: Interactive and statistical visualisation of Gaia DR1 with vaex
16/12: Standard uncertainties for the photometric data (in GDR1)
25/11: Signature of the rotation of the galactic bar uncovered
15/11: Successful first DR1 Workshop
27/10: Microlensing Follow-Up
21/10: Asteroid Occultation
16/09: First DR1 results
14/09: Pluto Stellar Occultation
15/06: Happy Birthday, DPAC!
10/06: 1000th run of the Initial Data Treatment system
04/05: Complementing Gaia observations of the densest sky regions
22/04: A window to Gaia - the focal plane
05/04: Hipparcos interactive data access tool
24/03: Gaia spots a sunspot
29/02: Gaia sees exploding stars next door
11/02: A new heart for the Gaia Object Generator
04/02: Searching for solar siblings with Gaia
28/01: Globular cluster colour-magnitude diagrams
21/01: Gaia resolving power estimated with Pluto and Charon
12/01: 100th First-Look Weekly Report
06/01: Gaia intersects a Perseid meteoroid
2015
18/12: Tales of two clusters retold by Gaia
11/11: Lunar transit temperature plots
06/11: Gaia's sensors scan a lunar transit
03/11: Celebrity comet spotted among Gaia's stars
09/10: The SB2 stars as seen by Gaia's RVS
02/10: The colour of Gaia's eyes
24/09: Estimating distances from parallaxes
18/09: Gaia orbit reconstruction
31/07: Asteroids all around
17/07: Gaia satellite and amateur astronomers spot one in a billion star
03/07: Counting stars with Gaia
01/07: Avionics Model test bench arrives at ESOC
28/05: Short period/faint magnitude Cepheids in the Large Magellanic Cloud
19/05: Visualising Gaia Photometric Science Alerts
09/04: Gaia honours Einstein by observing his cross
02/04: 1 April - First Look Scientists play practical joke
05/03: RR Lyrae stars in the Large Magellanic Cloud as seen by Gaia
26/02: First Gaia BP/RP deblended spectra
19/02: 13 months of GBOT Gaia observations
12/02: Added Value Interface Portal for Gaia
04/02: Gaia's potential for the discovery of circumbinary planets
26/01: DIBs in three hot stars as seen by Gaia's RVS
15/01: The Tycho-Gaia Astrometric Solution
06/01: Close encounters of the stellar kind
2014
12/12: Gaia detects microlensing event
05/12: Cat's Eye Nebula as seen by Gaia
01/12: BFOSC observation of Gaia at L2
24/11: Gaia spectra of six stars
13/11: Omega Centauri as seen by Gaia
02/10: RVS Data Processing
12/09: Gaia discovers first supernova
04/08: Gaia flag arrives at ESAC
29/07: Gaia handover
15/07: Eclipsing binaries
03/07: Asteroids at the "photo finish"
19/06: Calibration image III - Messier 51
05/06: First Gaia BP/RP and RVS spectra
02/06: Sky coverage of Gaia during commissioning
03/04: Gaia source detection
21/02: Sky-background false detections in the sky mapper
14/02: Gaia calibration images II
06/02: Gaia calibration image I
28/01: Gaia telescope light path
17/01: First star shines for Gaia
14/01: Radiation Campaign #4
06/01: Asteroid detection by Gaia
2013
17/12: Gaia in the gantry
12/12: The sky in G magnitude
05/12: Pre-launch release of spectrophotometric standard stars
28/11: From one to one billion pixels
21/11: The Hipparcos all-sky map
15/10: Gaia Sunshield Deployment Test
08/10: Initial Gaia Source List
17/09: CU1 Operations Workshop
11/09: Apsis
26/08: Gaia arrival in French Guiana
20/08: Gaia cartoons
11/07: Model Soyuz Fregat video
01/07: Acoustic Testing
21/06: SOVT
03/06: CU4 meeting #15
04/04: DPCC (CNES) 
26/03: Gaia artist impression 
11/02: Gaia payload testing  
04/01: Space flyby with Gaia-like data
2012
10/12: DPAC OR#2. Testing with Planck
05/11: Galaxy detection with Gaia
09/10: Plot of part of the GUMS-10 catalogue
23/07: "Gaia" meets at Gaia
29/06: The Sky as seen by Gaia
31/05: Panorama of BAM clean room
29/03: GREAT school results
12/03: Scanning-law movie
21/02: Astrometric microlensing and Gaia
03/02: BAM with PMTS
12/01: FPA with all the CCDs and WFSs
2011
14/12: Deployable sunshield
10/11: Earth Trojan search
21/10: First Soyuz liftoff from the French Guiana
20/09: Fast 2D image reconstruction algorithm
05/09: RVS OMA
10/08: 3D distribution of the Gaia catalogue
13/07: Dynamical Attitude Model
22/06: Gaia's view of open clusters
27/05: Accuracy of the stellar transverse velocity
13/05: Vibration test of BAM mirrors
18/04: L. Lindegren, Dr. Honoris Causa of the Observatory of Paris
19/01: Detectability of stars close to Jupiter
05/01: Delivery of the WFS flight models
2010
21/12: The 100th member of CU3
17/11: Nano-JASMINE and AGIS
27/10: Eclipsing binary light curves fitted with DPAC code
13/10: Gaia broad band photometry
28/09: Measuring stellar parameters and interstellar extinction
14/09: M1 mirror
27/08: Quest for the Sun's siblings
 
Please note: Entries from the period 2003-2010 are available in this PDF document.