Back 2023-10-10 Gaia FPR story: Unlocking the secrets of solar system objects - Gaia's surprising role

Gaia Focused Product Release

Unlocking the secrets of solar system objects - Gaia's surprising role

 

The Gaia space mission is primarily designed to map with extreme precision the positions, parallaxes, and proper motions of over a billion stars in the Milky Way and beyond, creating an exceptionally detailed three-dimensional stellar catalogue. However, this mission also contributes to the detection and characterization of solar system objects (SSOs), such as asteroids and moons of planets. In fact, although the mission design was not optimized for SSO detection, thanks to systematic measurements taken with Gaia has performed measurements of positions a hundred times more precise compared to previous ones obtained over past decades. But how can Gaia contribute to SSO science?

 

Figure 1. Overview of asteroids in Gaia's Focused Product Release. The inner (less visible) blue orbit represents the orbit of the Earth, the outer blue orbit shows Jupiter's orbit. The trojans, asteroids clustered together a bit ahead and behind of Jupiter are clearly visible. The Main Belt is the region heavily populated with asteroids between Mars and Jupiter. Gaia's Trans-Neptunian Objects are not shown in this plot. Credits: ESA/Gaia/DPAC - CC BY-SA 3.0 IGO. Acknowledgements: Screenshot of video created by Stefan Jordan, Toni Sagristà, Paolo Tanga with Gaia Sky.

 

Gaia's roles in solar system object detection

Thanks to data analysis it is possible to compare the calculated positions of the chosen asteroids with the sources observed by Gaia. Since asteroids move, it’s necessary to consider the exact time of each observation: if the position predicted for the asteroid and the one measured by Gaia matches, it is possible to confirm that the source is the asteroid searched for. Furthermore, it is also possible to check some moving sources that do not correspond to positions of known objects. These enter a small list of 'unmatched asteroids' (about 1% of the total number of objects in the release). If indeed their characteristics do not match those of any of the previously known asteroids, they could represent the discovery of a new one with Gaia.

The remaining 99% of sources are known asteroids. With the updated positions and orbits in Gaia’s Focused Product Release, the future positions of asteroids can be predicted much better, serving various important purposes.

 

Figure 2. Visualisation of the Gaia's asteroids. Credits: ESA/Gaia/DPAC - CC BY-SA 3.0 IGO. Acknowledgements: Screenshot of video created by Stefan Jordan, Toni Sagristà, Paolo Tanga with Gaia Sky.

 

An example of the precision measurements that can be performed concerns Yarkovsky's small acceleration, a recoil force due to the emission of thermal infrared radiation. This effect can be used for understanding how the asteroid belt evolved and how dangerous asteroids are brought into Earth-crossing orbits. This force has the characteristic of changing the orbit size of small asteroids (<10 km) at a very slow rate. To measure this, highly accurate astrometry is needed, as is provided by Gaia.

In conclusion, by looking carefully into anomalies of the asteroid trajectories, it is also possible to measure subtle effects due to their shape or detect asteroid satellites. Only positions observed by Gaia are so precise as to permit this measurement on many solar system objects.

 

Gaia's past observation of solar system objects

In 2018, with Gaia’s Data Release 2, the first data set related to solar system objects was released. This consisted of a relatively small sample (~14,000) though of high quality. Two types of data were published: epoch astrometry and epoch photometry in the visible band, covering a 22-month observation period.

In 2022, with the advent of Gaia’s Data Release 3, more than 10 times the number of asteroids and several planetary moons were made available compared to the previous Data Release 2 (~157,000), spanning different asteroid classes. This release, covering a 34-month observation period, also included epoch astrometry and wide-band visible epoch photometry and in addition featured two new data products: orbits and spectral data of the bodies.

 

Figure 3. Visual portfolio of some data properties for asteroids in Gaia Data Release 3. In the image the distribution on the semi-major axis of objects belonging to the main populations are shown (eight Centaurs are excluded though). This image was published in 2022, in view of Gaia DR3, but is still applicable to the Gaia FPR data set as well. Credits: Tanga, et al. 2022 - CC BY-SA 3.0 IGO.

 

Present: What's new in this Gaia Focused Product Release?

Thanks to the new Focused Product Release on 10 October 2023, Gaia has taken another leap forward in the study of solar system objects. In this release, data for ~156,000 of these objects with a longer observation time span of 66 months has become available. This extended observation time has allowed for a significant achievement: for almost all asteroids, one full orbit has been measured, rather than just segments of it. This allowed to achieve 20 times more precise orbits compared to Gaia Data Release 3. Combined with the Gaia stellar catalogue, this accomplishment has a significant positive impact on mass determinations and predictions of stellar occultations, where an asteroid passes in front of a star and temporarily dims the starlight in a way that follows its figure. Occultation timing observations from a variety of locations across the occultation path on the globe enable an accurate measurement of asteroid shapes, their rings and satellites.

 

 

Figure 4. Left: Gaia DR3 orbits, with formal uncertainty of the semi-major axis of orbits versus the semi-major axis of the orbit for the Gaia DR3 SSO data (based on 34 months of observations). Right: the FPR orbits, based on 66 months of observations, are a factor 20 more precise. The clumps in both panels denote various asteroid families. The colour scale denotes the number of objects. Credits: Gaia Focused Product Release: Asteroid orbital solution by Gaia Collaboration, P. David, et al. 2023

 

Figure 5. In red: The formal uncertainty of the semi-major axis of orbits versus the observed arc length of the orbit for the Gaia DR3 SSO data (based on 34 months of observations). In blue: Gaia FPR arc length clearly improved compared to Gaia DR3. For almost all objects, one full orbit has been measured now. Credits: Gaia Focused Product Release: Asteroid orbital solution by Gaia Collaboration, P. David, et al. 2023

 

 

What can we expect in the future?

The improvements do not stop here: even more significant developments can be anticipated with Gaia’s Data Release 4 which is not expected before the end of 2025. In this case, twice as many asteroids (~350,000) compared to the current Gaia FPR will be published, among which there may be previously undiscovered ones. The time span will remain the same, but there will be a much greater variety of new data types. In addition to epoch astrometry, wide-band visible epoch photometry, spectral data, and orbits, all of which were part of previous data releases, spin and shape parameters, and precise masses of the largest asteroids will be made available.

 

Figure 6. Infographic highlighting the contents of the Gaia data releases with respect to solar system objects, starting with Gaia’s Data Release 2 in 2018 where Gaia released for the first time data for about 14,000 asteroids. Gaia’s Data Release 3 brought, next to positions and brightness, also orbits and spectra for about 158,000 asteroids. With Gaia’s Focused Product Release, updated astrometry is published for the same set of asteroids. The orbit precision for the solar system objects in Gaia FPR is on average 20 times better compared to Gaia DR3. With the next data release, Gaia DR4, even more data products are expected, such as spin, mass and shape parameters, for twice the number of objects. Legend with explanation on the symbols used can be found here. Credits: ESA/Gaia/DPAC - CC BY-SA 3.0 IGO. Acknowledgements: created by Mariasole Agazzi, Paolo Tanga, Tineke Roegiers, Daniel Hestroffer, Jos de Bruijne.

 

As for the stars, Gaia is providing astrometric and photometric measurements with unprecedented precision and accuracy, for already more than five years. After Gaia’s Data Release 3, in fact, the specific star data obtained by Gaia helps to improve even asteroids never observed by Gaia itself. Using older observations from ground in combination with Gaia’s star data, updated positions can be computed for many asteroids. In fact, these updates following the release of Gaia’s star data aids in protecting Earth from potential asteroid impacts, and assist in mission planning for SSO exploration by space probes.

In summary, while the Gaia mission is primarily dedicated to studying stars in the Milky Way, its observations are extremely valuable for the detection, monitoring, characterization, and pinpointing of solar system objects, contributing to the understanding of the formation, structure, and evolution of our solar system.

 

With this data release, orbits for nearly 157,000 asteroids were significantly improved. These new orbits, based on up to 5.5 years of Gaia data, outperform decades of ground-based observations in terms of precision. To illustrate this, an asteroid named 'Wolfratshausen' with a five-kilometer diameter is focused on. By comparing pre-Gaia ground-based observations with Gaia's data, it can be seen clearly how Gaia's precision revolutionizes our understanding of asteroid orbits. The green cloud of asteroid positions in Gaia's data is remarkably compact, highlighting the progress made in just 5 years compared to 31 years of pre-Gaia observations. Credits: ESA/Gaia/DPAC - CC BY-SA 3.0 IGO. Acknowledgements: Based on the paper "Focus Product Release: Asteroid orbital solution" by Gaia Collaboration, P. David, et al. 2023 / Data: Pedro David / Video: Stefan Jordan, Toni Sagristà, / Text: Stefan Jordan, Tineke Roegiers, Paolo Tango. / Visualisation: with „Gaia Sky“, developed by Toni Sagristà.

 

Further reading

 

 

Figure 7. Visualisation of the Gaia's asteroids. Credits: ESA/Gaia/DPAC - CC BY-SA 3.0 IGO. Acknowledgements: Screenshot of video created by Stefan Jordan, Toni Sagristà, Paolo Tanga with Gaia Sky.

 

 

Story written by Mariasole Agazzi, Tineke Roegiers, Daniel Hestroffer, Paolo Tanga, Pedro David, François Mignard, Jos de Bruijne

Credit: ESA/Gaia/DPAC

​​Contact email: Gaia Helpdesk

Published: 10-10-2023

 

Image of the Week Archive

2025

15/01: 61 Cygni marks the end of Gaia's science observation phase

2024

03/12: The Gaia ESA Archive: a first step towards GAia Data release 4

20/08: Gaia discovers interesting duo belonging to the Milky Way halo: an ultracool subdwarf with a white dwarf companion

25/07: 10 years of Gaia science operations

23/07: How binary stars change their stellar dance with age

25/06: Dynamical masses across the Hertzsprung-Russell diagram

28/05: Did Gaia find its first neutron star?

26/04: A textbook solar eruption

22/04: Gaia's contribution to discovering distant worlds

16/04: Gaia spots Milky Way's most massive black hole of stellar origin

02/04: The Gaia Cataclysmic Variable hook

2023

19/12: 10 Science topics to celebrate Gaia's 10 years in space

31/10: Gaia observes cosmic clock inside a heavenly jewel

10/10: Gaia Focused Product Release stories

27/09: Does the Milky Way contain less dark matter than previously thought?

22/09: Mass-luminosity relation from Gaia's binary stars

13/09: Gaia DPAC CU8 seminars

13/06: Gaia's multi-dimensional Milky Way

18/05: Mapping the Milky Way

15/05: Goonhilly station steps in to save Gaia science data

25/04: The Gaia ESA Archive

05/04: Dual quasar found to be hosted by an ongoing galaxy merger at redshift 2.17

21/03: GaiaVari: a citizen science project to help Gaia variability classificaton

09/02: Missing mass in Albireo Ac: massive star or black hole?

31/01: Gaia reaches to the clouds – 3D kinematics of the LMC

25/01: Meet your neighbours: CNS5 - the fifth catalogue of nearby stars

18/01: A single-object visualisation tool for Gaia objects

2022

25/11: 100 months of Gaia data

23/11: The astonishment

09/11: Gamma-Ray Burst detection from Lagrange 2 point by Gaia

04/11: Gaia's first black hole discovery: Gaia BH1

26/10: Are Newton and Einstein in error after all?

21/10: Gaia ESA Archive goes live with third data release

06/10: Mapping the interstellar medium using the Gaia RVS spectra

26/09: Gaia on the hunt for dual quasars and gravitational lenses

23/09: Gaia's observation of relativistic deflection of light close to Jupiter

13/06: Gaia Data Release 3

10/06: MK classification of stars from BP/RP spectrophotometry across the Hertzsprung-Russell diagram

09/06: BP/RP low-resolution spectroscopy across the Hertzsprung-Russell diagram

27/05: Cepheids and their radial velocity curves

23/05: The Galaxy in your preferred colours

19/05: GaiaXPy 1.0.0 released, a tool for Gaia's BP/RP spectra users

11/05: Systemic proper motions of 73 galaxies in the Local group

28/03: Gaia query statistics

16/03: Gaia's first photo shooting of the James Webb Space Telescope

08/03: Gaia's women in science - coordination unit 8

25/02: Not only distances: what Gaia DR3 RR Lyrae stars will tell us about our Galaxy and beyond

11/02: Gaia's women in science

31/01: Astrometric orbit of the exoplanet-host star HD81040

12/01: The Local Bubble - source of our nearby stars

05/01: A Milky-Way relic of the formation of the Universe

2021

23/12: Signal-to-Noise ratio for Gaia DR3 BP/RP mean spectra

22/12: The 7 October 2021 stellar occultation by the Neptunian system

01/12: Observation of a long-predicted new type of binary star

24/09: Astrometric microlensing effect in the Gaia16aye event

22/09: the power of the third dimension - the discovery of a gigantic cavity in space

16/09: An alternative Gaia sky chart

25/08: Gaia Photometric Science Alerts and Gravitational Wave Triggers

09/07: How Gaia unveils what stars are made of

23/06: Interviews with CU3

27/04: HIP 70674 Orbital solution resulting from Gaia DR3 processing

30/03: First transiting exoplanet by Gaia

26/03: Apophis' Yarkovsky acceleration improved through stellar occultation

26/02: Matching observations to sources for Gaia DR4

2020

22/12: QSO emission lines in low-resolution BP/RP spectra

03/12: Gaia Early Data Release 3

29/10: Gaia EDR3 passbands

15/10: Star clusters are only the tip of the iceberg

04/09: Discovery of a year long superoutburst in a white dwarf binary

12/08: First calibrated XP spectra

22/07: Gaia and the size of the Solar System

16/07: Testing CDM and geometry-driven Milky Way rotation Curve Models

30/06: Gaia's impact on Solar system science

14/05: Machine-learning techniques reveal hundreds of open clusters in Gaia data

20/03: The chemical trace of Galactic stellar populations as seen by Gaia

09/01: Discovery of a new star cluster: Price-Whelan1

08/01: Largest ever seen gaseous structure in our Galaxy

2019

20/12: The lost stars of the Hyades

06/12: Do we see a dark-matter like effect in globular clusters?

12/11: Hypervelocity star ejected from a supermassive black hole

17/09: Instrument Development Award

08/08: 30th anniversary of Hipparcos

17/07: Whitehead Eclipse Avoidance Manoeuvre

28/06: Following up on Gaia Solar System Objects

19/06: News from the Gaia Archive

29/05: Spectroscopic variability of emission lines stars with Gaia

24/05: Evidence of new magnetic transitions in late-type stars

03/05: Atmospheric dynamics of AGB stars revealed by Gaia

25/04: Geographic contributions to DPAC

22/04: omega Centauri's lost stars

18/04: 53rd ESLAB symposium "the Gaia universe"

18/02: A river of stars

2018
21/12: Sonification of Gaia data
18/12: Gaia captures a rare FU Ori outburst
12/12: Changes in the DPAC Executive
26/11:New Very Low Mass dwarfs in Gaia data
19/11: Hypervelocity White Dwarfs in Gaia data
15/11: Hunting evolved carbon stars with Gaia RP spectra
13/11: Gaia catches the movement of the tiny galaxies surrounding the Milky Way
06/11: Secrets of the "wild duck" cluster revealed
12/10: 25 years since the initial GAIA proposal
09/10: 3rd Gaia DPAC Consortium Meeting
30/09: A new panoramic sky map of the Milky Way's Stellar Streams
25/09: Plausible home stars for interstellar object 'Oumuamua
11/09: Impressions from the IAU General Assembly
30/06: Asteroids in Gaia Data
14/06: Mapping and visualising Gaia DR2

25/04: In-depth stories on Gaia DR2

14/04: Gaia tops one trillion observations
16/03: Gaia DR2 Passbands
27/02: Triton observation campaign
11/02: Gaia Women In Science
29/01: Following-up on Gaia
2017
19/12: 4th launch anniversary
24/11: Gaia-GOSA service
27/10: German Gaia stamp in the making
19/10: Hertzsprung-russell diagram using Gaia DR1
05/10: Updated prediction to the Triton occultation campaign
04/10: 1:1 Gaia model arrives at ESAC
31/08: Close stellar encounters from the first Gaia data release
16/08: Preliminary view of the Gaia sky in colour
07/07: Chariklo stellar occultation follow-up
24/04: Gaia reveals the composition of asteroids
20/04: Extra-galactic observations with Gaia
10/04: How faint are the faintest Gaia stars?
24/03: Pulsating stars to study Galactic structures
09/02: Known exoplanetary transits in Gaia data
31/01: Successful second DPAC Consortium Meeting
2016
23/12: Interactive and statistical visualisation of Gaia DR1 with vaex
16/12: Standard uncertainties for the photometric data (in GDR1)
25/11: Signature of the rotation of the galactic bar uncovered
15/11: Successful first DR1 Workshop
27/10: Microlensing Follow-Up
21/10: Asteroid Occultation
16/09: First DR1 results
14/09: Pluto Stellar Occultation
15/06: Happy Birthday, DPAC!
10/06: 1000th run of the Initial Data Treatment system
04/05: Complementing Gaia observations of the densest sky regions
22/04: A window to Gaia - the focal plane
05/04: Hipparcos interactive data access tool
24/03: Gaia spots a sunspot
29/02: Gaia sees exploding stars next door
11/02: A new heart for the Gaia Object Generator
04/02: Searching for solar siblings with Gaia
28/01: Globular cluster colour-magnitude diagrams
21/01: Gaia resolving power estimated with Pluto and Charon
12/01: 100th First-Look Weekly Report
06/01: Gaia intersects a Perseid meteoroid
2015
18/12: Tales of two clusters retold by Gaia
11/11: Lunar transit temperature plots
06/11: Gaia's sensors scan a lunar transit
03/11: Celebrity comet spotted among Gaia's stars
09/10: The SB2 stars as seen by Gaia's RVS
02/10: The colour of Gaia's eyes
24/09: Estimating distances from parallaxes
18/09: Gaia orbit reconstruction
31/07: Asteroids all around
17/07: Gaia satellite and amateur astronomers spot one in a billion star
03/07: Counting stars with Gaia
01/07: Avionics Model test bench arrives at ESOC
28/05: Short period/faint magnitude Cepheids in the Large Magellanic Cloud
19/05: Visualising Gaia Photometric Science Alerts
09/04: Gaia honours Einstein by observing his cross
02/04: 1 April - First Look Scientists play practical joke
05/03: RR Lyrae stars in the Large Magellanic Cloud as seen by Gaia
26/02: First Gaia BP/RP deblended spectra
19/02: 13 months of GBOT Gaia observations
12/02: Added Value Interface Portal for Gaia
04/02: Gaia's potential for the discovery of circumbinary planets
26/01: DIBs in three hot stars as seen by Gaia's RVS
15/01: The Tycho-Gaia Astrometric Solution
06/01: Close encounters of the stellar kind
2014
12/12: Gaia detects microlensing event
05/12: Cat's Eye Nebula as seen by Gaia
01/12: BFOSC observation of Gaia at L2
24/11: Gaia spectra of six stars
13/11: Omega Centauri as seen by Gaia
02/10: RVS Data Processing
12/09: Gaia discovers first supernova
04/08: Gaia flag arrives at ESAC
29/07: Gaia handover
15/07: Eclipsing binaries
03/07: Asteroids at the "photo finish"
19/06: Calibration image III - Messier 51
05/06: First Gaia BP/RP and RVS spectra
02/06: Sky coverage of Gaia during commissioning
03/04: Gaia source detection
21/02: Sky-background false detections in the sky mapper
14/02: Gaia calibration images II
06/02: Gaia calibration image I
28/01: Gaia telescope light path
17/01: First star shines for Gaia
14/01: Radiation Campaign #4
06/01: Asteroid detection by Gaia
2013
17/12: Gaia in the gantry
12/12: The sky in G magnitude
05/12: Pre-launch release of spectrophotometric standard stars
28/11: From one to one billion pixels
21/11: The Hipparcos all-sky map
15/10: Gaia Sunshield Deployment Test
08/10: Initial Gaia Source List
17/09: CU1 Operations Workshop
11/09: Apsis
26/08: Gaia arrival in French Guiana
20/08: Gaia cartoons
11/07: Model Soyuz Fregat video
01/07: Acoustic Testing
21/06: SOVT
03/06: CU4 meeting #15
04/04: DPCC (CNES) 
26/03: Gaia artist impression 
11/02: Gaia payload testing  
04/01: Space flyby with Gaia-like data
2012
10/12: DPAC OR#2. Testing with Planck
05/11: Galaxy detection with Gaia
09/10: Plot of part of the GUMS-10 catalogue
23/07: "Gaia" meets at Gaia
29/06: The Sky as seen by Gaia
31/05: Panorama of BAM clean room
29/03: GREAT school results
12/03: Scanning-law movie
21/02: Astrometric microlensing and Gaia
03/02: BAM with PMTS
12/01: FPA with all the CCDs and WFSs
2011
14/12: Deployable sunshield
10/11: Earth Trojan search
21/10: First Soyuz liftoff from the French Guiana
20/09: Fast 2D image reconstruction algorithm
05/09: RVS OMA
10/08: 3D distribution of the Gaia catalogue
13/07: Dynamical Attitude Model
22/06: Gaia's view of open clusters
27/05: Accuracy of the stellar transverse velocity
13/05: Vibration test of BAM mirrors
18/04: L. Lindegren, Dr. Honoris Causa of the Observatory of Paris
19/01: Detectability of stars close to Jupiter
05/01: Delivery of the WFS flight models
2010
21/12: The 100th member of CU3
17/11: Nano-JASMINE and AGIS
27/10: Eclipsing binary light curves fitted with DPAC code
13/10: Gaia broad band photometry
28/09: Measuring stellar parameters and interstellar extinction
14/09: M1 mirror
27/08: Quest for the Sun's siblings
 
Please note: Entries from the period 2003-2010 are available in this PDF document.